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Abstract
In this paper, we calculate the Frobenius norm, and give upper and lower bounds
for the spectral norm of r -circulant matrices whose entries are defined in terms of
generalized bi-periodic Fibonacci numbers. We also provide explicit formulas for the
computation of eigenvalues and determinants of these matrices.
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Fibonacci numbers
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1 Introduction

The generalized bi-periodic Fibonacci sequence {wn} = {wn(w0, w1; a, b)}, with
arbitrary initial values w0 and w1, is defined [7] by the recurrence relation

wn = aξ(n+1)bξ(n)wn−1 + wn−2, n ≥ 2,
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where ξ(n) = (1 − (−1)n) /2, and a and b are nonzero real numbers. Note that
ξ(n) returns to 0 when n is even, and to 1 when n is odd. Several well-known integer
sequences are its special cases. For example, this sequence is reduced to the bi-periodic
Fibonacci sequence {qn} for w0 = 0, w1 = 1, and to the bi-periodic Lucas sequence
{pn} for w0 = 2, w1 = b. We refer to [4,7,13,18–21] for basic properties of these
sequences and their generalizations.

Several recent works have been dedicated to the study of r -circulant matrices with
special entries such as Fibonacci-like numbers. Solak [15,16] obtained some bounds
for the spectral norm of circulantmatrices whose entries are Fibonacci and Lucas num-
bers. Shen and Cen [14] generalized the results of Solak to r -circulant matrices. Nalli
and Sen [12] investigated the norms of circulant matrices with generalized Fibonacci
numbers. Alptekin et al. [1] obtained the spectral norm and eigenvalues of circulant
matrices whose entries are Horadam numbers. Yazlik and Taskara [23] found upper
and lower bounds on the norms of r -circulant matrices with generalized k-Horadam
numbers. They also provided formulas for the computation of the determinant and
eigenvalues of such matrices. We refer to [2,3,5,10,11] for related studies.

Recently, Köme and Yazlik [9] obtained upper and lower bounds for the spectral
norm of r -circulant matrices whose entries are bi-periodic Fibonacci and Lucas num-
bers. In the same spirit, we shall calculate the Frobenius norm, find upper and lower
bounds on the spectral norm, and calculate the eigenvalues and determinants of r -
circulant matrices whose entries are generalized bi-periodic Fibonacci numbers. To
this purpose, we review the background material concerning the basic definitions and
facts of r -circulant matrices and matrix norms in the rest of this section.

For n > 0, the Binet formula of the sequence {wn} can be written as

wn = aξ(n+1)

(ab)� n
2 �
(
Xαn − Yβn) ,

where

X = w1 − (β/a)w0

α − β
and Y = w1 − (α/a)w0

α − β

[19,20]. The numbers

α = ab + √
a2b2 + 4ab

2
and β = ab − √

a2b2 + 4ab

2
(1)

are the roots of the polynomial x2 − abx − ab, and they satisfy

α + β = ab, α − β =
√
a2b2 + 4ab, αβ = −ab.

By the Binet formula, the sequences {qn} and {pn} are given by

qn = aξ(n+1)

(ab)� n
2 �
(

αn − βn

α − β

)
and pn = a−ξ(n)

(ab)� n
2 �
(
αn + βn) . (2)
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Let r ∈ C \ {0}. An n × n matrix Cr = [ci j
]
with entries

ci j =
{

c j−i , j ≥ i,
rcn+ j−i , j < i,

is called an r -circulant matrix. In other words, Cr has the following form:

Cr =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

c0 c1 c2 . . . cn−2 cn−1
rcn−1 c0 c1 . . . cn−3 cn−2
rcn−2 rcn−1 c0 . . . cn−4 cn−3

...
...

...
. . .

...
...

rc2 rc3 rc4 . . . c0 c1
rc1 rc2 rc3 . . . rcn−1 c0

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

.

For simplicity, we denote Cr by circr
[
c0, c1, . . . , cn−1

]
. Note that Cr is reduced to a

circulant matrix for r = 1. The eigenvalues of Cr are given as

λ j (Cr ) =
n−1∑

k=0

ck
(
ρω− j

)k
(3)

with j = 0, 1, . . . , n − 1, where ρ is any nth root of r , and ω is any nth root of unity.
For details, we refer to [6, Lemma 4]. An eigenvalue formula was provided in [23,
Theorem 7] for r -circulant matrices with k-Horadam numbers. With suitable initial
values and polynomials, this formula contains the eigenvalues of r -circulants with
Fibonacci numbers and several other Fibonacci-like numbers as special cases.

Let A = [
ai j
]
be an m × n matrix. The Frobenius norm (also known as Hilbert-

Schmidt norm or Schur norm) ‖A‖F of A is the square root of the sum of the squares
of the absolute values of all entries of A. That is,

‖A‖F =
√√
√√

m∑

i=1

n∑

j=1

∣∣ai j
∣∣2.

Another important norm of A is the spectral norm, defined as

‖A‖2 = √λmax (A∗A),

where λmax (A∗A) denotes the largest eigenvalue of A∗A. Here, A∗ is the conjugate
transpose of A. The following inequality by Stone [17] provides a relationship between
Frobenius and spectral norms:

1√
n

‖A‖F ≤ ‖A‖2 ≤ ‖A‖F ≤ √
n ‖A‖2 . (4)

Note that the Frobenius norm is an upper bound on the spectral norm.
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For m × n matrices A = [ai j
]
and B = [bi j

]
, the Hadamard product of A and B

is defined as A ◦ B = [ai j · bi j
]
. It is simply the entrywise multiplication of A and B.

This product appears [8, Theorem 5.5.3] in

‖A ◦ B‖2 ≤ r1(A)c1(B).

Here,

r1(A) = max
1≤i≤m

√√√
√

n∑

j=1

∣∣ai j
∣∣2 and c1(B) = max

1≤ j≤n

√√√√
m∑

i=1

∣∣bi j
∣∣2 .

Note that r1(A) is the maximum row length norm of A, and c1(B) is the maximum
column length norm of B.

2 Main results

Throughout this section, we let a, b and w1 be positive integers and let w0 be a
nonnegative integer unless otherwise is stated.

We study the matrix

Wr = circr

[(a
b

) ξ(0)
2

w0,
(a
b

) ξ(1)
2

w1 , . . . ,
(a
b

) ξ(n−1)
2

wn−1

]

.

Lemma 1 For n > 1, we have

n∑

k=1

(a
b

)ξ(k)
w2
k = 1

b
(wnwn+1 − w0w1) .

Proof Recall that the Binet formula of the sequence {wk} is given by

wk = aξ(k+1)

(ab)

⌊
k
2

⌋
(
Xαk − Yβk

)
.

Since ξ(n) + ξ(n + 1) = 1 and �n/2� + �(n + 1)/2� = n, we have

wnwn+1 = aξ(n+1)+ξ(n)

(ab)
� n
2 �+

⌊
n+1
2

⌋
(
Xαn − Yβn)

(
Xαn+1 − Yβn+1

)

= a

(ab)n

[
X2α2n+1 − XY (αβ)n(α + β) + Y 2β2n+1

]

= a

(ab)n

[
X2α2n+1 + Y 2β2n+1 − XY (−ab)n(ab)

]
. (5)
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On the other hand, we have

w2
k = a2ξ(k+1)

(ab)
2
⌊
k
2

⌋
[
Xαk − Yβk

]2

= a2ξ(k+1)

(ab)
2
⌊
k
2

⌋
[
X2α2k + Y 2β2k − 2XY (αβ)k

]
.

Now, if k is even, we get

w2
k = a2

(ab)k

[
X2α2k + Y 2β2k − 2XY (αβ)k

]
,

and if k is odd,

w2
k = ab

(ab)k

[
X2α2k + Y 2β2k − 2XY (αβ)k

]
.

Since αβ = −ab and

a2
(
b

a

)ξ(k)

=
{
a2, if k is even,
ab, if k is odd,

we can write

w2
k = a2

(
b

a

)ξ(k)
[

X2
(

α2

ab

)k
+ Y 2

(
β2

ab

)k
− 2XY (−1)k

]

,

or equivalently,

a−2
(a
b

)ξ(k)
w2
k = X2

(
α2

ab

)k
+ Y 2

(
β2

ab

)k
− 2XY (−1)k . (6)

By using the geometric sum formula, it can be seen that

n∑

k=1

(
α2

ab

)k
= α2n+1

(ab)n+1 − α

ab
and

n∑

k=1

(
β2

ab

)k
= β2n+1

(ab)n+1 − β

ab
.
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Now we take the summation of both sides of Eq. (6) from 1 to n:

n∑

k=1

a−2
(a
b

)ξ(k)
w2
k = X2

n∑

k=1

(
α2

ab

)k
+ Y 2

n∑

k=1

(
β2

ab

)k
− XY

n∑

k=1

2(−1)k

= X2
[

α2n+1

(ab)n+1 − α

ab

]
+ Y 2

[
β2n+1

(ab)n+1 − β

ab

]
− XY

[
(−1)n − 1

]

= 1

ab

[
X2α2n+1

(
1

ab

)n
+ Y 2β2n+1

(
1

ab

)n
− X2α − Y 2β − XYab

[
(−1)n− 1

]]
.

By taking Equation (5) into account in the last line of the equation above, we get the
desired result:

n∑

k=1

a−2
(a
b

)ξ(k)
w2
k = 1

ab

1

a
(wnwn+1) + XY − X2α

ab
− Y 2β

ab

= 1

ab

[
1

a
(wnwn+1) + XY (ab) −

(
X2α + Y 2β

)]

= 1

ab

[
1

a
wnwn+1 − 1

a
w0w1

]

= 1

a2b

[
wnwn+1 − w0w1

]
.

��
An immediate consequence of Lemma 1 is the following.

Corollary 1 For n > 0,

n−1∑

k=0

(a
b

)ξ(k)
w2
k = 1

b

(
wnwn−1 − w0w1 + bw2

0

)
.

Remark 1 If we take the initial values w0 = 0 and w1 = 1, we get

n∑

k=1

(a
b

)ξ(k)
q2k = 1

b
qnqn+1.

This identity was given in [22, Theorem 2.3]. Similarly, with the initial values w0 = 2
and w1 = b, we get [9, Theorem 2.1]:

n∑

k=1

(a
b

)ξ(k)
p2k = 1

b
pn pn+1 − 2.

Now we are ready to provide bounds for ‖Wr‖2. But let us first calculate ‖Wr‖F .
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Lemma 2 The Frobenius norm

‖Wr‖F =
√√
√√

n−1∑

k=0

(
n + k

(|r |2 − 1
)) (a

b

)ξ(k)
w2
k .

Proof By using Lemma 1 and Corollary 1, it is clear that

‖Wr‖F =
√√√√

n−1∑

k=0

(n − k)
(a
b

)ξ(k)
w2
k +

n−1∑

k=1

k |r |2
(a
b

)ξ(k)
w2
k

=
√√√√

n−1∑

k=0

(
n + k

(|r |2 − 1
)) (a

b

)ξ(k)
w2
k .

��
Theorem 1 Let

Δ = wn−1wn − w0w1 + bw2
0 .

(i) If |r | ≥ 1, then

√
Δ
b ≤ ‖Wr‖2 ≤

√(
(n − 1) |r |2 + 1

)
Δ
b .

(ii) If |r | < 1, then

|r |
√

Δ
b ≤ ‖Wr‖2 ≤

√
nΔ

b .

Proof (i) Let |r | ≥ 1. From Corollary 1 and Lemma 2, we have

‖Wr‖F ≥
√√√√

n−1∑

k=0

n
(a
b

)ξ(k)
w2
k =

√
nΔ

b .

Therefore, we can write

1√
n

‖Wr‖F ≥
√

Δ

b
.

From (4), we obtain

√
Δ

b
≤ ‖Wr‖2 .
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In order to provide an upper bound, let

U = circr [1, 1, . . . , 1] and W = W1.

Then

Wr = U ◦ W .

Since |r | ≥ 1, we have

r1 (U ) = max
1≤i≤n

√√√√
n∑

j=1

∣∣ui j
∣∣2 =

√√√√
n∑

j=1

∣∣unj
∣∣2 =

√
(n − 1) |r |2 + 1

and

c1 (W ) = max
1≤ j≤n

√√
√√

n∑

i=1

∣
∣wi j

∣
∣2 =

√√√
√

n−1∑

k=0

(a
b

)ξ(k)
w2
k =

√
Δ

b
.

Using the above quantities, we obtain

‖Wr‖2 = ‖U ◦ W‖2 ≤ r1 (U ) c1 (W ) =
√(

(n − 1)|r |2 + 1
)

Δ
b .

(i i) Let |r | < 1. Suppose k is an integer with 0 ≤ k ≤ n − 1. Since |r |2 − 1 < 0, the
minimum of n + k(|r |2 − 1) is achieved when k = n − 1. So, for k = n − 1 we have
n + k(|r |2 − 1) = n|r |2 − |r |2 + 1 ≥ n|r |2. Then

n + k(|r |2 − 1) ≥ n|r |2

for each k with 0 ≤ k ≤ n − 1. Therefore, we can write

‖Wr‖F =
√√√√

n−1∑

k=0

(
n + k

(|r |2 − 1
)) (a

b

)ξ(k)
w2
k

≥
√√
√√

n−1∑

k=0

n |r |2
(a
b

)ξ(k)
w2
k .

Then it follows that

1√
n

‖Wr‖F ≥ |r |
√

Δ

b
.
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By (4), we get

‖Wr‖2 ≥ |r |
√

Δ

b
.

In order to provide an upper bound, we have

r1(U ) = max
1≤i≤n

√√√√
n∑

j=1

∣∣ui j
∣∣2 =

√√√√
n∑

j=1

∣∣u1 j
∣∣2 = √

n

and

c1(W ) = max
1≤ j≤n

√√√√
n∑

i=1

∣∣wi j
∣∣2 =

√√√√
n−1∑

k=0

(a
b

)ξ(k)
w2
k =

√
Δ

b
.

In conclusion,

‖Wr‖2 = ‖U ◦ W‖2 ≤ r1(U )c1(W ) =
√
nΔ

b .

��

Remark 2 We can use Theorem 1 to provide bounds for special cases.

(i) If w0 = 0 and w1 = 1, then

√
qn−1qn

b ≤ ‖Wr‖2 ≤
√(

(n − 1) |r |2 + 1
) qn−1qn

b , |r | ≥ 1,

|r |
√

qn−1qn
b ≤ ‖Wr‖2 ≤

√
n qn−1qn

b , |r | < 1.

(i i) If w0 = 2 and w1 = b, then

√
pn−1 pn

b + 2 ≤ ‖Wr‖2 ≤
√(

(n − 1) |r |2 + 1
)( pn−1 pn

b + 2
)
, |r | ≥ 1,

|r |
√

pn−1 pn
b + 2 ≤ ‖Wr‖2 ≤

√
n
( pn−1 pn

b + 2
)
, |r | < 1.

(i i i) Finally, if a = b = 1, then

√
Δ ≤ ‖Wr‖2 ≤

√(
(n − 1) |r |2 + 1

)
Δ, |r | ≥ 1,

|r | √Δ ≤ ‖Wr‖2 ≤ √
nΔ, |r | < 1.

Note that Δ = wn−1wn − w0w1 + w2
0 since b = 1.
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2012 M. Daǧlı et al.

Remark 3 The lower bounds in the first two parts of Remark 2 equal those of [9,
Theorems 2.2–3]. However, the upper bounds are weaker except for the case that
|r | < 1 in the second part. The weakness is caused by the choice of the matrices U
andW in the Hadamard product. Special initial values in [9] allow a flexibility to make
better choices for U and W in order to improve the bounds. So, Theorem 1 extends
[9, Theorems 2.2–3] as to the lower bounds and one upper, but not as to the remaining
upper bounds. The bounds in Remark 2(iii) can be found in [5].

Theorem 2 The eigenvalues

λ j (Wr ) =
( a
b

) ξ(n)
2 rwn − w0 + ρω− j

[( a
b

) ξ(n+1)
2 rwn−1 + ( ab

) 12
(bw0 − w1)

]

ρ2ω−2 j + (ab)
1
2 ρω− j − 1

,

for j = 0, 1, . . . , n − 1, provided that

r =
(−α

β

)± n
2

.

Here, ρ = r
1
n and ω is any nth root of unity. For α and β, see (1).

Proof From (3), we have

λ j (Wr ) =
n−1∑

k=0

(a
b

) ξ(k)
2

wkρ
kω−k j

= Xa
n−1∑

k=0

(
αρω− j

(ab)
1
2

)k

− Ya
n−1∑

k=0

(
βρω− j

(ab)
1
2

)k

(7)

= a

(ab)
n−1
2

(

X
αnr − (ab)

n
2

αρω− j − (ab)
1
2

− Y
βnr − (ab)

n
2

βρω− j − (ab)
1
2

)

= a

(ab)
n−1
2

(
αρω− j − (ab)

1
2

) (
βρω− j − (ab)

1
2

)

×
[
rρω− jαβ

(
Xαn−1 − Yβn−1

)
− r(ab)

1
2
(
Xαn − Yβn)

−ρω− j (ab)
n
2 (Xβ − Yα) + (ab)

n+1
2 (X − Y )

]
.

Therefore, after lengthy calculations,

λ j (Wr ) =
rwn − w0 + ( ab

) 1
2 ρω− j

[
rwn−1 + (bw0 − w1)

]

ρ2ω−2 j + (ab)
1
2 ρω− j − 1

,
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when n is even, and

λ j (Wr ) =
( a
b

) 1
2 rwn − w0 + ρω− j

[
rwn−1 + ( ab

) 1
2 (bw0 − w1)

]

ρ2ω−2 j + (ab)
1
2 ρω− j − 1

,

when n is odd. This completes the proof. ��
Remark 4 The geometric sum formula fails in (7) when αρω− j/(ab)

1
2 = 1 or

βρω− j/(ab)
1
2 = 1. Therefore, the assumption r = (−α/β)± n

2 is needed for it to

be valid. This also guarantees that the denominator ρ2ω−2 j + (ab)
1
2 ρω− j − 1 = 0.

Theorem 3 The determinant

det(Wr ) =

[
w0 − ( ab

) ξ(n)
2 rwn

]n
− r

[( a
b

) ξ(n+1)
2 rwn−1 + ( ab

) 1
2 (bw0 − w1)

]n

1 − ( ab
) ξ(n)

2 pnr + (−1)n r2
,

provided that

r =
(−α

β

)± n
2

.

Here, pn is as in (2).

Proof The formula follows from the fact that det (Wr ) =
n−1∏

j=0

λ j (Wr ). ��

3 Conclusion

In this paper, we obtained bounds on the spectral norm of r -circulant matrices whose
entries are generalized bi-periodic Fibonacci numbers. We also calculated the eigen-
values and determinants of these matrices explicitly. By means of this work, we have a
unified approach for dealing with many r -circulant matrices with special entries such
as Fibonacci, Lucas, Pell, Pell-Lucas, generalized Fibonacci, bi-periodic Fibonacci,
and bi-periodic Lucas numbers.We note that our bounds can be improved for specified
initial values by choosing suitable matrices in the Hadamard product.
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