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Abstract

In this paper, we study a multiterm time-fractional initial-boundary value problem,
whose differential equation contains a sum of Caputo time fractional derivatives with
orders in (0, 1). In general, the solution of this kind of problem exhibits a weak
regularity at the initial time. Based on the L1 formula on non-uniform meshes for
time discretization and the local discontinuous Galerkin (LDG) method for space
discretization, fully discrete numerical schemes for one and two space dimensions are
constructed. The stability and convergence of the schemes are analyzed. It is shown
that the error bounds are «1-robust, that is, they remain valid as «; — 17, where o
is the biggest fractional order. Furthermore, a numerical experiment is given to verify
the effectiveness of the current method.

Keywords Caputo fractional derivative - Local discontinuous Galerkin method -
a1-robust - Stability - Convergence

Mathematics Subject Classification 65M06 - 65M12 - 65M60

1 Introduction

Fractional calculus (fractional differentiation and integration) has received much atten-
tion in recent years due to its successful simulation of many phenomena in science
and engineering [8,11-13,20]. Although the analytical solutions of some fractional
differential equations can be obtained by means of some special transforms, the com-
plexity involving special functions and infinite series are inconvenient for numerical
evaluation. Hence, efficient and accurate numerical approaches are demanded.
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In this paper, we will investigate numerical methods and related numerical analysis
of the following multiterm time-fractional initial-boundary value problem:

Zl:q,' D u(x, t)]—Au(X, D+e@ux, 1) = fx, 1), (x,1) € 2x (0, T], (1.1)

i=1
with initial and boundary conditions:

uli=0 = uo(x), X € Q, (1.2)
ulxese =0, 1€ (0, T]. (1.3)

Here, Q € R? (d = 1,2) is a bounded rectangular domain, / is a positive integer,
g > 0,i =1,2,...,[,0 < oy < ... < ap < a1 < 1 are given constants,
c(x) € C(Q) with c(x) > 0, source term f(x, t) € L0, T; L*(2)) and initial value
uo(x) € L%(Q) are given functions, and cDgf, is the «;th-order left-sided Caputo
derivative operator defined by [13]

. 1 ' 9
cDy u(x, 1) = ) / (t - s)“"'a—uds, 0<aj<l, (1.4)
» o; 0 N

Tl —

in which I'(-) denotes the usual Gamma function.

The multiterm time-fractional initial-boundary value problem (1.1)—(1.3) has
proved to be flexible to describe complex multirate physical processes [25]. So far,
several different methods have been developed to solve this problem. Luchko [17]
developed the maximum principle for a multiterm time-fractional diffusion equation
and constructed a generalized solution by means of the multinomial Mittag-Leffler
functions. Wei [22] proposed a fully discrete local discontinuous Galerkin (LDG)
method for a class of multiterm time fractional diffusion equations. Zaky [26] used a
Legendre spectral quadrature tau method solving the multiterm time-fractional diffu-
sion equations. Very recently, Huang et al. [10] showed that, under proper regularity
and compatibility assumptions, the system (1.1)—(1.3) has a unique solution u# such
that

*u(x, t

FuE DN for k=0.1.2.3.4. (1.5)
axk

o"Mu(x, t

% < C(+14"") for m=0,1,2, (1.6)

where C > 0 is a bounded constant independent of the variable ¢ but dependent
of T. Meng and Stynes [18] presented an L1 finite element method for a multiterm
time-fractional initial-boundary value problem.

The resultin (1.6) implies that the solution u of the multiterm time-fractional initial-
boundary value problem (1.1)—(1.3) exhibits some weak regularity at the starting time
and "”g—t’) blows up as t — 0. When seeking numerical solutions, the initial layer
very likely leads to a loss of accuracy if uniform temporal meshes are used. To tackle
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such a problem, one can consider the numerical approaches on non-uniform meshes.
This is also the topic of the present paper. In this work, we develop a non-uniform
L1/LDG method for the multiterm time-fractional initial-boundary value problem
(1.1)—(1.3) with weak regular solution. The Caputo time-fractional derivatives are
discretized by the L1 finite difference method on non-uniform meshes, and the spatial
discretization is performed by using the LDG finite element method. Then the stability
and convergence analysis of the proposed numerical scheme are given. However, the
obtained error bounds blow up if we consider the limit «; — 1. Such error bounds
are called oj-nonrobust [2]. On the contrary, if the error bound does not blow up as
a1 — 17, wecall it a1 -robust. Therefore, we further investigate the o1 -robust stability
and convergence of the proposed non-uniform L1/LDG scheme.

The LDG method is a special class of discontinuous Galerkin (DG) finite element
methods, introduced first by Cockburn and Shu [4] and has been successful for solv-
ing fractional differential equations, e.g., [6,7,14-16,19,23]. The main technique of
LDG method is to rewrite higher-order derivative equation into an equivalent system
containing only the first derivative, and then discretize it by the standard DG method.
More details about the LDG method for high-order time dependent partial differential
equations can be found in the review paper [24].

The rest of the paper is organized as follows. In Sects. 2 and 3, we establish the
fully discrete non-uniform L1/LDG schemes for the initial-boundary value problem in
one and two space dimensions, respectively. The «|-robust and «-nonrobust stability
and convergence analysis are studied too. In Sect. 4, we provide a numerical example
to verify the theoretical results. Concluding remarks are given in the last section.

Notations : Through out this paper we let C be a generic positive constant, which is
independent of the mesh sizes and can take different values in different circumstances.
We use || - || as the L2-norm on domain 2 and define the LZ(Q) inner product (u, v) =

[[q uvdx.

2 One-dimensional case

In the section, we will develop a non-uniform L1/LDG scheme for the one-dimensional
multiterm time-fractional initial-boundary value problem (1.1)—(1.3). The scheme
employs the L1 formula with non-uniform meshes for the time-fractional derivative
and a LDG method in space. The usual notations are introduced below.
Let 7, = {Ij = (xj_%,xj+%)}j_\[:1 be the partition of €2, where a = X1 < X3 <
TS Ayl = b. The cell center and cell length are denoted by x; = (xj_% +xj+%)/2

and h; = Xjpl =X respectively. Let h = lrfr}anN h; be the length of the largest

cell. We use u;l and u;_L+, to represent the values of u at the discontinuity point
j 1

2 2
X 1 from the left cell, /;, and from the right cell, /; 1, respectively. The jump value
of u at each element boundary is denoted by [ull.,1 = ut , —u~ . Associated
Jt3 Jj+3 Jj+3
with this mesh, we define the discontinuous finite element space
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\@:{ueL%m:mhepﬂgxvb9=aj=1““,NL

where P*(1 ;) denotes the set of polynomials of degree up to k > 0 defined on the cell
1;. For any nonnegative integer m, H" ($2) denotes the usual Sobolev space. Then we
define the broken Sobolev space on 7, by

H™(Ty) = {v € LX) : vlp; € H"(I)), Vj = 1..... N},

which contains the discontinuous finite element space Vj,.
To obtain the optimal error estimate, we recall two kinds of Gauss-Radau projections
9,? cH! (7)) — Vi, which were introduced by Castillo et al. [1], i.e., for each j,

f (2,5 q(x) — q(x)) vpdx = 0, Vv, € P11, (@;q)jt% = q(xjt%x (2.1)

1j

and

/ (27 q(x) — q()) vpdx =0, Yo, e PNI), (P 9)7, 1 =4q <X._ 1) :
I; J*2 Jt3
2.2)
Denote by ¢ = gq(x) — Prg(x) (P, = W}T or &,) the projection error. Then a
standard scaling argument as that in [3] yields

1
Il + Rllgell + A2 N, < CIE N gre gy h (23)

N
where [1¢112, = (¥1,- %+ €714 )?)-

j=1
2.1 The fully discrete non-uniform L1/LDG scheme

Foragiven T > 0,lett, = T(n/M)",n =0, 1, ..., M be the mesh points, r > 1.
Denote 7, = t, — t,—1, n = 1,..., M be the time mesh sizes. If r = 1, then the
mesh is just uniform. Throughout this paper, we denote u" = u(x, t,) if no confusion
appears.

The L1 approximation on the non-uniform meshes to the Caputo derivative is given
by [10]

CDgfch:tn = F(Z — |:dl lu + Z( k41 d,i’k)un_k - d,i%nuo:|
+R}
= Y"u" + R} (2.4)
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. 1—a; l—a;
. y—1t,— —(ty,—t,— . .
fori =1,...,1, whered , = (n —tn—t) ; (ki] nokt) T and R! is the truncation

£ n—

error. The coefficients d,",, « have the following properties

dy iy < dy sy (2.5)
(I —ai)ty — th—t)™™ <dp ; < (1 =)ty — ty—k+1) """ (2.6)
Denote
1 nolo . .
T " = e |:d,’l’1u" Y (g —dl " - dﬁl’nuo:| Q2.7
! k=1

fori=1,....I,n=1,..., M.
Let p = u,, then we can get the weak form of system (1.1)—(1.3) at #,, as follows,

1
(Z qicDy u", v) + (c()u", v) + (p", vy)
i=1
l N
=2 (P = Py = (0, 2.38)
j=1
N
(" w) + " wy) =Y (u"w_lﬁ% - u"w+|j_%> =0,
j=1

where v, w € H'() are test functions.
The fully discrete non-uniform L1/LDG scheme is defined as follows: find
U}, P; € Vi, such that for all test functions v,, wy, € Vj,

1
(Z qi " Uy, vh> + (@)U} o) + (P (u))
i=1
l N
_Z(P;’fv;l,-% —Pﬁviflj_%) = (f", ), (2.9)
j=1
N

(P wn) + (U on)) = Y (T |y = Ofwi 1,y ) =0,
j=1

The “hat" terms in (2.9) are the boundary terms that emerge from the integration by
parts. These are the so-called “numerical fluxes" that are yet to be determined. The
freedom in choosing numerical fluxes can be utilized for designing a scheme that
enjoys certain stability properties. It turns out that we can take the following choices
simply

Ur ==, P =(PhH7. (2.10)
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2.2 a1-Nonrobust error analysis of the non-uniform L1/LDG method

This subsection presents the «j-nonrobust stability and convergence of the scheme
(2.9). We give the following o1 -nonrobust stability result.

Lemma 2.1 The solution U;, of the fully discrete scheme (2.9) satisfies

1Rl < WU+ ——— Zen,nf Iln=1, 2.11)
Zt 1 nl] 1
where
. qidri,~
i sJ . .
=12, j=1,2,.... M,
i T T —a) /
| n—j
Opn =1, 0pj =D > = Mhsy)0nkjo j=1.2,....n—1.
i=1 k=1 i= lnn k,1

Proof Taking the test functions (vs, w,) = (U}, P;'), and adding the two equations
in (2.9), we obtain

1 i
qidn,l 2
(Z: mwj, U[[) + () UL, U + 1P

! i 1 n—1
qldn n 0 n qi : . —k
=\ X ol U S N~ U U
( FQ—o;) "0 + ~TQ2-a) kil( nie ~ i) Up h
+ (", Up).
(2.12)
By using (2.5) and the Cauchy-Schwarz inequality, we have

I n—1

Znnllthll<Znnn||Uhll+ZZ(nnk e DN I+ 1L (2.13)

i=1 i=1 k=1

Now, we prove this lemma by mathematical induction. Whenn = 1,(2.13) becomes

”Uh | < ||Uh I+ —=——If"I, (2.14)
Zz 1 '71 1

which is identical to (2.11).
Supposing the following estimates hold

||UZ1||S||U£||+—29mJIIf l.m=2....s, (2.15)
Zl 1’7m1, 1
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we need prove
s+1
WU < NUR + —=——— D Ost1i ILF1I. (2.16)
Zl—l ’7s+1 1 j=1

Letting n = s + 1 in (2.13) and using (2.15), we have

l i I s
s+1 izl Ns+1,5+1 ,,,,0
W0 = =0+ | 2o D ik — My iarn)
Zl_1 Myt Zl—] o1 List ket
+1-k 1
! ’ j LA
(IR + < ——— > 9s+1—k,j||fj||):| -
Zz*l Ns+1—k,1 j=1 szl Meri1
1 1,k 1,k+1 pi
1 + +1k+
I+ ZZ% Y Okl sl
21_1 Myt1,1 i=1k=1 Zz_l Myt 1—k,1 1_1
Zz 1 v
= +1 s+1 0
" [ZZ(nM ) | + S oy
Zt—l '7s+11 i=1k=1 Zl—l Mer11
s+1— /
1Lk +1k+1 ~
—||f5+1||+2 Z > ;mpw LA
j=1Li=1 k=1 D=1 My1-k1
) ZZ(”sHk T, k+1)+Z’7s+1 w1 (1R
; 1’7v+11 i=1k=1 i=1
s+1 )
=Y O Il I+ IURN.
j=1
This completes the proof of this lemma. O

Lemma 2.2 [10] Let B < ray, then forn = 1,2, ..., M, one has

Z] Onj <T(1—aT M7,
Zl—l nn 1 j=1

Theorem 2.1 (L?-norm stability) The solution U} of the fully discrete scheme (2.9)
satisfies

IUM < |UP) + T (1 — ap)T™ max fil,n=1,...,M. (2.17)

<]<n
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Proof By Lemma 2.2, one has

1 o
—ZQM <T(1 —a)T*.
Zz 1 nn 1 j=1
Combining the above estimate with Lemma 2.1 yields the assertion. O

Next, we present the oj-nonrobust convergence analysis. Firstly, we introduce a
lemma that will be used later on.

Lemma 2.3 [10] Suppose that the solution u(x, t) of problem (1.1)—(1.3) satisfies (1.6).
Then there exists a constant C such that for all t,, one has

|R(1| < Cn—min{Z—oq,ral}

il =

fori=12,....Ln=1,2,..., M.

Theorem 2.2 (L2-norm error estimate) Let u be the exact solution of (1.1)~(1.3) and

U} be the numerical solution of the fully discrete non-uniform L1/LDG scheme (2.9).
Suppose that u satisfies condition (1.6) and u(-, t) € H**1(T;,). Then, it holds that

" = Ul = CYT( = ) (M minimanran) g piett) (2.18)

where C is a positive constant independent of M and h.

Proof As usual in the finite element analysis, we denote the error by e;; = u" — U}/
and e; = p" — P;, respectively, and decompose them into two parts, namely,

ey =u"—U) =P, e+ ' — P u") =& +n],

n
u

(2.19)
ey =p" =Pl =PFe+ (p" =2 ") =&+

Subtracting (2.9) from (2.8), and with the fluxes (2.10), we can obtain the error
equation

I
(Z gi (DY u" =Y UL), vh> + (c(x)ep, v) + (€, (vn)x)

N
=2 (v sy = @iy ) =0, (2.20)
j=1

(s wn) + (€ (wn)s) Z((e) wy g — D Twi ]y ) =0

j=l1
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Substituting (2.19) into (2.20), we have

I
(Z qi &), Uh) + (cOO&!, vn) + (&7, (vn)x)
i=l1

N
=Y (@ vy — @ 1)

Jj=1

I I
- (Z%Rf, Uh) - (ZQinliﬂZ, Uh) — (cCmy, vn)

N (2.21)
(s ) + D0 (G o = oL ),
j=1
(&) + (£ (wn)) = (<s> wy g — @Dl )
j=1 N
= —(n}, wn) — nw(wh)x)JrZ((m,) wy 4 (nZ)_wZIj_%)-

j=1

Taking the test functions (vi, wy) = (&), 51’}) in (2.21) and using the properties
(2.1) and (2.2), we get

1
<Z 9 Y&, s;’) + (c&r. &) + IEp I
i=1
1
——(quR;’ ) (qu iy, & {’)—(c(xm’;,s;)—(n';,,s;;), (222)
i=1

which is equivalent to

1 i
(Z Fo—s su,s) (cogr, &) + g1

1 di ! . n—1 . .
(Z Gidn.n 5) +<Zﬁ2(dﬁhk—d,’th)é[f—k’é;)

k=1
(Z 5) (Z% Yy & ”) — (e, &1) — (. &) (2.23)
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Thus, by using Lemma 2.3, we obtain

/
Dok IEHE + (& E8) + 1512
i=1
! [ n—1

l
Z WESNIENT + D7D e = s DIES T NIEL T+ D arIR] 1E

i=1 i=1 k=1 i=1

Z e + |Veon | | Veoos:

S35

+

n n
+ I En

n

— 1
, 3 1 . .
Z e = M DIEL T 4 5 D00 — )11

i=1

[ i
C . i
1 i (n—2mln{2—a1,rot1}+h2k+2) + Z,_; Mn,n ||€;”2+Ch2k+2
Zi:l nn,n

+(c@)Er &) + IEn]>. (2.24)

From (2.6), it is easy to get that

1 T%
S S oM, (2.25)
drlz,n 1 — o
which leads to
% < IL _re —1041) - LA =) oy rar pg—ron 2.26)
Zi:l ni’l,l’l n",n qldn,n q1

Combining (2.24) and (2.26), we can derive

I n—1

anne P <Y @l — e DIETE P

i=1 k=1
e <h2k+2 + M—rozln—(Z m1r1{2—a1,rotl}—roz1)) ) (227)

Now we prove that the truncation error &, satisfies

C
”%.;}”2 < Zenj h2k+2+M ray 7(2mm{2 oy, roy}—ray) (228)
Z, 1”n1 j=1
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forn =1, ..., M, where C is the constant in (2.27). We prove (2.28) by mathematical
induction. When n = 1, (2.28) becomes

C ro
16417 < ——— @), (2.29)
Z 1’711

Supposing the following estimates hold

c - .
”%.;11”2 < — Zem,j h2k+2 + Mfroqj7(2m1n{2fo(|,roz1}7rot1) (230)
Z' 177l 1
1= m,l j=1

form =2,3,...,s, we only need to prove

s+1

”554-1”2 < C 29s+1 i (h2k+2 + M rqu—(Zmln{2 o, roy}— ral))
Zz lns+l 1 j=1

2.31)

Letting n = s + 1 in (2.28) and using the induction hypothesis (2.30), we have

lesH 1% < [ZZ(nm = D lETE

Z, 1’7s+11 i=1 k=1
+C <h2k+2 4+ M@ (s + 1)(—2min{2—a1,rozl}—ra]))]
1

1 (o
s [ ot (s
izt Myyr1 Lish 1o Z, 1 Mg 1—k 1
s+1—k )
X Z 9s+1—k,j(h2k+2 + M—ralj—(2mm{2—o¢1,ra1}—ra1)))

j=I
LC <h2k+2+M—ra1 (s + 1)(—2min{2—a1,roz1}—rotl))]
s [ s+1- jC( i
”+1k Myt k1)
- (X e
Zzlns+ll j=1 Ni=1 k=1 tlnv+1k1

X(h2k+2 + M—ralj—(2min{2—a1,ra1}—ra1)))

LC <h2k+2 M (s 1)(—2min{2—oc1,roz1}—rotl))]
C s+1

= X:I—ZQS+1 (h2k+2+M rog ( 2min{2—ay,ra}— r()l|))
i 1ns+11, 1
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Therefore, the estimate (2.28) holds.
Exploiting (2.28) and Lemma 2.2 directly, we obtain

n2 < 2k+2 CM™™ & . —(2min{2—ay,ra}—raj)
Al Z B Zz—,-Zen,u :
1’7n 1 j=1 i=1Mn,1 j=I

< CF(I _ al)TDt] h2k+2 + CM—rOll F(l _ al)TOt] M—(2 min{2—ap,ray}—ray)
<Crd —ap) (h2k+2 + M—Zmin{Z—al,ral}) ’
which, together with the interpolation property(2.3) and the triangle inequality, com-
pletes the proof of this theorem. O

It is clear that the results derived in Theorems 2.1 and 2.2 are «j-nonrobust, i.e., the
bounds blow up as «; — 17. In the following subsection, we present the improved
stability and convergence analysis for the scheme (2.9).

2.3 aq-Robust error analysis of the non-uniform L1/LDG method

This subsection is devoted to the o1 -robust stability and convergence analysis of non-
uniform L1/LDG scheme (2.9) for system (1.1)—(1.3). Let us start by introducing the
following lemmas.

Lemma 2.4 ([9],Lemma 2) Suppose that the solution u(x, t) of problem (1.1)—(1.3)
satisfies (1.6). Then there exists a constant C such that for all t,, one has

|R,n| S Ctn—a,-M—min{2—oz,-,ra1}

fori=12,....,n=1,2,.... M
Lemma 2.5 ([9],Corollary 1) Forn = 1,2, ..., M, one has

I ! t
0, ;i < S
dpy =" Z ¢l + o)

Lemma 2.6 ([9],Corollary 2) Set Iy = ﬁ Assume that M > 3500 < Iy < 1.
Then

Lo, le" max<i<; (1 + Iy — a;)
Z%tj en,j =< .
- T(1+ )

Lemma 2.7 ([9],Lemma 6) Assume that the sequences {§"}° o {n"}°2 | are nonneg-
ative and the grid function {V"* :n =0, 1, ..., M} satisfies W > 0and

B

I
UnZCIiT,a"U" <&+ n=12...,M.
i=1
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Then
1 n
(R Y S {/} —1,2,..., M.
vV =V +dn’1]; Yl,‘](é +77 )+lr§nja;(n n , n )~ B

We shall now improve Theorem 2.1 by replacing (2.32) with a bound that is «1-
robust.

Theorem 2.3 (Improved L’-norm stability) The solution U; of the fully discrete
scheme (2.9) satisfies

l o
' ;
url < |y » MNyn=1,...,M. (232
IR =1l h”+(i_l aTd T Jmax ILf7, (2.32)

Proof Taking the test functions (v, w,) = (U, P}}), and adding the two equations
in (2.9), we have

1
<Z g Y[ Uy, U,f) + (U, U + (P, Py = (f", Up). (2.33)

i=1

It follows from [9, Lemma 3] that

I 1
(Z ai ;" v”) > (Z qiT,“"IIv"II) " (234)
i=1 i=1

forn=1,2,..., M.
Applying (2.33) and (2.34), as well as Cauchy—Schwarz inequality, we obtain

!
(Zqin” IIU;'ZI|> 1T < L UG- (2.35)

i=1

Then an application of Lemmas 2.5 and 2.7 immediately yields

1 < 4
n 0 . J
1UL I < 1T 11 + ey On,j max (Al
S
l tai .
<N+ D0~ ) max £/
! ; giT(1+a) | 1=j=n
which completes the proof. O

We also give an «-robust convergence result of the fully discrete non-uniform
L1/LDG scheme (2.9) for (1.1)—(1.3). The conclusion is stated as follows.
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4404 Z.Wang

Theorem 2.4 (Improved L2-norm error estimate) Let u be the exact solution of (1.1)—
(1.3) and U;} be the numerical solution of the fully discrete non-uniform LI/LDG

scheme (2.9). Suppose that u satisfies condition (1.6) and u(-, t) € H*T1(T},). Then,
it holds that

Cmax << T(1 4 Iy —a;)
L'+ 1m)

”un _ U;l’l” < M—min{Z—al,ral} +Chk+l, (236)

where C is a positive constant independent of M and h.

Proof As shown in Theorem 2.2, one has

(ZM“’ # ) (& &) + 1EpI°
(Z% 5) (Z‘]l f"n{f, Z’)—(C(X)T?ﬁv&f)—(ﬂ';,fﬁ)-

By using (2.34), we obtain that

I
(Z e ||s;‘||) IE1 1+ (cgr. &) + 12
i=1

1
=—(ZqiR{’ ) (qu Yy, & Z’)—(c(x)nﬁ’éﬁ')—(n’},f;)

l

Z AR Zqinrf' mlgn + |VeGon,
i=1

v

+| plEL

l
(C qu _a,M—mm{Z o, }’Ct]} + Czqihk-‘rl) ”SL’Z” + Ch2k+2

i=l1
+ H@SZZ

where we invoked (2.3) and Lemma 2.4 for the last inequality.
Consequently, applying Lemmas 2.5-2.7, we can get

+ g2, (2.37)

l
C < —a, _—
”5;1” < ”%-19” 4+ — Z (Z qitj O!lM—mln{2—Olnr0t]} + hk—i—l) en,j + Chk-l—l

dn1 =1 \i=1
Ce" maxi<i<i I'(1 + Iy — o)

< M—min{2—a1,ra1} +Chk+l.
- L1+ ly)

Finally, by using the triangle inequality and the interpolation property (2.3) again, we
can complete the proof of Theorem 2.4. O
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3 Two-dimensional case

For a bounded rectangular domain 2 = (ai, b1) X (az, ba) C R2, we divide it into a
Cartesian grid 7, = {K} consisting of N, x Ny rectangular elements K :=I; x J; =

(xl._%,xH%) X (yj_%,ijr%),l =1,...,Ny,j=1,...,Ny, where a; = X1 <
x% < e < xNX+% = by and ap = y% < y% << Yygl = b;. Denoting
Ax; = x;

LT and Ay; =y LTy respectively. Then the maximal length
of all edges is defined by 4 = maxi<;<n,,1<j<n,(Ax;, Ay;). We assume that the
mesh 7 is quasi-uniform in the sense that there exist constants C, C» > 0 such that
h < CiAx;and h < C2Ay;j forall K € T}, Then the finite element space is defined
by
Vi = {vn € L*(Q) : vk € QY(K), vplag =0, YK € Ty},
2,002 ko p\2 G.D
Vi = {wi € L@ s wilk € Q“(K)%, wila =0, VK € T,

where Q*(K) denotes the space of polynomials of degrees at most k defined on K.
We use a fixed vector I = (1, 1) T to uniquely define the inflow and outflow bound-
aries of €2, namely,

0 ={(x,y) €dQ:I-n<0}, Q" ={(x,y) €9Q: I-n > 0},

where n is the outward unit normal vector of Q. Similarly, we denote 9K~ and 9K+
the inflow and outflow boundaries of K, respectively, i.e.,

K™ ={(x,y)€dK :I-n <0}, 3KT ={(x,y) € 9K : I-n > 0}.

If two elements K| and K; are neighbours and share one common side e, i.e.,
e = 0K N dK>, then there are two traces for any function defined on e. We denote

+

u = M'BK;ﬂe’ u = ”|3K1+mea [ulle = u*

—u, [ullye = ulsq.

For each h > 0, £p denotes the set of all boundary edges of the mesh 7, on 92,
& denotes the set of all interior edges of the mesh 7}, in €2, and £ denotes the union
of all edges, i.e., £ = £z U Er. The L2 norm and L? inner product on the edges d K+
are given by

ll2 s = G wyg, (0, 0)pgs = / W (s) v (s)ds.
oK+

The norms on the whole outflow and inflow boundaries £ are denoted by

2 2
luellE = llul.

eef
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We define the broken Sobolev space V on 7, by
V= {v € LX) :v|x € H'(K), VK € Th]
and denoteby V=V x V.

3.1 The fully discrete non-uniform L1/LDG scheme

We still use the L1 method on non-uniform meshes (see (2.4)) as time discretization
and LDG method as space discretization. As the usual treatment, we firstly rewrite
(1.1)—(1.3) into a system of the first order derivatives

S [aieDfu] =V opteu= 0 y.0, (.0 €2 % 0,7,
p=Vu, (x,y,t) € 2x (0, T],

ulizo = uo(x, ), (x,7) € 2,

ulx,yese =0,1€(0,T],

(3.2)

Then we can define the semi-discrete LDG scheme for (1.1)—(1.3) as follows: find
(Uy, Py) € V, x Vj, such that for all test functions (vy,, wy,) € Vj, x Vp, we have

I
(Z qicDy Un, vh) + (cUp, vp) = LPpy, vp) + (f, vp),

P 3.3)
P, wi) = K(Up, wn),
where
Ly, vp) = =Py, Vo) + Y (P10, vi)ak. (3.4)
KeTy,
KUn, wi) = =(Un, V-wi) + Y (Uh, Wi - k. (3.3)
KeT,

Similar to the one-dimensional case, the numerical fluxes UZ, f’; can be chosen as
Up=U, , P, =P/ . (3.6)

Let (U}, P}) € Vi x V), be the approximation of (u(x, y, t,), p(x, y, t;)). Then
we define the fully discrete non-uniform L1/LDG scheme as follows: find (U}, P}) €
Vi, x Vy, such that for all test functions (v, wy) € Vi, x Vp,

!
(Z qi 0 Uy, Uh) + (cU} , vp) = LP, vp) + (f", vp), 37)

i=1

Py, wi) = KU}, wp).
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Here the notation Y;" U} is defined in (2.4).

3.2 aq-Nonrobust error analysis of the non-uniform L1/LDG method
The fully discrete non-uniform L1/LDG scheme (3.7) for the two-dimensional
multiterm time-fractional initial-boundary value problem satisfies the following o-

nonrobust stability. First of all, we introduce a lemma that will be used later on.

Lemma 3.1 [21] For any v, € Vy and wy, € Vy,, there holds the equality
L(Wp, vp) = =K (vp, Wp).

Theorem 3.1 (L2-norm stability) The solution U i of the fully discrete scheme (3.7)
satisfies

IURI < UL+ T = )T max | fI

<j=n

,n=1,...., M. (3.8)

Proof Taking the test function v, = U} and wy, = P} in (3.7) and using Lemma 3.1,
we obtain

Loqid),
#UH’UH ur,un p" )
<§F(2—ai) i | + (UL UR) + 1P

! i ! n—1
q:d;, , 0 rmn qi ; ; ko
= > -U 5 U _— d _ d U , U
(Z TR o on] ™ 2 T2 —a) ;( ik~ duss)U L Uy

i=1 ! i=1

+ (" Up).
(3.9)
By using an analysis similar to that in (2.11) and in Theorem 2.1, we can complete
the proof of this theorem. O

Now we present the o1 -nonrobust convergence analysis and give the detailed proof.
To obtain the optimal error estimate for the non-uniform L1/LDG scheme (3.7), we
would like to use the elliptic projection introduced in [5] to eliminate the element
boundary errors. Let u € V and q = Vu, define the elliptic projection (Pru, Prq) €
Vi, x Vy, as: for any (vy, wp) € Vi x Vp,, it holds that

L(q, vp) = L(Prq, vp), (3.10)
(Prq, wi) = K(Pru, wp), (3.11)
( — Ppu, 1) = 0. (3.12)

The elliptic projection defined above uniquely exists and satisfies the following
approximation properties.
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Lemma 3.2 [21] Assume u € H*?(Q), then there exists a constant C depending on
the regularity of u such that

1 k+1
lu — Ppull + h2|lu — Prulle < Ch*. (3.13)
Theorem 3.2 (L2-norm error estimate) Let u be the exact solution of (1.1)~(1.3) and

U} be the numerical solution of the fully discrete non-uniform L1/LDG scheme (3.7).
Suppose that u satisfies condition (1.6) and u(-, t) € H*2(Q). Then, it holds that

lu" — Ul < CYT (1 — 1) (M*mi“”*“”“” + hk“) : (3.14)

where C is a positive constant independent of M and h.

Proof Denote

ey =u" — U} =Ppu" — Uy + " — Ppu") =& +np, (3.15)
ey =p" — P, =Pup" — P + (p" — Pup") = &, + 15 '
From (3.2), we can get the weak form of (1.1)—(1.3) at #,, as follows,
(quCDO tu > +(Cuna Uh) zﬁ(pnavh)-'_(fnvvh) (316)
®", wi) = K@", wp).
Applying the property of elliptic projection (3.10)—(3.12), it holds that
[-" n9 = ‘C " — l’l’ )
(nnp Un) (1; Pup", vn) 3.17)
(”ly Wh) = K(nuﬂ Wh)'

Subtracting (3.7) from (3.16) and noticing (3.17), we obtain the error equation

!
(; qi (cDyu" = X' UY), vh) + (cey, vn) = L(Ep, vn), (3.18)
(&p> Wn) = K&, w).

Taking the test function (vy,, wy,) = (§)}, )‘;‘ ) in (3.18) and using Lemma 3.1, we get
I
(Z ai g, s;:) +(cEr &) + 188112
i=1
I
- (Z%R{’ ) (Zq, [y € ;’) — (cmy, &1)- (3.19)
i=1
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Repeating similar arguments as Theorem 2.2 (see the proof of (2.29) and (2.31)), we
can use mathematical induction to obtain the error estimate

" = Ul = CYT( =) (M minianran) g pitt)
The proof is thus completed. O

3.3 aq-Robust error analysis of the non-uniform L1/LDG method

We are now ready to state the oj-robust stability and convergence analysis of non-
uniform L1/LDG scheme (3.7) for system (1.1)—(1.3).

Theorem 3.3 (Improved L’-norm stability) The solution Uy of the fully discrete
scheme (3.7) satisfies

l o
ty .
url < |y _— Mn=1,...,M. 3.20
1Ur <1 h||+<i§_1: ey ) s (3.20)

Proof Taking the test function (vs, wy,) = (U}, P}) in (3.7) and applying Lemma 3.1,
we can get

[
(Zqﬁ;‘f Uy, U,f) + (cUR, U + P P = (f". U (3.21)
i=1

Then, similar to the proof of Theorem 2.3, the L%-norm stability (3.20) can be obtained
immediately. This finishes the proof. O

Next, we state the a1-robust convergence result of the fully discrete non-uniform
L1/LDG scheme (3.7).

Theorem 3.4 (Improved L2-norm error estimate) Let u be the exact solution of (1.1)—
(1.3) and Uj; be the numerical solution of the fully discrete non-uniform LI1/LDG

scheme (3.7). Suppose that u satisfies condition (1.6) and u(-,t) € H*T2(Q). Then,
it holds that

Cmax << T(1 4+ Iy — a;)
'+ 1m)

”un _ U;l’l” < M—min{Z—al,ral} +Chk+l, (322)

where C is a positive constant independent of M and h.
Proof Set

el =u" —U!' =P — Ul + " — Ppu") = £ + 1),
p=p" =Py =Pup" — P, + (p" — Pup") = &, + 1y
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By the similar techniques used in the proof of Theorem 3.2, it holds that

1
(Z aiY[E), s;z) + (& E0) + g
i=1

[ l
_ (zqmzﬂ,ss) - (quﬁnz,ss) ().
i=1 i=1

Then, repeating similar arguments as Theorem 2.4, we can obtain (3.22). The proof is
thus completed. O

4 Numerical examples

In this section, we present a numerical example to validate our theoretical results.

Example 4.1 Consider the following three-term time-fractional diffusion equation

DG u +0.1¢DY u +0.1¢Df7u — Uy +u = f(x,1), (x,1) € (0,1) x (0, 1],
u(x,0)=0, x € (0,1),
u,t) =u(l,t) =0, 1 € (0, 1],
4.1
where 0 < o1 < 1. The source term f(x, ¢) is chosen such that the exact solution of
the problem is u = (t*! + ¢3) sin(27 x).

The L? and L™ numerical errors and orders with different oy at 7 = 1 are given
in Tables 1-5. From these results, we conclude that the non-uniform L1/LDG scheme
(2.9) for the three-term time-fractional diffusion equation in Example 4.1 can achieve
min{2 — o1, raq}-th order convergence in time and (k + 1)-th order convergence in
space, which are in line with the theoretical rate established in Theorem 2.4.

5 Concluding remarks

In this paper, we have studied the multiterm time-fractional initial-boundary value
problem. Considering the weak regularity of the solution at the starting time, we use
the L1 scheme with non-uniform meshes to discretize the time fractional derivative, and
the classical LDG method for the space derivative. Numerical stability and convergence
of the established schemes are analyzed. Such stability and convergence results are
proved to be o1 -robust. Finally, a numerical example is given to confirm the theoretical
results.
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Table 1 The time convergence results for Example 4.1 at 7 = 1 withk =1,M = N,andr = 1
a=04 a=0.6 a=0.8
M Error Order Error Order Error Order
L%-norm 64 7.5891e—3 - 4.5890e—3 - 1.9342¢-3 -
128 6.4698e—3 0.2302 3.6048e—3 0.3483 1.3360e—3 0.5339
256 5.5204e—3 0.2290 2.7908e—3 0.3692 8.875%¢—4 0.5899
512 4.6978e—3 0.2328 2.1179e-3 0.3980 5.6750e—4 0.6453
1024 3.9801e—3 0.2392 1.5722e—3 0.4299 3.5119e—4 0.6924
L*°-norm 64 1.2178e—2 - 7.0474e—3 - 2.8077e—3 -
128 1.0244e—2 0.2496 5.3672e—-3 0.3929 1.8828e—3 0.5765
256 8.5889%¢—3 0.2542 4.0354e—3 0.4115 1.2344e-3 0.6092
512 7.1656e—3 0.2614 2.9949¢—-3 0.4302 7.8866e—4 0.6463
1024 5.9466e—3 0.2690 2.1941e-3 0.4488 4.9043e—4 0.6854
Table 2 The time convergence results for Example 4.1 at 7 = 1 withk =1, M = N,and r = é
a=04 a=0.6 a=0.8
M Error Order Error Order Error Order
L%-norm 64 1.5633e—3 - 1.5761e—3 - 1.0979¢—-3 -
128 9.0085e—4 0.7953 9.1225e—4 0.7888 6.4693e—4 0.5339
256 4.9551e—4 0.8624 5.0207e—4 0.8615 3.8137e—4 0.7624
512 2.6295¢e—4 0.9142 2.6868e—4 0.9020 2.1418e—4 0.8324
1024 1.3620e—4 0.9490 1.4341e—4 0.9057 1.1729e—4 0.8687
L°°-norm 64 2.1788e—3 - 2.1995e—-3 - 1.5342e-3 -
128 1.2514e-3 0.8000 1.2669¢—3 0.7958 8.9899¢—4 0.7711
256 6.9253e—4 0.8535 7.0146e—4 0.8529 5.2710e—4 0.6092
512 3.6973e—4 0.9054 3.7444e—4 0.9056 2.9635¢e—4 0.8308
1024 1.9217e—4 0.9441 2.0144e—4 0.8944 1.6348e—4 0.8582
Table 3 The time convergence results for Example 4.1 at 7 = 1 withk = 1, M = N,and r = ZTTO‘
a=04 a=0.6 a=0.8
M Error Order Error Order Error Order
L%-norm 64 4.4124e—4 - 5.1457e—4 - 7.5006e—4 -
128 1.4416e—4 1.6138 2.3772e—4 1.1141 3.6715e—4 1.0306
256 5.0778e—5 1.5054 1.0414e—4 1.1908 1.8235¢e—4 1.0097
512 1.8014e—5 1.4951 4.3681e—5 1.2534 9.1984e—5 0.9873
L®°-norm 64 9.6818e—4 - 1.0772e—3 - 1.7074e—-3 -
128 3.3720e—4 1.5217 4.1602e—4 1.3725 7.4786e—4 1.1909
256 1.1435e—4 1.5601 1.5850e—4 1.3922 3.2565¢e—4 1.1994
512 3.8197e—5 1.5820 6.1226e—5 1.3722 1.4156e—4 1.2019
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Table 4 The time convergence results for Example 4.1 at 7 = 1 withk =1, M = N,and r = @
a=04 a=0.6 a=0.8
M =N Error Order Error Order Error Order
L2-norm 64 1.2935e—3 - 1.3101e—3 - 1.9171e—3 -
128 4.9617e—4 1.3823 5.5501e—4 1.2391 9.0946e—4 1.0758
256 1.7986e—4 1.4639 2.2503e—4 1.3024 4.1520e—4 1.1312
512 6.2910e—5 1.5155 8.8735e—5 1.3426 1.8547e—4 1.1626
L*°-norm 64 2.6759e—3 2.7129e—3 - 3.7454e—3 -
128 9.6381e—4 1.4732 1.0638e—3 1.3507 1.6520e—3 1.1809
256 33411e—4 1.5284 4.0912e—4 1.3786 7.2244e—4 1.1933
512 1.1321e—4 1.5613 1.5580e—4 1.3929 3.1479e—4 1.1985

Table 5 The spatial convergence results for Example 4.1 at T = 1 with M = 500, r = ZTT"‘, and k =1

a=04 a=0.6 a=0.8
N Error Order Error Order Error Order
L2-norm 4 1.6776e—1 - 1.6774e—1 - 1.6768e—1 -

3.7964e—2 2.1437 3.7956e—2 2.1438 3.7923e—-2 2.1446
16 9.1764e—3 2.0487 9.1668e—3 2.0499 9.1312e—3 2.0542
32 2.2614e—-3 2.0207 2.2516e—3 2.0255 2.215% -3 2.0429
L®°-norm 4 2.2354e—1 - 2.2350e—1 - 2.2344e—1 -
5.3252e-2 2.0697 5.3251e—2 2.0694 5.3240e—2 2.0693
16 1.2972e—-2 2.0374 1.2968e—2 2.0379 1.2952e—2 2.0395
32 3.2134e—-3 2.0132 3.2086e—3 2.0149 3.1918e-3 2.0206
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