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Abstract
In this paper, we study a multiterm time-fractional initial-boundary value problem,
whose differential equation contains a sum of Caputo time fractional derivatives with
orders in (0, 1). In general, the solution of this kind of problem exhibits a weak
regularity at the initial time. Based on the L1 formula on non-uniform meshes for
time discretization and the local discontinuous Galerkin (LDG) method for space
discretization, fully discrete numerical schemes for one and two space dimensions are
constructed. The stability and convergence of the schemes are analyzed. It is shown
that the error bounds are α1-robust, that is, they remain valid as α1 → 1−, where α1
is the biggest fractional order. Furthermore, a numerical experiment is given to verify
the effectiveness of the current method.

Keywords Caputo fractional derivative · Local discontinuous Galerkin method ·
α1-robust · Stability · Convergence

Mathematics Subject Classification 65M06 · 65M12 · 65M60

1 Introduction

Fractional calculus (fractional differentiation and integration) has receivedmuch atten-
tion in recent years due to its successful simulation of many phenomena in science
and engineering [8,11–13,20]. Although the analytical solutions of some fractional
differential equations can be obtained by means of some special transforms, the com-
plexity involving special functions and infinite series are inconvenient for numerical
evaluation. Hence, efficient and accurate numerical approaches are demanded.
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In this paper, we will investigate numerical methods and related numerical analysis
of the following multiterm time-fractional initial-boundary value problem:

l∑

i=1

[
qi CD

αi
0,t u(x, t)

]
−�u(x, t)+c(x)u(x, t) = f (x, t), (x, t) ∈ �×(0, T ], (1.1)

with initial and boundary conditions:

u|t=0 = u0(x), x ∈ �, (1.2)

u|x∈∂� = 0, t ∈ (0, T ]. (1.3)

Here, � ⊆ R
d (d = 1, 2) is a bounded rectangular domain, l is a positive integer,

qi > 0, i = 1, 2, . . . , l, 0 < αl < . . . < α2 < α1 < 1 are given constants,
c(x) ∈ C(�)with c(x) ≥ 0, source term f (x, t) ∈ L∞(0, T ; L2(�)) and initial value
u0(x) ∈ L2(�) are given functions, and CD

αi
0,t is the αi th-order left-sided Caputo

derivative operator defined by [13]

CD
αi
0,t u(x, t) = 1

�(1 − αi )

∫ t

0
(t − s)−αi

∂u

∂s
ds, 0 < αi < 1, (1.4)

in which �(·) denotes the usual Gamma function.
The multiterm time-fractional initial-boundary value problem (1.1)–(1.3) has

proved to be flexible to describe complex multirate physical processes [25]. So far,
several different methods have been developed to solve this problem. Luchko [17]
developed the maximum principle for a multiterm time-fractional diffusion equation
and constructed a generalized solution by means of the multinomial Mittag-Leffler
functions. Wei [22] proposed a fully discrete local discontinuous Galerkin (LDG)
method for a class of multiterm time fractional diffusion equations. Zaky [26] used a
Legendre spectral quadrature tau method solving the multiterm time-fractional diffu-
sion equations. Very recently, Huang et al. [10] showed that, under proper regularity
and compatibility assumptions, the system (1.1)–(1.3) has a unique solution u such
that

∣∣∣∣
∂ku(x, t)

∂xk

∣∣∣∣ ≤ C for k = 0, 1, 2, 3, 4, (1.5)
∣∣∣∣
∂mu(x, t)

∂tm

∣∣∣∣ ≤ C(1 + tα1−m) for m = 0, 1, 2, (1.6)

where C > 0 is a bounded constant independent of the variable t but dependent
of T . Meng and Stynes [18] presented an L1 finite element method for a multiterm
time-fractional initial-boundary value problem.

The result in (1.6) implies that the solution u of themultiterm time-fractional initial-
boundary value problem (1.1)–(1.3) exhibits some weak regularity at the starting time
and ∂u(·,t)

∂t blows up as t → 0+. When seeking numerical solutions, the initial layer
very likely leads to a loss of accuracy if uniform temporal meshes are used. To tackle
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The local discontinuous Galerkin... 4393

such a problem, one can consider the numerical approaches on non-uniform meshes.
This is also the topic of the present paper. In this work, we develop a non-uniform
L1/LDG method for the multiterm time-fractional initial-boundary value problem
(1.1)–(1.3) with weak regular solution. The Caputo time-fractional derivatives are
discretized by the L1 finite difference method on non-uniform meshes, and the spatial
discretization is performed by using the LDG finite element method. Then the stability
and convergence analysis of the proposed numerical scheme are given. However, the
obtained error bounds blow up if we consider the limit α1 → 1−. Such error bounds
are called α1-nonrobust [2]. On the contrary, if the error bound does not blow up as
α1 → 1−, we call it α1-robust. Therefore, we further investigate the α1-robust stability
and convergence of the proposed non-uniform L1/LDG scheme.

The LDG method is a special class of discontinuous Galerkin (DG) finite element
methods, introduced first by Cockburn and Shu [4] and has been successful for solv-
ing fractional differential equations, e.g., [6,7,14–16,19,23]. The main technique of
LDG method is to rewrite higher-order derivative equation into an equivalent system
containing only the first derivative, and then discretize it by the standard DG method.
More details about the LDGmethod for high-order time dependent partial differential
equations can be found in the review paper [24].

The rest of the paper is organized as follows. In Sects. 2 and 3, we establish the
fully discrete non-uniform L1/LDG schemes for the initial-boundary value problem in
one and two space dimensions, respectively. The α1-robust and α1-nonrobust stability
and convergence analysis are studied too. In Sect. 4, we provide a numerical example
to verify the theoretical results. Concluding remarks are given in the last section.

Notations :Through out this paperwe letC be a generic positive constant, which is
independent of the mesh sizes and can take different values in different circumstances.
We use ‖ ·‖ as the L2-norm on domain� and define the L2(�) inner product (u, v) =∫∫

�
uv dx.

2 One-dimensional case

In the section,wewill develop a non-uniformL1/LDGscheme for the one-dimensional
multiterm time-fractional initial-boundary value problem (1.1)–(1.3). The scheme
employs the L1 formula with non-uniform meshes for the time-fractional derivative
and a LDG method in space. The usual notations are introduced below.

Let Th =
{
I j = (x j− 1

2
, x j+ 1

2
)
}N
j=1

be the partition of �, where a = x 1
2

< x 3
2

<

· · · < xN+ 1
2

= b. The cell center and cell length are denoted by x j = (x j− 1
2
+x j+ 1

2
)/2

and h j = x j+ 1
2

− x j− 1
2
, respectively. Let h = max

1≤ j≤N
h j be the length of the largest

cell. We use u−
j+ 1

2
and u+

j+ 1
2
to represent the values of u at the discontinuity point

x j+ 1
2
, from the left cell, I j , and from the right cell, I j+1, respectively. The jump value

of u at each element boundary is denoted by [[u]] j+ 1
2

= u+
j+ 1

2
− u−

j+ 1
2
. Associated

with this mesh, we define the discontinuous finite element space
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4394 Z. Wang

Vh = {
v ∈ L2(�) : v|I j ∈ Pk(I j ), v|∂� = 0, j = 1, . . . , N

}
,

where Pk(I j ) denotes the set of polynomials of degree up to k ≥ 0 defined on the cell
I j . For any nonnegative integer m, Hm(�) denotes the usual Sobolev space. Then we
define the broken Sobolev space on Th by

Hm(Th) = {v ∈ L2(�) : v|I j ∈ Hm(I j ), ∀ j = 1, . . . , N },

which contains the discontinuous finite element space Vh .
Toobtain the optimal error estimate,we recall twokinds ofGauss-Radauprojections

P±
h : H1(Th) → Vh , which were introduced by Castillo et al. [1], i.e., for each j ,

∫

I j

(
P+

h q(x) − q(x)
)
vhdx = 0, ∀vh ∈ Pk−1(I j ), (P+

h q)+
j− 1

2
= q(x+

j− 1
2
), (2.1)

and

∫

I j

(
P−

h q(x) − q(x)
)
vhdx = 0, ∀vh ∈ Pk−1(I j ), (P−

h q)−
j+ 1

2
= q

(
x−
j+ 1

2

)
.

(2.2)
Denote by ζ = q(x) − Phq(x) (Ph = P+

h or P−
h ) the projection error. Then a

standard scaling argument as that in [3] yields

‖ζ‖ + h‖ζx‖ + h
1
2 ‖ζ‖�h ≤ C‖ζ‖Hk+1(Th)h

k+1, (2.3)

where ‖ζ‖2�h
=

N∑

j=1

(
(ζ+| j− 1

2
)2 + (ζ−| j+ 1

2
)2
)
.

2.1 The fully discrete non-uniform L1/LDG scheme

For a given T > 0, let tn = T (n/M)r , n = 0, 1, . . . , M be the mesh points, r ≥ 1.
Denote τn = tn − tn−1, n = 1, . . . , M be the time mesh sizes. If r = 1, then the
mesh is just uniform. Throughout this paper, we denote un = u(x, tn) if no confusion
appears.

The L1 approximation on the non-uniformmeshes to the Caputo derivative is given
by [10]

CD
αi
0,t u|t=tn = 1

�(2 − αi )

[
din,1u

n +
n−1∑

k=1

(din,k+1 − din,k)u
n−k − din,nu

0

]

+Rn
i

:= ϒ
αi
t un + Rn

i (2.4)
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The local discontinuous Galerkin... 4395

for i = 1, . . . , l, where din,k = (tn−tn−k )
1−αi −(tn−tn−k+1)

1−αi

τn−k+1
and Rn

i is the truncation

error. The coefficients din,k have the following properties

din,k+1 ≤ din,k, (2.5)

(1 − αi )(tn − tn−k)
−αi ≤ din,k ≤ (1 − αi )(tn − tn−k+1)

−αi . (2.6)

Denote

ϒ
αi
t un = 1

�(2 − αi )

[
din,1u

n +
n−1∑

k=1

(din,k+1 − din,k)u
n−k − din,nu

0

]
(2.7)

for i = 1, . . . , l, n = 1, . . . , M .
Let p = ux , then we can get the weak form of system (1.1)–(1.3) at tn as follows,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
l∑

i=1

qiCD
αi
0,t u

n, v

)
+ (c(x)un, v) + (pn, vx )

−
N∑

j=1

(
pnv−| j+ 1

2
− pnv+| j− 1

2

)
= ( f n, v),

(pn, w) + (un, wx ) −
N∑

j=1

(
unw−| j+ 1

2
− unw+| j− 1

2

)
= 0,

(2.8)

where v,w ∈ H1(�) are test functions.
The fully discrete non-uniform L1/LDG scheme is defined as follows: find

Un
h , Pn

h ∈ Vh such that for all test functions vh, wh ∈ Vh ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
l∑

i=1

qiϒ
αi
t Un

h , vh

)
+ (c(x)Un

h , vh) + (Pn
h , (vh)x )

−
N∑

j=1

(
P̂n
h v−

h | j+ 1
2

− P̂n
h v+

h | j− 1
2

)
= ( f n, vh),

(Pn
h , wh) + (Un

h , (wh)x ) −
N∑

j=1

(
Û n
h w−

h | j+ 1
2

− Û n
h w+

h | j− 1
2

)
= 0.

(2.9)

The “hat" terms in (2.9) are the boundary terms that emerge from the integration by
parts. These are the so-called “numerical fluxes" that are yet to be determined. The
freedom in choosing numerical fluxes can be utilized for designing a scheme that
enjoys certain stability properties. It turns out that we can take the following choices
simply

Û n
h = (Un

h )−, P̂n
h = (Pn

h )+. (2.10)
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4396 Z. Wang

2.2 ˛1-Nonrobust error analysis of the non-uniform L1/LDGmethod

This subsection presents the α1-nonrobust stability and convergence of the scheme
(2.9). We give the following α1-nonrobust stability result.

Lemma 2.1 The solution Un
h of the fully discrete scheme (2.9) satisfies

‖Un
h ‖ ≤ ‖U 0

h ‖ + 1
∑l

i=1 ηin,1

n∑

j=1

θn, j‖ f j‖, n = 1, . . . , M, (2.11)

where

ηin, j = qidin, j

�(2 − αi )
, i = 1, 2, . . . , l, j = 1, 2, . . . , M,

θn,n = 1, θn, j =
l∑

i=1

n− j∑

k=1

1
∑l

i=1 ηin−k,1

(ηin,k − ηin,k+1)θn−k, j , j = 1, 2, . . . , n − 1.

Proof Taking the test functions (vh, wh) = (Un
h , Pn

h ), and adding the two equations
in (2.9), we obtain

(
l∑

i=1

qidin,1

�(2 − αi )
Un
h ,Un

h

)
+ (

c(x)Un
h ,Un

h

)+ ‖Pn
h ‖2

=
(

l∑

i=1

qidin,n

�(2 − αi )
U 0
h ,Un

h

)
+
(

l∑

i=1

qi
�(2 − αi )

n−1∑

k=1

(din,k − din,k+1)U
n−k
h ,Un

h

)

+ ( f n,Un
h ).

(2.12)
By using (2.5) and the Cauchy-Schwarz inequality, we have

l∑

i=1

ηin,1‖Un
h ‖ ≤

l∑

i=1

ηin,n‖U 0
h ‖ +

l∑

i=1

n−1∑

k=1

(ηin,k − ηin,k+1)‖Un−k
h ‖ + ‖ f n‖. (2.13)

Now,weprove this lemmabymathematical induction.Whenn = 1, (2.13) becomes

‖U 1
h ‖ ≤ ‖U 0

h ‖ + 1
∑l

i=1 ηi1,1

‖ f 1‖, (2.14)

which is identical to (2.11).
Supposing the following estimates hold

‖Um
h ‖ ≤ ‖U 0

h ‖ + 1
∑l

i=1 ηim,1

m∑

j=1

θm, j‖ f j‖, m = 2, . . . , s, (2.15)
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we need prove

‖Us+1
h ‖ ≤ ‖U 0

h ‖ + 1
∑l

i=1 ηis+1,1

s+1∑

j=1

θs+1, j‖ f j‖. (2.16)

Letting n = s + 1 in (2.13) and using (2.15), we have

‖Us+1
h ‖ ≤

∑l
i=1 ηis+1,s+1∑l
i=1 ηis+1,1

‖U0
h ‖ + 1

∑l
i=1 ηis+1,1

[ l∑

i=1

s∑

k=1

(ηis+1,k − ηis+1,k+1)

×
(
‖U0

h ‖ + 1
∑l

i=1 ηis+1−k,1

s+1−k∑

j=1

θs+1−k, j‖ f j‖
)]

+ ‖ f s+1‖
∑l

i=1 ηis+1,1

= 1
∑l

i=1 ηis+1,1

⎧
⎨

⎩‖ f s+1‖ +
⎡

⎣
l∑

i=1

s∑

k=1

ηis+1,k − ηis+1,k+1∑l
i=1 ηis+1−k,1

s+1−k∑

j=1

θs+1−k, j‖ f j‖
⎤

⎦

⎫
⎬

⎭

+
⎧
⎨

⎩
1

∑l
i=1 ηis+1,1

[ l∑

i=1

s∑

k=1

(ηis+1,k − ηis+1,k+1)

]
+
∑l

i=1 ηis+1,s+1∑l
i=1 ηis+1,1

⎫
⎬

⎭ ‖U0
h ‖

= ‖ f s+1‖ +
s∑

j=1

⎡

⎣
l∑

i=1

s+1− j∑

k=1

ηis+1,k − ηis+1,k+1∑l
i=1 ηis+1−k,1

θs+1−k, j

⎤

⎦ ‖ f j‖

+ 1
∑l

j=1 η
j
s+1,1

⎧
⎨

⎩

l∑

i=1

s∑

k=1

(ηis+1,k − ηis+1,k+1) +
l∑

i=1

ηis+1,s+1

⎫
⎬

⎭ ‖U0
h ‖

=
s+1∑

j=1

θs+1, j‖ f j‖ + ‖U0
h ‖.

This completes the proof of this lemma. 
�

Lemma 2.2 [10] Let β ≤ rα1, then for n = 1, 2, . . . , M, one has

1
∑l

i=1 ηin,1

n∑

j=1

j−βθn, j ≤ �(1 − α1)T
α1M−β.

Theorem 2.1 (L2-norm stability) The solution Un
h of the fully discrete scheme (2.9)

satisfies

‖Un
h ‖ ≤ ‖U 0

h ‖ + �(1 − α1)T
α1 max

1≤ j≤n

∥∥∥ f j
∥∥∥ , n = 1, . . . , M . (2.17)
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4398 Z. Wang

Proof By Lemma 2.2, one has

1
∑l

i=1 ηin,1

n∑

j=1

θn, j ≤ �(1 − α1)T
α1 .

Combining the above estimate with Lemma 2.1 yields the assertion. 
�

Next, we present the α1-nonrobust convergence analysis. Firstly, we introduce a
lemma that will be used later on.

Lemma 2.3 [10]Suppose that the solution u(x, t)of problem (1.1)–(1.3) satisfies (1.6).
Then there exists a constant C such that for all tn one has

|Rn
i | ≤ Cn−min{2−α1,rα1}

for i = 1, 2, . . . , l, n = 1, 2, . . . , M.

Theorem 2.2 (L2-norm error estimate) Let u be the exact solution of (1.1)–(1.3) and
Un
h be the numerical solution of the fully discrete non-uniform L1/LDG scheme (2.9).

Suppose that u satisfies condition (1.6) and u(·, t) ∈ Hk+1(Th). Then, it holds that

‖un −Un
h ‖ ≤ C

√
�(1 − α1)

(
M−min{2−α1,rα1} + hk+1

)
, (2.18)

where C is a positive constant independent of M and h.

Proof As usual in the finite element analysis, we denote the error by enu = un − Un
h

and enp = pn − Pn
h , respectively, and decompose them into two parts, namely,

enu = un −Un
h = P−

h e
n
u + (

un − P−
h u

n) := ξnu + ηnu ,

enp = pn − Pn
h = P+

h e
n
p + (

pn − P+
h pn

) := ξnp + ηnp.
(2.19)

Subtracting (2.9) from (2.8), and with the fluxes (2.10), we can obtain the error
equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
l∑

i=1

qi
(
CD

αi
0,t u

n − ϒ
αi
t Un

h

)
, vh

)
+ (c(x)enu , vh) + (

enp, (vh)x
)

−
N∑

j=1

(
(enp)

+v−
h | j+ 1

2
− (enp)

+v+
h | j− 1

2

)
= 0,

(enp, wh) + (
enu , (wh)x

)−
N∑

j=1

(
(enu)

−w−
h | j+ 1

2
− (enu)

−w+
h | j− 1

2

)
= 0.

(2.20)
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Substituting (2.19) into (2.20), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
l∑

i=1

qiϒ
αi
t ξnu , vh

)
+ (

c(x)ξnu , vh
)+ (

ξnp , (vh)x
)

−
N∑

j=1

(
(ξnp)

+v−
h | j+ 1

2
− ((ξnp)

+v+
h | j− 1

2

)

= −
(

l∑

i=1

qi R
n
i , vh

)
−
(

l∑

i=1

qiϒ
αi
t ηnu , vh

)
− (

c(x)ηnu , vh
)

−(ηnp, (vh)x
)+

N∑

j=1

(
(ηnp)

+v−
h | j+ 1

2
− (ηnp)

+v+
h | j− 1

2

)
,

(ξnp , wh) + (
ξnu , (wh)x

)−
N∑

j=1

(
(ξnu )−w−

h | j+ 1
2

− (ξnu )−w+
h | j− 1

2

)

= −(ηnp, wh) − (
ηnu , (wh)x

)+
N∑

j=1

(
(ηnu)

−w−
h | j+ 1

2
− (ηnu)

−w+
h | j− 1

2

)
.

(2.21)

Taking the test functions (vh, wh) = (ξnu , ξnp) in (2.21) and using the properties
(2.1) and (2.2), we get

(
l∑

i=1

qiϒ
αi
t ξnu , ξnu

)
+ (

c(x)ξnu , ξnu
)+ ‖ξnp‖2

= −
(

l∑

i=1

qi R
n
i , ξ

n
u

)
−
(

l∑

i=1

qiϒ
αi
t ηnu , ξ

n
u

)
− (

c(x)ηnu , ξ
n
u

)− (ηnp, ξ
n
p), (2.22)

which is equivalent to

(
l∑

i=1

qidin,1

�(2 − αi )
ξnu , ξnu

)
+ (

c(x)ξnu , ξnu
)+ ‖ξnp‖2

=
(

l∑

i=1

qidin,n

�(2 − αi )
ξ0u , ξnu

)
+
(

l∑

i=1

qi
�(2 − αi )

n−1∑

k=1

(din,k − din,k+1)ξ
n−k
u , ξnu

)

−
(

l∑

i=1

qi R
n
i , ξ

n
u

)
−
(

l∑

i=1

qiϒ
αi
t ηnu , ξ

n
u

)
− (

c(x)ηnu , ξ
n
u

)− (ηnp, ξ
n
p). (2.23)
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Thus, by using Lemma 2.3, we obtain

l∑

i=1

ηin,1‖ξnu ‖2 + (
c(x)ξnu , ξnu

)+ ‖ξnp‖2

≤
l∑

i=1

ηin,n‖ξ0u ‖‖ξnu ‖ +
l∑

i=1

n−1∑

k=1

(ηin,k − ηin,k+1)‖ξn−k
u ‖‖ξnu ‖ +

l∑

i=1

qi‖Rn
i ‖‖ξnu ‖

+
l∑

i=1

qi‖ϒαi
t ηnu‖‖ξnu ‖ +

∥∥∥
√
c(x)ηnu

∥∥∥
∥∥∥
√
c(x)ξnu

∥∥∥+ ‖ηnp‖‖ξnp‖

≤
l∑

i=1

n−1∑

k=1

1

2
(ηin,k − ηin,k+1)‖ξn−k

u ‖2 + 1

2

l∑

i=1

(ηin,1 − ηin,n)‖ξnu ‖2

+ C
∑l

i=1 ηin,n

(
n−2min{2−α1,rα1} + h2k+2

)
+
∑l

i=1 ηin,n

2
‖ξnu ‖2 + Ch2k+2

+(c(x)ξnu , ξnu
)+ ‖ξnp‖2. (2.24)

From (2.6), it is easy to get that

1

din,n
≤ T αi

1 − αi
nrαi M−rαi , (2.25)

which leads to

1
∑l

i=1 ηin,n

≤ 1

η1n,n
= �(2 − α1)

q1d1n,n
≤ �(1 − α1)

q1
T α1nrα1M−rα1 . (2.26)

Combining (2.24) and (2.26), we can derive

l∑

i=1

ηin,1‖ξnu ‖2 ≤
l∑

i=1

n−1∑

k=1

(ηin,k − ηin,k+1)‖ξn−k
u ‖2

+ C
(
h2k+2 + M−rα1n−(2min{2−α1,rα1}−rα1)

)
. (2.27)

Now we prove that the truncation error ξnu satisfies

‖ξnu ‖2 ≤ C
∑l

i=1 ηin,1

n∑

j=1

θn, j

(
h2k+2 + M−rα1 j−(2min{2−α1,rα1}−rα1)

)
(2.28)
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for n = 1, . . . , M , whereC is the constant in (2.27). We prove (2.28) by mathematical
induction. When n = 1, (2.28) becomes

‖ξ1u ‖2 ≤ C
∑l

i=1 ηi1,1

(h2k+2+M−rα1
). (2.29)

Supposing the following estimates hold

‖ξmu ‖2 ≤ C
∑l

i=1 ηim,1

n∑

j=1

θm, j

(
h2k+2 + M−rα1 j−(2min{2−α1,rα1}−rα1)

)
(2.30)

for m = 2, 3, . . . , s, we only need to prove

‖ξ s+1
u ‖2 ≤ C

∑l
i=1 ηis+1,1

s+1∑

j=1

θs+1, j

(
h2k+2 + M−rα1 j−(2min{2−α1,rα1}−rα1)

)
.

(2.31)

Letting n = s + 1 in (2.28) and using the induction hypothesis (2.30), we have

‖ξ s+1
u ‖2 ≤ 1

∑l
i=1 ηis+1,1

[ l∑

i=1

s∑

k=1

(ηis+1,k − ηis+1,k+1)‖ξ s+1−k
u ‖2

+ C
(
h2k+2 + M−rα1(s + 1)(−2min{2−α1,rα1}−rα1)

)]

≤ 1
∑l

i=1 ηis+1,1

[ l∑

i=1

s∑

k=1

(ηis+1,k − ηis+1,k+1)

(
C

∑l
i=1 ηis+1−k,1

×
s+1−k∑

j=1

θs+1−k, j
(
h2k+2 + M−rα1 j−(2min{2−α1,rα1}−rα1)

))

+ C
(
h2k+2 + M−rα1(s + 1)(−2min{2−α1,rα1}−rα1)

)]

= 1
∑l

i=1 ηis+1,1

[ s∑

j=1

( l∑

i=1

s+1− j∑

k=1

C(ηis+1,k − ηis+1,k+1)∑l
i=1 ηis+1−k,1

θs+1−k, j

×
(
h2k+2 + M−rα1 j−(2min{2−α1,rα1}−rα1)

))

+ C
(
h2k+2 + M−rα1(s + 1)(−2min{2−α1,rα1}−rα1)

)]

= C
∑l

i=1 ηis+1,1

s+1∑

j=1

θs+1, j

(
h2k+2 + M−rα1 j (−2min{2−α1,rα1}−rα1)

)
.
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Therefore, the estimate (2.28) holds.
Exploiting (2.28) and Lemma 2.2 directly, we obtain

‖ξnu ‖2 ≤ C
∑l

i=1 ηin,1

n∑

j=1

θn, j h
2k+2 + CM−rα1

∑l
i=1 ηin,1

n∑

j=1

θn, j j
−(2min{2−α1,rα1}−rα1)

≤ C�(1 − α1)T
α1h2k+2 + CM−rα1�(1 − α1)T

α1M−(2min{2−α1,rα1}−rα1)

≤ C�(1 − α1)
(
h2k+2 + M−2min{2−α1,rα1}

)
,

which, together with the interpolation property(2.3) and the triangle inequality, com-
pletes the proof of this theorem. 
�

It is clear that the results derived in Theorems 2.1 and 2.2 are α1-nonrobust, i.e., the
bounds blow up as α1 → 1−. In the following subsection, we present the improved
stability and convergence analysis for the scheme (2.9).

2.3 ˛1-Robust error analysis of the non-uniform L1/LDGmethod

This subsection is devoted to the α1-robust stability and convergence analysis of non-
uniform L1/LDG scheme (2.9) for system (1.1)–(1.3). Let us start by introducing the
following lemmas.

Lemma 2.4 ([9],Lemma 2) Suppose that the solution u(x, t) of problem (1.1)–(1.3)
satisfies (1.6). Then there exists a constant C such that for all tn one has

|Rn
i | ≤ Ct−αi

n M−min{2−αi ,rα1}

for i = 1, 2, . . . , l, n = 1, 2, . . . , M.

Lemma 2.5 ([9],Corollary 1) For n = 1, 2, . . . , M, one has

1

dn,1

n∑

j=1

θn, j ≤
l∑

i=1

tαin
qi�(1 + αi )

.

Lemma 2.6 ([9],Corollary 2) Set lM = 1
lnM . Assume that M ≥ 3 so 0 < lM < 1.

Then

1

dn,1

n∑

j=1

(
l∑

i=1

qi t
−αi
j

)
θn, j ≤ ler max1≤i≤l �(1 + lM − αi )

�(1 + lM )
.

Lemma 2.7 ([9],Lemma 6) Assume that the sequences {ξn}∞n=1, {ηn}∞n=1 are nonneg-
ative and the grid function {vn : n = 0, 1, . . . , M} satisfies v0 ≥ 0 and

vn
l∑

i=1

qiϒ
αi
t vn ≤ ξnvn + (ηn)2, n = 1, 2, . . . , M .
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Then

vn ≤ v0 + 1

dn,1

n∑

j=1

θn, j (ξ
j + η j ) + max

1≤ j≤n

{
η j
}

, n = 1, 2, . . . , M .

We shall now improve Theorem 2.1 by replacing (2.32) with a bound that is α1-
robust.

Theorem 2.3 (Improved L2-norm stability) The solution Un
h of the fully discrete

scheme (2.9) satisfies

‖Un
h ‖ ≤ ‖U 0

h ‖ +
(

l∑

i=1

tαin
qi�(1 + αi )

)
max
1≤ j≤n

‖ f j‖, n = 1, . . . , M . (2.32)

Proof Taking the test functions (vh, wh) = (Un
h , Pn

h ), and adding the two equations
in (2.9), we have

(
l∑

i=1

qiϒ
αi
t Un

h ,Un
h

)
+ (c(x)Un

h ,Un
h ) + (Pn

h , Pn
h ) = ( f n,Un

h ). (2.33)

It follows from [9, Lemma 3] that

(
l∑

i=1

qiϒ
αi
t vn, vn

)
≥
(

l∑

i=1

qiϒ
αi
t ‖vn‖

)
‖vn‖ (2.34)

for n = 1, 2, . . . , M .
Applying (2.33) and (2.34), as well as Cauchy–Schwarz inequality, we obtain

(
l∑

i=1

qiϒ
αi
t ‖Un

h ‖
)

‖Un
h ‖ ≤ ‖ f n‖‖Un

h ‖. (2.35)

Then an application of Lemmas 2.5 and 2.7 immediately yields

‖Un
h ‖ ≤ ‖U 0

h ‖ + 1

dn,1

n∑

j=1

θn, j max
1≤ j≤n

‖ f j‖

≤ ‖U 0
h ‖ +

(
l∑

i=1

tαin
qi�(1 + αi )

)
max
1≤ j≤n

‖ f j‖,

which completes the proof. 
�
We also give an α1-robust convergence result of the fully discrete non-uniform

L1/LDG scheme (2.9) for (1.1)–(1.3). The conclusion is stated as follows.
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Theorem 2.4 (Improved L2-norm error estimate) Let u be the exact solution of (1.1)–
(1.3) and Un

h be the numerical solution of the fully discrete non-uniform L1/LDG
scheme (2.9). Suppose that u satisfies condition (1.6) and u(·, t) ∈ Hk+1(Th). Then,
it holds that

‖un −Un
h ‖ ≤ C max1≤i≤l �(1 + lM − αi )

�(1 + lM )
M−min{2−α1,rα1} + Chk+1, (2.36)

where C is a positive constant independent of M and h.

Proof As shown in Theorem 2.2, one has

(
l∑

i=1

qiϒ
αi
t ξnu , ξnu

)
+ (

c(x)ξnu , ξnu
)+ ‖ξnp‖2

= −
(

l∑

i=1

qi R
n
i , ξ

n
u

)
−
(

l∑

i=1

qiϒ
αi
t ηnu , ξ

n
u

)
− (

c(x)ηnu , ξ
n
u

)− (ηnp, ξ
n
p).

By using (2.34), we obtain that

(
l∑

i=1

qiϒ
αi
t ‖ξnu ‖

)
‖ξnu ‖ + (

c(x)ξnu , ξnu
)+ ‖ξnp‖2

= −
(

l∑

i=1

qi R
n
i , ξ

n
u

)
−
(

l∑

i=1

qiϒ
αi
t ηnu , ξ

n
u

)
− (

c(x)ηnu , ξ
n
u

)− (ηnp, ξ
n
p)

≤
l∑

i=1

qi‖Rn
i ‖‖ξnu ‖ +

l∑

i=1

qi‖ϒαi
t ηnu‖‖ξnu ‖ +

∥∥∥
√
c(x)ηnu

∥∥∥
∥∥∥
√
c(x)ξnu

∥∥∥

+‖ηnp‖‖ξnp‖

≤
(
C

l∑

i=1

qi t
−αi
n M−min{2−αi ,rα1} + C

l∑

i=1

qi h
k+1

)
‖ξnu ‖ + Ch2k+2

+
∥∥∥
√
c(x)ξnu

∥∥∥
2 + ‖ξnp‖2, (2.37)

where we invoked (2.3) and Lemma 2.4 for the last inequality.
Consequently, applying Lemmas 2.5–2.7, we can get

‖ξnu ‖ ≤ ‖ξ0u ‖ + C

dn,1

n∑

j=1

(
l∑

i=1

qi t
−αi
j M−min{2−αi ,rα1} + hk+1

)
θn, j + Chk+1

≤ Cer max1≤i≤l �(1 + lM − αi )

�(1 + lM )
M−min{2−α1,rα1} + Chk+1.

Finally, by using the triangle inequality and the interpolation property (2.3) again, we
can complete the proof of Theorem 2.4. 
�
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3 Two-dimensional case

For a bounded rectangular domain � = (a1, b1) × (a2, b2) ⊂ R
2, we divide it into a

Cartesian grid Th = {K } consisting of Nx × Ny rectangular elements K := Ii × J j =
(xi− 1

2
, xi+ 1

2
) × (y j− 1

2
, y j+ 1

2
), i = 1, . . . , Nx , j = 1, . . . , Ny , where a1 = x 1

2
<

x 3
2

< · · · < xNx+ 1
2

= b1 and a2 = y 1
2

< y 3
2

< · · · < yNy+ 1
2

= b2. Denoting
�xi = xi+ 1

2
− xi− 1

2
and �y j = y j+ 1

2
− y j− 1

2
, respectively. Then the maximal length

of all edges is defined by h = max1≤i≤Nx ,1≤ j≤Ny (�xi ,�y j ). We assume that the
mesh Th is quasi-uniform in the sense that there exist constants C1,C2 > 0 such that
h ≤ C1�xi and h ≤ C2�y j for all K ∈ Th . Then the finite element space is defined
by

Vh = {vh ∈ L2(�) : vh |K ∈ Qk(K ), vh |∂� = 0, ∀K ∈ Th},
Vh =

{
wh ∈ L2(�)2 : wh |K ∈ Qk(K )2, wh |∂� = 0, ∀K ∈ Th

}
,

(3.1)

where Qk(K ) denotes the space of polynomials of degrees at most k defined on K .
We use a fixed vector I = (1, 1) to uniquely define the inflow and outflow bound-

aries of �, namely,

∂�− = {(x, y) ∈ ∂� : I · n < 0}, ∂�+ = {(x, y) ∈ ∂� : I · n > 0},

where n is the outward unit normal vector of �. Similarly, we denote ∂K− and ∂K+
the inflow and outflow boundaries of K , respectively, i.e.,

∂K− = {(x, y) ∈ ∂K : I · n < 0}, ∂K+ = {(x, y) ∈ ∂K : I · n > 0}.

If two elements K1 and K2 are neighbours and share one common side e, i.e.,
e = ∂K1 ∩ ∂K2, then there are two traces for any function defined on e. We denote

u+ = u|∂K−
2 ∩e, u− = u|∂K+

1 ∩e, [[u]]e = u+ − u−, [[u]]∂� = u|∂�.

For each h > 0, EB denotes the set of all boundary edges of the mesh Th on ∂�,
EI denotes the set of all interior edges of the mesh Th in �, and E denotes the union
of all edges, i.e., E = EB ∪ EI . The L2 norm and L2 inner product on the edges ∂K±
are given by

‖u‖2
∂K± = (u, u)∂K± , (u, v)∂K± =

∫

∂K±
u∓(s) v∓(s)ds.

The norms on the whole outflow and inflow boundaries E are denoted by

‖u‖2E =
∑

e∈E
‖u‖2e .
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We define the broken Sobolev space V on Th by

V =
{
v ∈ L2(�) : v|K ∈ H1(K ), ∀K ∈ Th

}
,

and denote by V = V × V .

3.1 The fully discrete non-uniform L1/LDG scheme

We still use the L1 method on non-uniform meshes (see (2.4)) as time discretization
and LDG method as space discretization. As the usual treatment, we firstly rewrite
(1.1)–(1.3) into a system of the first order derivatives

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑l
i=1

[
qiCD

αi
0,t u

]
− ∇ · p + cu = f (x, y, t), (x, y, t) ∈ � × (0, T ],

p = ∇u, (x, y, t) ∈ � × (0, T ],
u|t=0 = u0(x, y), (x, y) ∈ �,

u|(x,y)∈∂� = 0, t ∈ (0, T ],

(3.2)

Then we can define the semi-discrete LDG scheme for (1.1)–(1.3) as follows: find
(Uh,Ph) ∈ Vh × Vh such that for all test functions (vh,wh) ∈ Vh × Vh , we have

⎧
⎪⎪⎨

⎪⎪⎩

(
l∑

i=1

qiCD
αi
0,tUh, vh

)
+ (cUh, vh) = L(Ph, vh) + ( f , vh),

(Ph,wh) = K(Uh,wh),

(3.3)

where

L(Ph, vh) = −(Ph,∇vh) +
∑

K∈Th
(P̂h · n, vh)∂K , (3.4)

K(Uh,wh) = −(Uh,∇ · wh) +
∑

K∈Th
(Ûh,wh · n)∂K . (3.5)

Similar to the one-dimensional case, the numerical fluxes Ûh , P̂h can be chosen as

Ûh = U−
h , P̂h = P+

h . (3.6)

Let (Un
h ,Pn

h) ∈ Vh × Vh be the approximation of (u(x, y, tn),p(x, y, tn)). Then
we define the fully discrete non-uniform L1/LDG scheme as follows: find (Un

h ,Pn
h) ∈

Vh × Vh such that for all test functions (vh,wh) ∈ Vh × Vh ,

⎧
⎪⎪⎨

⎪⎪⎩

(
l∑

i=1

qiϒ
αi
t Un

h , vh

)
+ (cUn

h , vh) = L(Pn
h , vh) + ( f n, vh),

(Pn
h ,wh) = K(Un

h ,wh).

(3.7)
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Here the notation ϒ
αi
t Un

h is defined in (2.4).

3.2 ˛1-Nonrobust error analysis of the non-uniform L1/LDGmethod

The fully discrete non-uniform L1/LDG scheme (3.7) for the two-dimensional
multiterm time-fractional initial-boundary value problem satisfies the following α1-
nonrobust stability. First of all, we introduce a lemma that will be used later on.

Lemma 3.1 [21] For any vh ∈ Vh and wh ∈ Vh, there holds the equality

L(wh, vh) = −K(vh,wh).

Theorem 3.1 (L2-norm stability) The solution Un
h of the fully discrete scheme (3.7)

satisfies

‖Un
h ‖ ≤ ‖U 0

h ‖ + �(1 − α1)T
α1 max

1≤ j≤n

∥∥∥ f j
∥∥∥ , n = 1, . . . , M . (3.8)

Proof Taking the test function vh = Un
h and wh = Pn

h in (3.7) and using Lemma 3.1,
we obtain

(
l∑

i=1

qidin,1

�(2 − αi )
Un
h ,Un

h

)
+ (

cUn
h ,Un

h

)+ ‖Pn
h‖2

=
(

l∑

i=1

qidin,n

�(2 − αi )
U 0
h ,Un

h

)
+
(

l∑

i=1

qi
�(2 − αi )

n−1∑

k=1

(din,k − din,k+1)U
n−k
h ,Un

h

)

+ ( f n,Un
h ).

(3.9)
By using an analysis similar to that in (2.11) and in Theorem 2.1, we can complete
the proof of this theorem. 
�

Nowwe present the α1-nonrobust convergence analysis and give the detailed proof.
To obtain the optimal error estimate for the non-uniform L1/LDG scheme (3.7), we
would like to use the elliptic projection introduced in [5] to eliminate the element
boundary errors. Let u ∈ V and q = ∇u, define the elliptic projection (Phu,Phq) ∈
Vh × Vh as: for any (vh,wh) ∈ Vh × Vh , it holds that

L(q, vh) = L(Phq, vh), (3.10)

(Phq,wh) = K(Phu,wh), (3.11)

(u − Phu, 1) = 0. (3.12)

The elliptic projection defined above uniquely exists and satisfies the following
approximation properties.
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Lemma 3.2 [21] Assume u ∈ Hk+2(�), then there exists a constant C depending on
the regularity of u such that

‖u − Phu‖ + h
1
2 ‖u − Phu‖E ≤ Chk+1. (3.13)

Theorem 3.2 (L2-norm error estimate) Let u be the exact solution of (1.1)–(1.3) and
Un
h be the numerical solution of the fully discrete non-uniform L1/LDG scheme (3.7).

Suppose that u satisfies condition (1.6) and u(·, t) ∈ Hk+2(�). Then, it holds that

‖un −Un
h ‖ ≤ C

√
�(1 − α1)

(
M−min{2−α1,rα1} + hk+1

)
, (3.14)

where C is a positive constant independent of M and h.

Proof Denote

enu = un −Un
h = Phu

n −Un
h + (un − Phu

n) = ξnu + ηnu ,

enp = pn − Pn
h = Phpn − Pn

h + (pn − Phpn) = ξnp + ηnp.
(3.15)

From (3.2), we can get the weak form of (1.1)–(1.3) at tn as follows,

⎧
⎪⎪⎨

⎪⎪⎩

(
l∑

i=1

qiCD
αi
0,t u

n, vh

)
+ (cun, vh) = L(pn, vh) + ( f n, vh),

(pn,wh) = K(un,wh).

(3.16)

Applying the property of elliptic projection (3.10)–(3.12), it holds that

{
L(ηnp, vh) = L(pn − Phpn, vh),
(ηnp,wh) = K(ηnu ,wh).

(3.17)

Subtracting (3.7) from (3.16) and noticing (3.17), we obtain the error equation

⎧
⎪⎪⎨

⎪⎪⎩

(
l∑

i=1

qi
(
CD

αi
0,t u

n − ϒ
αi
t Un

h

)
, vh

)
+ (cenu , vh) = L(ξnp, vh),

(ξnp,wh) = K(ξnu ,wh).

(3.18)

Taking the test function (vh,wh) = (ξnu , ξnp) in (3.18) and using Lemma 3.1, we get

(
l∑

i=1

qiϒ
αi
t ξnu , ξnu

)
+ (

cξnu , ξnu
)+ ‖ξnp‖2

= −
(

l∑

i=1

qi R
n
i , ξ

n
u

)
−
(

l∑

i=1

qiϒ
αi
t ηnu , ξ

n
u

)
− (

cηnu , ξ
n
u

)
. (3.19)
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Repeating similar arguments as Theorem 2.2 (see the proof of (2.29) and (2.31)), we
can use mathematical induction to obtain the error estimate

‖un −Un
h ‖ ≤ C

√
�(1 − α1)

(
M−min{2−α1,rα1} + hk+1

)
.

The proof is thus completed. 
�

3.3 ˛1-Robust error analysis of the non-uniform L1/LDGmethod

We are now ready to state the α1-robust stability and convergence analysis of non-
uniform L1/LDG scheme (3.7) for system (1.1)–(1.3).

Theorem 3.3 (Improved L2-norm stability) The solution Un
h of the fully discrete

scheme (3.7) satisfies

‖Un
h ‖ ≤ ‖U 0

h ‖ +
(

l∑

i=1

tαin
qi�(1 + αi )

)
max
1≤ j≤n

‖ f j‖, n = 1, . . . , M . (3.20)

Proof Taking the test function (vh, wh) = (Un
h ,Pn

h) in (3.7) and applying Lemma 3.1,
we can get

(
l∑

i=1

qiϒ
αi
t Un

h ,Un
h

)
+ (cUn

h ,Un
h ) + (Pn

h ,P
n
h) = ( f n,Un

h ). (3.21)

Then, similar to the proof of Theorem 2.3, the L2-norm stability (3.20) can be obtained
immediately. This finishes the proof. 
�

Next, we state the α1-robust convergence result of the fully discrete non-uniform
L1/LDG scheme (3.7).

Theorem 3.4 (Improved L2-norm error estimate) Let u be the exact solution of (1.1)–
(1.3) and Un

h be the numerical solution of the fully discrete non-uniform L1/LDG
scheme (3.7). Suppose that u satisfies condition (1.6) and u(·, t) ∈ Hk+2(�). Then,
it holds that

‖un −Un
h ‖ ≤ C max1≤i≤l �(1 + lM − αi )

�(1 + lM )
M−min{2−α1,rα1} + Chk+1, (3.22)

where C is a positive constant independent of M and h.

Proof Set

enu = un −Un
h = Phu

n −Un
h + (un − Phu

n) = ξnu + ηnu ,

enp = pn − Pn
h = Phpn − Pn

h + (pn − Phpn) = ξnp + ηnp.
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By the similar techniques used in the proof of Theorem 3.2, it holds that

(
l∑

i=1

qiϒ
αi
t ξnu , ξnu

)
+ (

cξnu , ξnu
)+ ‖ξnp‖2

= −
(

l∑

i=1

qi R
n
i , ξ

n
u

)
−
(

l∑

i=1

qiϒ
αi
t ηnu , ξ

n
u

)
− (

cηnu , ξ
n
u

)
.

Then, repeating similar arguments as Theorem 2.4, we can obtain (3.22). The proof is
thus completed. 
�

4 Numerical examples

In this section, we present a numerical example to validate our theoretical results.

Example 4.1 Consider the following three-term time-fractional diffusion equation

⎧
⎪⎨

⎪⎩

CD
α1
0,t u + 0.1CD0.1

0,t u + 0.1CD0.2
0,t u − uxx + u = f (x, t), (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = 0, x ∈ (0, 1),

u(0, t) = u(1, t) = 0, t ∈ (0, 1],
(4.1)

where 0 < α1 < 1. The source term f (x, t) is chosen such that the exact solution of
the problem is u = (tα1 + t3) sin(2πx).

The L2 and L∞ numerical errors and orders with different α1 at T = 1 are given
in Tables 1–5. From these results, we conclude that the non-uniform L1/LDG scheme
(2.9) for the three-term time-fractional diffusion equation in Example 4.1 can achieve
min{2 − α1, rα1}-th order convergence in time and (k + 1)-th order convergence in
space, which are in line with the theoretical rate established in Theorem 2.4.

5 Concluding remarks

In this paper, we have studied the multiterm time-fractional initial-boundary value
problem. Considering the weak regularity of the solution at the starting time, we use
theL1 schemewith non-uniformmeshes to discretize the time fractional derivative, and
the classicalLDGmethod for the spacederivative.Numerical stability and convergence
of the established schemes are analyzed. Such stability and convergence results are
proved to be α1-robust. Finally, a numerical example is given to confirm the theoretical
results.
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Table 1 The time convergence results for Example 4.1 at T = 1 with k = 1, M = N , and r = 1

α = 0.4 α = 0.6 α = 0.8
M Error Order Error Order Error Order

L2-norm 64 7.5891e−3 – 4.5890e−3 – 1.9342e−3 –

128 6.4698e−3 0.2302 3.6048e−3 0.3483 1.3360e−3 0.5339

256 5.5204e−3 0.2290 2.7908e−3 0.3692 8.8759e−4 0.5899

512 4.6978e−3 0.2328 2.1179e−3 0.3980 5.6750e−4 0.6453

1024 3.9801e−3 0.2392 1.5722e−3 0.4299 3.5119e−4 0.6924

L∞-norm 64 1.2178e−2 – 7.0474e−3 – 2.8077e−3 –

128 1.0244e−2 0.2496 5.3672e−3 0.3929 1.8828e−3 0.5765

256 8.5889e−3 0.2542 4.0354e−3 0.4115 1.2344e−3 0.6092

512 7.1656e−3 0.2614 2.9949e−3 0.4302 7.8866e−4 0.6463

1024 5.9466e−3 0.2690 2.1941e−3 0.4488 4.9043e−4 0.6854

Table 2 The time convergence results for Example 4.1 at T = 1 with k = 1, M = N , and r = 1
α

α = 0.4 α = 0.6 α = 0.8
M Error Order Error Order Error Order

L2-norm 64 1.5633e−3 – 1.5761e−3 – 1.0979e−3 –

128 9.0085e−4 0.7953 9.1225e−4 0.7888 6.4693e−4 0.5339

256 4.9551e−4 0.8624 5.0207e−4 0.8615 3.8137e−4 0.7624

512 2.6295e−4 0.9142 2.6868e−4 0.9020 2.1418e−4 0.8324

1024 1.3620e−4 0.9490 1.4341e−4 0.9057 1.1729e−4 0.8687

L∞-norm 64 2.1788e−3 – 2.1995e−3 – 1.5342e−3 –

128 1.2514e−3 0.8000 1.2669e−3 0.7958 8.9899e−4 0.7711

256 6.9253e−4 0.8535 7.0146e−4 0.8529 5.2710e−4 0.6092

512 3.6973e−4 0.9054 3.7444e−4 0.9056 2.9635e−4 0.8308

1024 1.9217e−4 0.9441 2.0144e−4 0.8944 1.6348e−4 0.8582

Table 3 The time convergence results for Example 4.1 at T = 1 with k = 1, M = N , and r = 2−α
α

α = 0.4 α = 0.6 α = 0.8
M Error Order Error Order Error Order

L2-norm 64 4.4124e−4 – 5.1457e−4 – 7.5006e−4 –

128 1.4416e−4 1.6138 2.3772e−4 1.1141 3.6715e−4 1.0306

256 5.0778e−5 1.5054 1.0414e−4 1.1908 1.8235e−4 1.0097

512 1.8014e−5 1.4951 4.3681e−5 1.2534 9.1984e−5 0.9873

L∞-norm 64 9.6818e−4 – 1.0772e−3 – 1.7074e−3 –

128 3.3720e−4 1.5217 4.1602e−4 1.3725 7.4786e−4 1.1909

256 1.1435e−4 1.5601 1.5850e−4 1.3922 3.2565e−4 1.1994

512 3.8197e−5 1.5820 6.1226e−5 1.3722 1.4156e−4 1.2019
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Table 4 The time convergence results for Example 4.1 at T = 1 with k = 1, M = N , and r = 2(2−α)
α

α = 0.4 α = 0.6 α = 0.8
M = N Error Order Error Order Error Order

L2-norm 64 1.2935e−3 – 1.3101e−3 – 1.9171e−3 –

128 4.9617e−4 1.3823 5.5501e−4 1.2391 9.0946e−4 1.0758

256 1.7986e−4 1.4639 2.2503e−4 1.3024 4.1520e−4 1.1312

512 6.2910e−5 1.5155 8.8735e−5 1.3426 1.8547e−4 1.1626

L∞-norm 64 2.6759e−3 – 2.7129e−3 – 3.7454e−3 –

128 9.6381e−4 1.4732 1.0638e−3 1.3507 1.6520e−3 1.1809

256 3.3411e−4 1.5284 4.0912e−4 1.3786 7.2244e−4 1.1933

512 1.1321e−4 1.5613 1.5580e−4 1.3929 3.1479e−4 1.1985

Table 5 The spatial convergence results for Example 4.1 at T = 1 with M = 500, r = 2−α
α , and k = 1

α = 0.4 α = 0.6 α = 0.8
N Error Order Error Order Error Order

L2-norm 4 1.6776e−1 – 1.6774e−1 – 1.6768e−1 –

8 3.7964e−2 2.1437 3.7956e−2 2.1438 3.7923e−2 2.1446

16 9.1764e−3 2.0487 9.1668e−3 2.0499 9.1312e−3 2.0542

32 2.2614e−3 2.0207 2.2516e−3 2.0255 2.2159e−3 2.0429

L∞-norm 4 2.2354e−1 – 2.2350e−1 – 2.2344e−1 –

8 5.3252e−2 2.0697 5.3251e−2 2.0694 5.3240e−2 2.0693

16 1.2972e−2 2.0374 1.2968e−2 2.0379 1.2952e−2 2.0395

32 3.2134e−3 2.0132 3.2086e−3 2.0149 3.1918e−3 2.0206
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