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Abstract
In this article, a trust region algorithm is proposed to solvemulti-objective optimization
problem. A sequence of points is generated using Geršgorin Circle theorem with a
modified secant equation. This sequence converges to a critical point of the problem.
At every iteration, a common positive definite matrix is considered to take care of all
the objective functions simultaneously and the radius of the trust region is obtained
in an explicit form. Global convergence of the method is established with numerical
support using a set of test problems.
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1 Introduction

A general unconstrained multi-objective optimization problem is stated as

(M O P) min
x∈Rn

F(x),

where m ≥ 2, F(x) = ( f1(x), f2(x) . . . , fm(x))T , f j : Rn → R, j = 1, 2, . . . , m. A
point x ∈ R

n that minimizes all the objective functions simultaneously is an ideal min-
imum point of (M O P). This type of solution exists in rare cases when all the objective
functions have the same local minimum point. In general, improvement in one objec-
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tive function at any point results in other objective functions, causing trade-off among
various objectives. Visualizing and resolving this trade-off is a key issue of (M O P).
Due to the conflicting nature of the objective functions, the concept of optimality
is replaced by the concept of Pareto optimality or efficiency. Scalarization methods
and heuristic methods are traditional approaches to solve (M O P). The scalarization
processes (see [6,16]) transform (M O P) to a single objective optimization problem
with the help of pre-determined parameters. So these methods are user dependent,
and often have difficulties in finding an approximation to the Pareto front. Heuristic
methods [5] provide approximate Pareto front but do not guarantee the convergence
property.

In recent years, many researchers have developed numerical approximation algo-
rithms for (M O P) to overcome these difficulties and proved convergence property
under different assumptions. The first few numerical approximation techniques for
(M O P) are steepest descent method by Fliege and Svaiter [9], Newton’s method by
Fliege et al. [8]. The first one uses the linear approximation and the latter one uses
the quadratic approximation of all objective functions. Newton’s method requires the
convexity assumption of each objective function. To avoid the convexity criterion, Qu
et al. [17] proposed an extension of Quasi-Newton method for multi-objective opti-
mization and Ansary and Panda ( [1–3]) proposed a modified Quasi-Newton method
for vector optimization.

Each of these algorithms is based on the line search techniques. Line search tech-
niques and trust region techniques generate steps with the help of a subproblem
in which the quadratic approximations of the objective functions are considered in
different ways. Line search techniques generate a search direction by solving the sub-
problem, and then search for a suitable step length along this direction. In the trust
region techniques, a region around the current iterate is defined within which one may
trust the approximations as the sufficient depiction of the objective functions. This
region is called the trust region. Then the step is chosen to be the approximate mini-
mizer in this region. If a step is not acceptable, the size of the region is reduced and a
new step is computed by solving the subproblem within the reduced region.

Recently, the classical trust region method for single objective optimization prob-
lems is extended to the multi-objective case by Qu, Goh, and Liang [18], in which a
sequence {xk} is generated in Rn , where xk+1 = xk + dk, dk ∈ R

n with ||dk || ≤ Δk ,
Δk is the radius of trust region, and {xk} converges to a critical point of (M O P). In
this iterative process, the initial trust region radius is independent of Hessian of the
objective functions. At every xk , m number of positive definite matrices are computed
corresponding to m objective functions using the BFGS update formula. As a result,
there is a chance of an increase in the computational difficulty in the case of a very
large number of objective functions. In this article, the following improvements are
made to address these issues.

A common positive definite matrix is constructed at every xk in place m positive
definite matrices in the light of the concept of the author’s previous work [1] in a
different scenario. The BFGS update formula is modified accordingly and Geršgorin
Circle theorem is used to ensure the positive definiteness of the commonmatrix, which
is a new concept. The trust region radius at xk is derived in explicit form. This does
not depend on the trust region radius of the previous step directly.
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This article is organized as follows: Some preliminaries on (M O P) are discussed in
the next section. Themethodology is developed and an algorithm is proposed in Sect. 3.
In Sect. 4, global convergence of the algorithm is established. Numerical illustrations
of the algorithm is provided in Sects. 5 and 6 has some concluding remarks. The
differences and advantages of thismethodology over the existingmethod are discussed
towards the end of this section.

2 Preliminaries

In this section, some notations and preliminaries which will be used in the rest of the
article are introduced. Denote R and R+ as the set of real numbers and the set of
non-negative real numbers respectively. For p, q ∈ R

m, the vector inequalities are
considered as:

p = q ⇔ pi = qi ∀i ∈ Λm,

p ≤ q ⇔ pi ≤ qi ∀ i ∈ Λm, p �= q,

p < q ⇔ pi < qi ∀i ∈ Λm .

Denote the non-negative orthant and the positive orthant of Rm as

R
m++ := {p ∈ R

m | p > 0} and R
m+ := {p ∈ R

m | p ≥ 0},

respectively and the index set as Λm := {1, 2, . . . , m}. For x ∈ R
n , ||x || is the

Euclidean norm of x and ||A|| = max
x∈Rn

||Ax ||
||x || , x �= 0 is the norm of the matrix A

of order m × n. Throughout the article, assume that F ∈ C2(Rn,Rm), that is, F is
twice continuously differentiable onRn . The symbols ∇ f j (x) ∈ R

m , J F(x) ∈ R
m×n

and ∇2 f j (x) ∈ R
n×n are used to denote the gradient of f j , the Jacobian of F and

the Hessian of f j respectively at x . Associated with (M O P), some definitions and
theorems that are used in this article are provided below.

Definition 1 A vector d ∈ R
n is said to be a descent direction of F at x if for any

j ∈ Λm, f
′
j (x; d) < 0, where f

′
j (x; d) is the directional derivative of f j in the

direction d, defined as f
′
j (x; d) = limh→0

f j (x+hd)− f j (x)

h

Since F ∈ C2(Rn,Rm), so it follows from the above definition that d is a descent
direction of F at x if ∇ f j (x)T d < 0 ∀ j .

Definition 2 (Ehrgott [6]) A point x∗ is called (weak)Pareto optimal solution of
(M O P) if there does exist any other x such that F(x) ≤ F(x∗) and F(x) �=
F(x∗)(F(x) < F(x∗)).

If E is the set of all Pareto optimal solutions then F(E) is said to be the Pareto front of
(M O P). Most of the numerical algorithms search for a local solution. The following
definition deals with the local (weak)Pareto optimal.
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Definition 3 (Fleige et al. [8]) A point x∗ is said to be a local (weak)Pareto optimal
solution of (M O P) if there is a neighborhood N of x∗ such that there does not exist
any other point x ∈ N satisfying F(x) ≤ F(x∗) and F(x) �= F(x∗)(F(x) < F(x∗)).

A necessary condition for x to be a local weak Pareto optimal solution of (M O P) is
Range(J F(x)) ∩ (−R

m++) = φ. The following definition is motivated from this fact.

Definition 4 (Fleige et al. [8,9]) A point x∗ is said to be a critical point of F if
Range(J F(x)) ∩ (−R

m++) = φ

From the above definition, it is clear that if x∗ is not a critical point of F then there exists
a direction d ∈ R

n such that J F(x∗)d ∈ (−R
m++). In other words, ∇ f j (x∗)T d < 0

for every j ∈ Λm ensures the existence of a descent direction at x∗. If x∗ is critical
point of F then ∀ d ∈ R

n , there exists at least one j ∈ Λm such that ∇ f j (x∗)T d ≥ 0.
Note that criticality does not imply Pareto optimality (see [8]). There is a relation
between criticality and local (weak) Pareto optimality, which is presented in the fol-
lowing theorem.

Theorem 1 (Fleige et al. [8]) Let F ∈ C1(Q,Rm), where Q ⊆ R
n

1. If x∗ is a locally weak Pareto optimal, then x∗ is a critical point for F.
2. If Q is convex, F is R

m- convex and x∗ ∈ Q is critical for F, then x∗ is weak
Pareto optimal.

3. If Q is convex, F ∈ C2(Q,Rm), ∇2 f j (x) are positive definite for all j ∈ Λm and
for all x ∈ Q, and if x∗ ∈ Q is critical for F, then x is Pareto optimal.

Theorem 2 (Gordan’s Theorem of alternative) Let A be an m ×n matrix. Then exactly
one of the following two systems has a solution:

1. Ax < 0 for some x ∈ R
n

2. AT y = 0, y ≥ 0 for some non zero y.

3 Methodology

In this section, a methodology is developed to generate an iterative sequence of the
form xk+1 = xk + dk , which will converge to a critical point. The direction vector dk

is determined through a subproblem, associated with a region of trust.

3.1 Determination of a trial step

To compute a trust region trial step d, the following subproblem is considered at every
iteration.

min
d

max
j∈Λm

∇ f j (x)T d + 1
2dT B(x)d

subject to ||d|| ≤ Δ, (1)
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where g j (x) = ∇ f j (x), B(x) is assumed to be a symmetric positive definite matrix
and Δ > 0 is the trust region radius. This subproblem is equivalent to

PT R(x,Δ) : min
d,t

t + 1
2dT B(x)d

subject to g j (x)T d ≤ t, j ∈ Λm

||d|| ≤ Δ,

Let (t(x,Δ); dT R(x,Δ)) be the optimal solution of PT R(x,Δ) with optimal value
θ(x,Δ),

θ(x,Δ) = min
t,d

{t + 1

2
dT B(x)d | g j (x)T d ≤ t, ||d|| ≤ Δ}

= min||d||≤Δ
max
j∈Λm

g j (x)T d + 1

2
dT B(x)d

Since B(x) is a positive definite matrix, so PT R(x,Δ) is a convex programming
problem with a unique solution. This implies that there exist Lagrange multipliers
λ ∈ R

m+, α ∈ R+ satisfying Karush-Kuhn-Tucker(KKT) optimality conditions. The
Lagrange function of this problem is given by

L(t, d; λ, α) = t + 1

2
dT B(x)d +

∑

j∈Λm

λ j (g j (x)T d − t) + α(dT d − Δ2)

The KKT optimality conditions for PT R(x,Δ) are

∑

j∈Λm

λ j g j (x) + B(x)d + 2αd = 0, (2)

∑

j∈Λm

λ j = 1, (3)

λ j ≥ 0, g j (x)T d ≤ t, (4)

λ j (g j (x)T d − t) = 0 ∀ j ∈ Λm, (5)

α ≥ 0, dT d ≤ Δ2, α(dT d − Δ2) = 0. (6)

For the sake of simplicity the following notations are used for developing theoretical
results.

t := t(x,Δ), d := dT R(x,Δ), θ := θ(x,Δ)

Next two lemmas provide some properties of PT R(x,Δ).

Lemma 1 Suppose (t, d) be a solution of PT R(x,Δ). If d = 0, then x is a critical
point of (M O P).
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Proof Let d = 0. Then from (2) and (3) we have,

∑

j∈Λm

λ j g j (x) = 0,
∑

j∈Λm

λ j = 1

Now consider a matrix A of order m ×n, whose row vectors are g j (x), j ∈ Λm . Then
from the above relation, one can say that there exists λ ∈ R

m with λ ≥ 0 such that
AT λ = 0 holds. Hence by Gordan’s theorem of alternative, Ad < 0 has no solution
d. This implies that for all d ∈ R

n , g j (x)T d ≥ 0 holds. Therefore x∗ is a critical point
of (M O P). ��
Lemma 2 Suppose (t, d) is a solution of PT R(x,Δ) and there exists a > 0 such that
zT Bz ≥ a||z||2 holds for every z ∈ R

n . Then t ≤ −(a + 2α)||d||2, where α is a
Lagrange multiplier. If d �= 0, then d is a descent direction of F.

Proof Since (t, d) is a solution of PT R(x,Δ), the KKT optimality conditions (2)-(6)
hold at (t, d). Taking the sum of (5) over j and using (3),

∑

j∈Λm

λ j g j (x)T d − t = 0.

Operating both sides of (2) with d and then using t = ∑
j∈Λm

λ j g j (x)T d,

we have dT Bd + 2αdT d + t = 0.
Since zT Bz ≥ a||z||2 ∀z, so t = −dT Bd − 2αdT d ≤ −(a + 2α)||d||2. In this
expression if d �= 0 then t < 0. Hence from (4), g j (x)T d < 0 ∀ j , which ensures that
d is a descent direction. ��

3.2 Adaptive BFGS Update using Geršgorin Circle Theorem

Here, a sequence of positive definite matrices {B(xk)} is generated with an initial
symmetric positive definite matrix B(x0) starting at the initial point x0. At the kth

iteration, denote

xk := (xk
1 , xk

2 , . . . , xk
n )T , dk := dT R(xk,Δk)

Bk := B(xk), gk
j := g j (xk), f k

j := f j (xk)

Consider the following quadratic form in x .

f j
k+1 + ∇ f k+1

j
T

d + 1

2
dT Bk+1d, j ∈ Λm

From (3) we have
∑

j∈Λm

λ j = 1. Consider the summation over j in the above form.

Denote
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mk+1(x) �
∑

j∈Λm

λ j f j
k+1 + (x − xk+1)T g j

k+1 + 1

2
(x − xk+1)T Bk+1(x − xk+1)

Instead of f j , j ∈ Λm , consider the function f j
k = f j (x) + 1

2 (x − xk)T Ak(x − xk)

for all j at the kth iteration, where Ak is some symmetric positive definite matrix.
Taking the summation over j in f j

k and denote

mk(x) �
∑

j∈Λm

λ j ( f j (x) + 1

2
(x − xk)T Ak(x − xk)) (using(3))

As in general BFGS update concept, Bk+1 is a good approximation when∇mk(xk) =
∇mk+1(xk) and ∇mk(xk+1) = ∇mk+1(xk+1) These two relations can be simplified
to

Bk+1(xk+1 − xk) =
∑

j∈Λm

λ j (∇ f k+1
j − ∇ f k

j )

and

∑

j∈Λm

λ j∇ f k+1
j =

∑

j∈Λm

λ j∇ f k+1
j + Ak(xk+1 − xk)

respectively. Hence

Bk+1dk = vk + Akdk = γ k (say), (7)

where dk = xk+1 − xk , vk = ∑
j∈Λm

λ j (∇ f k+1
j − ∇ f k

j ). This is a new modified secant

equation for (M O P). Suppose dk T
γ k > 0. Then using new modified secant equation

(7) and following the steps of BFGS update formula for single objective optimization
problem, a BFGS-type update formula is obtained as follows:

Bk+1 = Bk − Bkdkdk T
Bk

dk T Bkdk
+ γ kγ k T

dk T
γ k

At the kth iteration, the functions f k
j for all j ∈ Λm are used with the following nice

properties.

(i) At xk , for all j ∈ Λm , f j
k(xk) = f j (xk) and ∇ f j

k(xk) = ∇ f j (xk). Hence
∇ f j (xk)T dk < 0 for all j ∈ Λm implies ∇ f j

k(xk)T dk < 0. That is, if dk is a
descent direction of f j for all j , then dk is also a descent direction of f j

k for all
j ∈ Λm at xk .

(ii) If f j ∈ C2(Rn,Rm) and Ak is a symmetric positive definite matrix then for any
z ∈ R

n with z �= 0 we have zT (∇2 f j
k(xk) − ∇2 f j (xk))z = zT Ak z > 0 for all j .

Thus, at the iterative point xk , f j
k has better curvature than that of f j for every j .
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Next, it is necessary to select a suitable matrix Ak so that the new matrix Bk+1 is
positive definite. Using the Taylor series expansion for each f j about xk+1

f j (x) � f k+1
j + (x − xk+1)T gk+1

j + 1

2
(x − xk+1)T ∇2 f j

k+1(x − xk+1).

At xk ,

f j (xk) = f k
j � f k+1

j + (xk − xk+1)T gk+1
j + 1

2
(xk − xk+1)T ∇2 f j

k+1(xk − xk+1).

That is, dk T ∇2 f j
k+1dk � 2( f k

j − f k+1
j )+2dk T

gk+1
j , where dk = xk+1 − xk . Hence

using (3), we get

dk T ∑

j∈Λm

λk
j∇2 f j

k+1dk � 2
∑

j∈Λm

λk
j ( f k

j − f k+1
j ) + 2

∑

j∈Λm

λk
j d

k T
gk+1

j (8)

Operating both sides of (7) by dk T
,

dk T
Bk+1dk = dk T

γ k = dk T ∑

j∈Λm

λk
j (g

k+1
j − gk

j ) + dk T
Akdk . (9)

Both (8) and (9) indicate that a reasonable choice for Ak should satisfy the following
relation.

dk T
Akdk = 2

∑

j∈Λm

λk
j ( f k

j − f k+1
j ) +

∑

j∈Λm

λk
j d

k T
(gk+1

j + gk
j ) = uk (say).

At the kth iteration, if xk is not the critical point then xk can be updated to xk+1.

So dk = xk+1 − xk �= 0. In that case, one possible solution of dk T
Akdk = uk is

Ak = uk

dk T dk
I , where I is the identity matrix.

The positive definite condition dk T
γ k > 0 holds if dk T

vk > 0 and Ak is positive

definite. Ak = uk

dk T dk
I is positive definite if uk > 0, which is not always true. For

uk ≤ 0, amatrix is constructed usingGeršgorin Circle theorem so that Bk+1 is positive
definite.

Theorem 3 (Geršgorin Circle theorem [19]) Let G be a complex matrix of order n,

with entries ai j . For i ∈ {1, 2, 3, . . . , n}, let Ri = ∑
j �=i |ai j | and D(ai j , Ri ) be the

closed disc centered at aii with radius Ri . Such a disc is known as Geršgorin disc.
Every eigenvalue λ of G lies within at least one of the Geršgorin disc D(ai j , Ri ), that
is, |λ − aii | ≤ Ri for some i .
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Lemma 3 At the kth iteration consider the matrix Gk = (ai j )n×n, where δ > 0 a
small number,

ai j =

⎧
⎪⎪⎨

⎪⎪⎩

uk

||dk ||2 , if i �= j and |i − j | = 1

2 |uk |
||dk ||2 + δ, if i = j

0, otherwise.

(10)

Then Gk is positive definite.

Proof Let Ri=∑
j �=i |ai j |,∀i, j = 1, 2, . . . , n. From the construction of Gk , we have,

aii − Ri > 0. Therefore by Geršgorin Circle theorem, the eigenvalues (say λ) of the
matrix Gk satisfies the condition |λ − aii | ≤ Ri , which implies −(λ − aii ) ≤ Ri .
This implies that λ ≥ aii − Ri > 0. Therefore all the eigenvalues of Gk are positive.
Hence Gk is positive definite. ��
Using this new positive definitematrixGk , the updatedmatrix Bk+1 can be determined
as follows.

Bk+1 =
⎧
⎨

⎩
Bk − Bk dk dk T

Bk

dk T Bk dk
+ γ kγ k T

dk T
γ k

, if dk T
vk > 0 and uk > 0

(1 − ck)Gk + ck Bk, otherwise,
(11)

where {ck} is a real positive monotonically convergent sequence such that {ck} → 1
and 0 < c0 < 1.

3.3 Determination of trust region radius

Consider the sub-problem PT R(x,Δ). If PT R(x,Δ) is free from the restriction on
trust region radius, that is, if ||d|| < Δ is replaced by d ∈ R

n , then condition (2)

becomes
∑

j∈Λm

λ j g j (x) + B(x)d = 0. So at the kth iteration, dk = −Bk−1 ∑
j∈Λm

λk
j g

k
j .

In that case,

||dk || ≤ ||Bk−1||||
∑

j∈Λm

λk
j g

k
j ||

≤ ||Bk−1||(max
j∈Λm

||gk
j ||)

∑

j∈Λm

λk
j

= ||Bk−1||(max
j∈Λm

||gk
j ||)

This relation provides information about an upper bound of ||dk ||. Sowemay consider

Δk = ||Bk−1||(max
j∈Λm

||gk
j ||).

The trust region trial step dk is a solution to the subproblem PT R(x,Δ). After the
computation ofdk , the improvement on the objective function can bemeasured through
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its actual reduction and predicted reduction from the subproblem. At the kth iteration,
the actual reduction is given by

Ared(dk) = max
j∈Λm

{ f j (xk) − f j (xk + dk)}.

Let φk(dk) = max
j∈Λm

gk
j
T

dk + 1
2dk T

Bkdk . Then the predicted reduction, that is, the

reduction according to our sub-problem PT R(x,Δ) is

Pred(dk) = φk(0) − φk(dk) = −(max
j∈Λm

gk
j
T

dk + 1

2
dk T

Bkdk).

Let ρk(dk) = Ared(dk)

Pred(dk)
. If ρk(dk) is close to 1, there is a good agreement between

Aredk and Predk over this step. In this situation, it is safe to expand the trust region
for the next iteration. If ρk(dk) is positive but significantly smaller than 1, then the
trust region remains unaltered. But if it is close to zero or negative then the trust region
can be shrunk by reducing Δk at the next iteration. Using this logic, the trust region
radius Δk can be updated, which is explained in the algorithm of the next subsection.

Lemma 4 Suppose F ∈ C2(Rn,Rm), for all j ∈ Λm, g j (x) and B(x) are bounded,
then at the kthiteration, |Ared(dk) − Pred(dk)| ≤ δ1||dk || + δ2||dk ||2 for some
δ1, δ2 > 0.

Proof

Ared(dk) − Pred(dk) = max
j∈Λm

( f j (xk) − f j (xk + dk)) + max
j∈Λm

gk
j
T

dk

+1

2
dk T

Bkdk

⇒ |Ared(dk) − Pred(dk)| = |max
j∈Λm

( f j (xk) − f j (xk + dk))| + |max
j∈Λm

(gk
j
T

dk)|

+1

2
||Bk ||||dk ||2

≤ max
j∈Λm

|( f j (xk) − f j (xk + dk))| + max
j∈Λm

|(gk
j
T

dk)|

+1

2
||Bk ||||dk ||2 (12)

Using Taylor series expansion of first order, we have,

f j (xk + dk) = f j (xk) + g j (ξ)T dk,

where ξ is an interior point in the line segment joining xk and xk + dk . Hence from
(12), we get,
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|Ared(dk) − Pred(dk)| ≤ max
j∈Λm

|g j (ξ)T dk | + max
j∈Λm

|gk
j
T

dk | + 1

2
||Bk ||||dk ||2

≤ (max
j∈Λm

||g j (ξ)|| + max
j∈Λm

||gk
j ||)||dk || + 1

2
||Bk ||||dk ||2

Hence the lemma follows, since g j (x) and B(x) are bounded for all j ∈ Λm . ��
Define

v(x,Δ) = sup
||d||≤Δ

{−max
j∈Im

g j (x)T d} (13)

Then the following lemma holds.

Lemma 5 1. v(x, ·) is non negative.
2. x is a critical point of (M O P) if and only if v(x,Δ) = 0 for some Δ > 0.

Proof 1. From the definition of v(x,Δ), the result is obvious.
2. Let v(x,Δ) = sup

||d||≤Δ

max
j∈Λm

g j (x)T d = 0.

Then for all d satisfying ||d|| ≤ Δ, max
j∈Λm

g j (x)T d = 0. This implies that there

exists a j ∈ Λm such that g j (x)T d = 0. Hence x is a critical point.
Conversely let x is a critical point of (M O P). Then by the definition of critical
point, there exists a j ∈ Λm such that g j (x)T d ≥ 0 for all d. This implies that
there exists some Δ such that sup

||d||≤Δ

{−max
j∈Im

g j (x)T d} ≤ 0. That is, v(x,Δ) ≤ 0.

But from the first part, we have, v(x,Δ) ≥ 0. Hence the result follows.
��

Lemma 6 Suppose there is a constant M > 0 such that ||B(x)|| ≤ M. Then at the kth

iteration Pred(dk) ≥ 1
2

{v(xk ,Δk )}2
MΔk2

.

Proof From the definition of predicted reduction, we have at the kth iteration,

Pred(dk) = −max
j∈Λm

gk
j
T

dk − 1

2
dk T

Bkdk

≥ −max
j∈Λm

gk
j
T

dk − M ||dk ||2
2

Let d̄k be the maximum in (13). Then for any η ∈ [0, 1], we have that

Pred(dk) ≥ max
η∈[0,1][−max

j∈Λm
g j (xk)T (ηd̄k) − M ||ηd̄k ||2

2
]

≥ max
η∈[0,1][η(−max

j∈Λm
g j (xk)T d̄k) − η2

MΔk2

2
]
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≥ max
η∈[0,1][ηv(xk,Δk) − η2

2
MΔk2]

≥ 1

2

{v(xk,Δk)}2
MΔk2

Hence the lemma. ��

3.4 Algorithm

The concepts developed in Subsections 3.1 to 3.3 are summarized in the following
steps.
Step 1. Let x0 ∈ R

n , 0 < c0 < 1, error of tolerance ε > 0. Choose the parameters
0 < α1 ≤ α2 < 1, 0 < β1 < 1 < β2, a positive definite matrix. Set k = 0. Compute
Δk

Step 2. Solve the sub-problem PT R(xk,Δk). Find the value of dk , tk .
Step 3. If ||dk || < ε then stop. Otherwise compute

ρk(d
k)) = Ared(dk)

Pred(dk)
=

max
j∈Λm

{
f j (xk) − f j (xk + dk

}

φk(0) − φk(dk)

Step 4. Ifρk(dk) < α1, setΔk = β1Δ
k and go to Step 2.Otherwise set xk+1 = xk +dk .

Step 5. Generate a positive definite matrix Bk+1 using the formula (11). Compute Δk

as

Δk+1 =

⎧
⎪⎨

⎪⎩

β1||Bk+1−1||max
j∈Λm

||g j
k+1||, if α1 ≤ ρk(dk) ≤ α2

β2||Bk+1−1||max
j∈Λm

||g j
k+1||, otherwise.

(14)

Set k = k + 1, compute ck+1, Go to Step 2.

4 Convergence analysis

The following theorem guarantees that Algorithm 3.4 does not cycle infinitely in the
inner cycle.

Theorem 4 Suppose that {Bk} is bounded and the sequence {xk} is generated by
Algorithm 3.4. Then Algorithm 3.4 does not cycle infinitely in the inner cycle Step
2-Step 3-Step 4-Step 2.

Proof Suppose at the kth iteration, the inner cycle of the algorithm goes infinitely.
Then the algorithm will not terminate at xk , that is, v(xk,Δk) > 0. Let nk be the
number of iterative steps of the inner iteration. Then ρk(dk

nk
) < α1. In this situation,

Δk
nk
is updated byStep 5 of the algorithm. Since at every step in the inner cycle, the trust
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region is shrinking, soΔk
nk

→ 0 as nk → ∞.Hence ||dk
nk

|| ≤ Δk
nk

→ 0 as nk → ∞.
From Lemma 4 and Lemma 6,

|ρk(d
k
nk

) − 1)| = | Aredk − Predk

Predk
| ≤ δ1||dk

nk
|| + δ2||dk

nk
||2

1
2

{v(xk ,Δk )}2
MΔk2

As nk → ∞, |ρk(dk
nk

) − 1)| → 0. Hence ρk(dk
nk

) → 1. This implies that there exists
α1 such that for sufficiently large nk, ρk(dk

nk
) ≥ α1. This contradicts the relation

ρk(dk
nk

) < α1. Hence the lemma follows. ��
Theorem 5 Suppose that Ω0 = {x ∈ R

n|F(x) ≤ F(x0)} is bounded, x0 ∈ R
n is

the initial point, and F ∈ C1(Rn,Rm). {xk} is generated by Algorithm 3.4 and the
sequence {Bk} is bounded. Then every accumulation point of {xk} is a critical point
of (M O P).

Proof Let dk be the accepted step at the kth iteration. Then from Algorithm 3.4, we
have ρk(dk) ≥ α1. Denote Γ = {k | ρk(dk) ≥ α1}.
Since Ω0 is a bounded set, {xk} has at least one accumulation point. Without loss of
any generality, suppose that the subsequence {xk}k∈Γ converges to x∗.

Since ρk(dk) ≥ α1, so

α1Pred(dk) ≤ Ared(dk) = max
j∈Λm

{ f j (xk) − f j (xk + dk)}.

Hence

∑

k∈Γ

α1Pred(dk) ≤
∑

k∈Γ

max
j∈Λm

{ f j (xk) − f j (xk+1)}

=
∑

k∈Γ

( f j0(xk) − f j0(xk+1)) (for some j0 ∈ Λm)

= f j0(x0) − f j0(x1)) + f j0(x1) − f j0(x2) + . . . + f j (xk)

− f j (xk+1)} + . . .

≤ max
j∈Λm

[ f j (x0) − f j (x∗)] < +∞ (15)

From Lemma 6, we have for all Δ > Δk , k ∈ Γ ,

∑

k∈Γ

1

2

{v(xk,Δ)}2
MΔ2 ≤

∑

k∈Γ

Pred(dk)

Using the above inequality along with (15) we get,

∑

k∈Γ

α1

2

{v(xk,Δ)}2
MΔ2 < +∞ (16)
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Lemma 5 indicates that it is enough if we show that x∗ is a solution of v(x,Δ) for
some Δ > 0. If possible let v(x∗,Δ) > 0. This implies, there exists μ, ε0 > 0 such
that for all 0 < ε ≤ ε0 and for all ||xk − x∗||k∈Γ ≤ ε, v(xk,Δ) ≥ μ > 0.
Therefore

∑

k∈Γ

{v(xk,Δ)}2
MΔ2 ≥

∑

k∈{k|||xk−x∗||k∈Γ ≤ε}

μ2

MΔ2 = +∞

This contradicts (16). Therefore v(x∗,Δ) = 0, and x∗ is a critical point. ��

5 Numerical experiment and result analysis

In this section, MATLAB implementation of Algorithm 3.4 is executed on many
test problems with bound constraints lb ≤ x ≤ ub, where lb, ub ∈ R

n . Details
of these test problems are summarized in Table 1. In that table, m and n denote
the number of objective functions and number of variables respectively. The results
obtained by Algorithm 3.4(in short term ATRMO) are compared with the Algorithm
1(in short TRMO)of [18]. Solution of (M O P) is a well-distributed set of Pareto
optimal solutions. Spreading out an approximation to a Pareto set is a difficult problem.
There is no single spreading technique that can work in a satisfactory manner for
(M O P). In this article, a set of initial points is selected with the strategy rand to
generate an approximated Pareto front. In this strategy, 100 random initial point are
selected, which are uniformly distributed in lb and ub. Every test problem of Table 1
is executed 10 times with these random initial points.

The number of iterations, number of function counts, and number of gradient counts
are recorded to compare ATRMO with TRMO, which are summarized in Table 2.
Comparison between the performance of the algorithms is done using these factors.

Performance profiles Performance profiles are defined by a cumulative function
ρ̄s(τ ) representing a performance ratio with respect to a given metric, for a given set
of algorithms. Given a set of problems P and a set of algorithms S, let the metric ζp,s

be the performance of solver s on solving problem p. The performance ratio is then
defined as rp,s = ζp,s/min

s∈S
ζp,s . The cumulative function ρ̄s(τ ) (s ∈ S) is defined as

the percentage of problems whose performance ratio is less than or equal to τ , that is,

ρ̄s(τ ) = |{p ∈ P : rp,s ≤ τ }|
|P| .

In multi-objective optimization, the output is a set of non-dominated points providing
as an approximation of the full Pareto set. In this article, the following metrics are
considered to compare between ATRMO and TRMO: the Purity metric, two Spread
metrics.

Purity metric The purity metric is used tomeasure howmany non-dominated points
an algorithm is able to compute. The approximated Pareto front of problem p obtained
by algorithm s is denoted by Fp,s . By considering the union of all individual Pareto
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Table 1 Multi-objective test
problems with bound constraints

Problem Source m n Problem Source m n

BK1 [11] 2 2 Jin2 [13] 2 2

Deb41 [4] 2 2 Jin3 [13] 2 3

Deb513 [4] 2 2 Jin4 [13] 2 2

Deb521aa [4] 2 2 lovison1 [15] 2 2

Deb521b [4] 2 2 lovison2 [15] 2 2

DG01 [11] 2 1 lovison3 [15] 2 2

ex005 [12] 2 2 lovison4 [15] 2 2

LTDZ [14] 3 5 LRS1 [11] 2 10

Fonseca [10] 2 2 MHHM1 [11] 3 1

GE2 [7] 2 2 MHHM2 [11] 3 2

GE5 [7] 3 3 MLF1 [11] 2 1

IKK1 [11] 2 2 MLF2 [11] 2 2

IM1 [11] 2 2 SP1 [11] 2 2

TKLY1 [11] 2 2 MOP1 [11] 2 1

Far1 [11] 2 2 MOP3 [11] 2 2

FDS2 [8] 3 3 MOP5 [11] 3 2

FDS3 [8] 3 5 MOP6 [11] 2 2

KW2 [7] 2 2 MOP7 [11] 3 2

PNR1 [8] 2 2 SSFYY1 [11] 2 4

PNR2 [8] 2 2 SSFYY2 [11] 2 1

PNR3 [8] 2 2 VU1 [11] 2 2

PNR4 [8] 2 2 VU2 [11] 2 2

PNR5 [8] 2 2 ZDT1 [2] 2 2

SK1 [11] 2 1 ZDT2 [2] 2 2

SK2 [11] 2 4 ZDT3 [2] 2 2

VFM1 [11] 3 2 ZDT4 [2] 2 2

Jin1 [13] 2 2 ZDT6a [2] 2 2

approximation ∪
s∈S

Fp,s , where the dominated points are removed, an approximation

to the Pareto front Fp is achieved. The purity metric for algorithm s and problem p

is defined by the ratio r̃ p,s = |Fp,s∩Fp |
|Fp | . When computing the performance profiles for

the purity metric it is required to set rp,s = 1/r̃ p,s , since higher values of r̃ p,s indicates
that the algorithm gives a higher percentage of non-dominated points for problem p.

Spread metric In order to examine whether the points generated by algorithm s
for problem p are well distributed over the approximated Pareto front, two spread
metrics Γ and Δ are considered. The largest gap in the approximated Pareto front
is measured by the Γ metric, while the scaled deviation from the average gap in the
approximated Pareto front is measured by the Δ metric. In the following, how to
compute these metrics is described. Let the set of N points x1, x2, . . . , x N forms the
approximated Pareto front obtained by algorithm s for problem p. Furthermore, let x0

and x N+1 be the extreme points for objective j , computed over all the approximated
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Table 2 Computation details of
the test problems

ATRMO TRMO

Problem I t Fc Gc I t Fc Gc

BK1 2.38 6.22 3.37 4.50 6.49 5.49

Deb521b 2.25 3.34 3.24 2.06 4.18 3.05

Deb513 2.18 6.99 3.17 1.90 3.40 2.89

Deb521aa 2.78 3.68 3.77 2.76 6.13 3.75

Deb41 4.64 9.47 5.63 7.67 10.58 8.66

DG01 1.88 4.14 2.87 1.95 3.95 2.94

ex005 2.36 9.61 3.35 2.67 4.65 3.66

Fonseca 35.53 38.51 36.52 39.20 47.56 40.19

GE2 34.03 35.91 34.96 51.99 63.14 52.98

GE5 2.54 10.52 3.53 5.65 12.13 6.64

IKK1 2.22 4.06 3.20 6.58 10.05 7.57

IM1 2.67 4.62 3.66 2.44 3.94 3.43

Jin1 2.00 3.99 2.99 3.07 5.06 4.06

Jin2 1.89 3.10 2.88 1.89 3.36 2.88

Jin3 2.08 7.33 3.07 1.83 3.22 2.82

Jin4 1.95 3.56 2.94 1.84 3.16 2.83

lovison1 2.50 6.59 3.49 2.25 4.91 3.24

lovison2 2.45 3.91 3.44 2.38 3.98 3.37

lovison3 1.95 3.51 2.94 2.82 4.72 3.81

lovison4 2.78 4.37 3.77 4.01 5.70 5.00

LRS1 3.11 6.34 4.09 12.87 33.79 13.86

MHHM1 2.33 3.69 3.32 1.55 3.54 2.54

MHHM2 2.88 4.87 3.87 2.72 4.72 3.71

MLF1 0.68 2.67 1.67 1.07 3.06 2.06

MLF2 8.72 11.08 9.71 17.19 22.13 18.18

MOP1 1.25 3.43 2.24 51.00 53.04 51.99

MOP3 3.52 5.46 4.51 4.63 6.40 5.62

MOP5 12.56 19.69 13.51 24.43 31.59 25.42

MOP6 1.96 3.98 2.94 1.92 3.30 2.91

MOP7 9.02 13.29 10.01 28.15 37.81 29.14

VFM1 1.84 3.83 2.83 1.76 3.75 2.75

SP1 5.18 8.86 6.17 4.30 6.16 5.29

SSFYY1 3.20 10.0 3.88 16.82 37.99 17.81

SSFYY2 2.53 4.79 3.52 13.87 15.83 14.85

SK1 0.18 2.11 1.14 0.47 2.42 1.44

SK2 11.25 17.07 12.24 13.08 15.79 14.07
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Table 2 continued ATRMO TRMO

Problem I t Fc Gc I t Fc Gc

VU1 11.67 13.41 12.66 78.27 91.58 79.26

VU2 12.50 115.93 13.49 4.40 6.04 5.39

KW2 10.22 13.15 11.21 12.72 15.67 13.71

LTDZ 2.24 3.93 3.23 1.98 3.62 2.97

PNR1 4.10 9.82 5.09 4.83 7.26 5.82

PNR2 3.90 7.39 4.89 5.30 7.31 6.29

PNR3 3.80 9.09 4.79 4.95 6.88 5.94

PNR4 4.18 7.98 5.17 5.39 7.52 6.38

PNR5 4.17 7.92 5.16 5.60 7.36 6.59

TKLY1 5.28 9.59 6.27 9.16 13.72 10.15

FDS2 6.96 9.27 7.95 6.46 9.41 7.45

FDS3 14.03 20.16 15.02 11.48 17.29 12.47

FAR1 14.60 17.85 15.59 57.48 66.55 58.47

ZDT1 2.27 4.26 3.26 1.88 3.52 2.87

ZDT2 1.89 3.24 2.88 1.87 3.25 2.86

ZDT3 2.13 3.48 3.12 1.99 3.39 2.98

ZDT4 1.91 3.05 2.90 1.76 3.42 2.75

ZDT6a 6.53 9.54 7.52 8.29 11.23 9.28

Pareto fronts obtained by different algorithms. Suppose that those N points are sorted
by the j th objective function, that is, f j (xi ) ≤ f j (xi+1) (i = 1, 2, . . . , N ). Define
δi, j = | f j (xi+1) − f j (xi )|, and suppose that δ̃ j ( j ∈ Λm) be the average of the
distances δi, j . Then Γ > 0 and Δ > 0 spread metrics are defined as

Γp,s = max
j∈Λm

max
i∈{0,1,...N } δi, j

and

Δp,s = max
j∈Λm

(
δ0, j + δN , j + ∑N−1

i=1 |δi, j − δ̃ j

δ0, j + δN , j + (N − 1)δ̃ j
)

Implementation detailsMATLAB(2016a) code is developed for both the algorithms
ATRMO and TRMO. Implementation of the algorithms are described below:

• Initial points selection strategy rand is used for every test problem. An initial
matrix B0 = I , parameters c0 = 0.5, α1 = 0.2, α2 = 0.5, β1 = 0.5, β2 = 1.2 are
accepted and the sequence {ck}, where ck+1 = 1 − ci

k, i is the number iteration,
is considered.

• Subproblems of both the algorithms are solved usingMATLAB function ‘fmincon’
with -‘Algorithm’,‘interior-point’, -‘initial guess’,0n+1.
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• For both the algorithms, stopping criteria is used as ||dk || ≤ 10−5 or maximum
200 iterations.

• Every test problem is executed 10 times with random initial points and average is
considered for performance profile. Computational details of these average values
for both algorithms are presented in Table 2. In this table, ‘I t’ corresponds to the
number of iterations, ‘Fc’ corresponds to the number of function counts and ‘Gc’
corresponds to the number of gradient counts.

• The gradient is computed using forward difference formula, which needs n
additional function evaluations. Therefore the total function evaluations(Fe) for
100 initial points for a test problem of m objective functions are obtained as
Fe = m Fc + mnGc.

Explanation with one test problem Steps of Algorithm 3.4 are explained in one
numerical example. Consider the following bi-objective optimization problem in two
dimensions.

min
x∈Rn

{ f1(x), f2(x)},

where

f1(x) = 1

4
[(x1 − 1)4 + 2(x2 − 2)4], f2(x) = (x2 − x21 )

2 + (1 − x1)
2.

Here f2 is not a convex function.
Consider the initial point x0 = (0, 5)T , the initial matrix B0 = I2, parameters c0 =
0.5, α1 = 0.2, α2 = 0.5, β1 = 0.5, β2 = 1.2. Stopping condition is ||dk || <

10−5. f (x0) = (40.75, 26.00) and Δ0 = max{||g1(x0)||, ||g2(x0)||} = 54.0095.
Now clearly assumptions of Theorem 5 are satisfied at x0 = (0, 5)T . So the sub-
problem PT R(x0,Δ0) is solved using MATLAB (R2016a) function “fmincon” with
-‘Algorithm’, ‘interior-point’, -‘initial guess’,0n+1, and the solution is obtained as
t0 = −104.0006, d0 = (2.0001,−10.0000)T . Since ||d0|| > 10−5, so ρ0(d0) =
Ared(d0)

Pred(d0)
= −1.0770 is computed, which is less than α2. So according to Algorithm

3.4, the subproblem is solved again withΔ0 = 27.0048. After solving the subproblem
three times, ρ0(d0) = 0.3152 is obtained. So we proceed to Step 5. Hence the matrix
B1 is computed using (11).

B1 =
(

3.6891 −2.4898
−2.4898 2.6758

)

Since ρ0(d0) = 0.3152 < α2, so trust region radius is updated as

Δ1 = β1||B1−1||max{||g1(x1)||, ||g2(x1)||} = 30.7087.

Then the sub-problem PT R(x1,Δ1) is solved. Repeating the above process, the critical
point of this problem is obtained after 15th iteration and the solution is (1, 1)T .
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Fig. 1 Performance profile for I t

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

ATRMO
TRMO

5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 Performance profile for Fe

Comparison using performance profiles Comparison of ATRMO and TRMO
using performance profiles for the number of iterations(I t) and the number of func-
tion evaluations(Fe) are provided in Figs. 1 and 2. In rand, an average of 10 purity
metric values, obtained in 10 different runs is denoted by the average purity metric
value. Similarly, average Γ and Δ metric values are computed. The average purity
performance profile between ATRMO and TRMO is provided in Fig. 3. Figures 4 and
5 represent the average Γ and Δ performance profile respectively between ATRMO
and TRMO.

Result Analysis Figures 1-4 indicate that the proposed scheme ATRMO provides
better performance than TRMO in most test problems. Also one may observe from
Table 2 that ATRMO takes fewer iterations and function evaluations and gradient
evaluations than TRMO in the most number of cases.
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Fig. 3 Average purity performance profile between ATRMO and TRMO
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Fig. 4 Average Γ performance profile between ATRMO and TRMO

6 Conclusion

In this article, a new algorithm is proposed for (M O P) and the global convergence
of the proposed algorithm is proved. The differences and advantages of this method
over the previous existing method are summarized below.

(i) In the existing method [18], the positive definite matrix Bk
j is computed for every

objective function, whereas the proposed scheme computes a common positive
definite matrix Bk at every iteration for all objective functions. This provides a
new BFGS-type update formula.

(ii) Geršgorin Circle theorem is used to ensure the positive definiteness of the matrix
inBFGSupdate formula,which is a newconcept inmulti-objective programming.
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Fig. 5 Average Δ performance profile between ATRMO and TRMO

(iii) The trust region radius of this method is explicitly expressed at each iterative
point, which contains both first and second order information, whereas in [18]
the trust region radius is independent of first and second order information.

From the numerical illustrations, one may observe the numerical advantages from
performance profiles and computation table. Application of this concept in constrained
multi-objective optimization problems is the future scope of this article.
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