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Abstract

In this paper, we present a new predictor-corrector interior-point algorithm based
on a wide neighborhood for semidefinite optimization. The proposed algorithm is a
Mizuno-Todd-Ye predictor-corrector type and uses the Nesterov-Todd (NT) search
direction in predictor step and a commutative class of search directions involving
Helmberg-Kojima-Monteiro and NT directions in corrector step. We show that the
proposed algorithm at every both predictor and corrector steps reduces the duality
gap. The method enjoys the iteration complexity of O(,/nks L), which matching to
the currently best known iteration bound for wide neighborhood algorithms. Numerical
results also confirm the algorithm is reliable and promising.

Keywords Semidefinite optimization - Wide neighborhood - Predictor-corrector
methods - Interior-point methods - Polynomial complexity

Mathematics Subject Classification 90C22, 90C51

1 Introduction

Semidefinite optimization (SDO) is concerned with finding a symmetric positive
semidefinite matrix that optimizes a linear function subject to linear constraints. In
recent decades, due to the widespread applications of semidefinite optimization in
areas such as system and control theory [4], combinatorial optimization [1], and engi-
neering [23] have attracted the attention of many researchers. These applications led
researchers to look for efficient methods to solve SDO. It is obvious that due to the
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close connection between linear optimization (LO) and SDO, interior-point methods
(IPMs) have been successfully developed from LO to SDO. The first all on, Nesterov
and Nemirovski [17] introduced the theoretical base for solving SDO with IPMs by
studying LO over closed convex cones. Of course, Alizadeh [2] simultaneously gen-
eralized Ye’s projective potential reduction algorithm from LO to SDO and discussed
that many IPMs could be extended to SDO.

Predictor-corrector methods play an important role among primal-dual path-
following IPMs. A popular representative of such methods is the Mizuno-Todd-Ye
(MTY) algorithm [15] for solving LO that has O(,/nL) iteration-complexity bound
in the worst case, where L is the size of the problem. Later on, this algorithm was
extended to monotone linear complementarity problem (MLCP) by Ji et. al [9] and
proved which the resulting algorithm has O(4/nL)-iteration complexity bound and
superlinear convergence. It is proved by Ye and Anstreicher [27] that MTY algo-
rithm converges quadratically assuming that the LCP is nondegenerate. In [20], Potra
proposed a predictor-corrector method based on a N neighborhood of the central
path and proved that this algorithm has O (n L) iteration complexity bound under gen-
eral condition and quadratically converges when the LCP is nondegenerate. Then by
using a higher order predictor reduces the iteration complexity to O(4/nL) and proves
superlinear convergence even in the degenerate case. Zhang and Zhang [29] developed
the MTY predictor-corrector algorithm to convex quadratic optimization (CQO) and
obtained superlinear convergence result.

In [3], Ai and Zhang introduced a new wide neighborhood of the central path
for MLCP, and proposed an IPM for solving MLCP. Their algorithm has O(y/nL)-
iteration complexity coinciding with the same theoretical complexity as a small
neighborhood algorithm. Li and Terlaky [14] extended the Ai-Zhang directions to
the class of SDOs. Kheirfam [12] proposed a predictor-corrector infeasible IPM for
SDO based on the wide neighborhood. Feng and Fang [6] extended the Ai-Zhang
predictor-corrector path-following IPM introduced in [3] to the class of SDO and
proved that the algorithm has O(y/nL) iteration complexity bound. In accordance
with good performance the neighborhood introduced in [3] in the proof of polynomial
complexity, many researchers have been interested to extend of this neighborhood and
study algorithms in other optimization problems and obtained good results in recent
years [10,11,19,26].

Although the development of algorithms with the same iteration complexity as the
best known iteration bound and with a different structure and analysis from existing
algorithms is important, but their computational efficiency is a very important issue
now. The paper is motivated by this idea. We propose a new predictor-corrector interior-
point algorithm for SDO based on the wide neighborhood which is an extension
of the presented technique in [21] from LO to SDO. We show that the algorithm
has O(/nk L) iteration complexity bound which matches the best known iteration
bound for SDO. The proposed algorithm is different from the other ones because it
utilizes a new corrector step. Especially, there are some major differences between our
algorithm and the proposed algorithm in [6]. The first is the generated iterate by the
predictor step; the second is the neighborhood as well as the search directions in the
corrector step which is based on the iterate and the search directions obtained at the
predictor stage; the third is the update rule of the new iterate. Moreover, we provide
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some numerical results, which indicates our new algorithm may also perform well in
practice.

The organization of the paper is as follows. In Sect. 2, we review the notation of
the central path and its associated neighborhood. In Sect. 3, we introduce the search
directions and then present a theoretical framework of our algorithm. Section 4 is
devoted to the analysis of the algorithm. Section 5 deals with some numerical results.
Section 6 provides some concluding remarks.

2 SDO problem, the central path and its wide neighborhood

In this section, we first recall the pair of SDO problems. After that, we describe the
central path and its corresponding wide neighborhood the symmetrization scheme. We
finally state the corresponding wide neighborhood of the central path and its scaled
system.

Consider the primal SDO problem and its associated dual in the following standard
form:

min {Tr(CX) : Tr(A;X)=b;, i=1,...,m, X =0}, (P)
m
max{bTy: ZyiAi~|—S=C, S > 0}, (D)
i=1
where C € §",b € R" and A; € §"(i = 1, ..., m) are linearly independent. Here

R™ and 8" denote, respectively, the n-dimensional Euclidean space and the space of
symmetric n x n matrices. Let

m
FO={X,y,8): Tr(AiX) =b;, Y _yiAi+S=C, X,$>0}

i=1

denotes the relative interior set of the problem pair (P) and (D). By the assumption that
F0 is nonempty, both problems (P) and (D) are solvable and the optimal conditions
for them can be written as follows [5]:

Tr(A; X) = b;, X>0,i=1,....,m
m

D viAi+S=C, §>0, ()
i=1

XS =0,

where the last equality is said to be the complementarity condition. The key idea of
primal-dual path-following IPMs is to replace the complementarity condition XS = 0
by the perturbed equation XS = tul with u > 0 and t € (0, 1), where I is the
identity matrix. Under this assumption, we have the following perturbed system
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Tr(A; X) =bi;, X>0,i=1,....,m

m
D viAi+S=C, §>0, )
i=1

XS =tul.

It has been proven that system (2) has a unique solution (X (), y(u), S(n)) for every
u > 0, assuming that Fo % () (see, e.g., [13]). The set of all such solutions form the
central path, which converges to the optimal solution of the problem, when u |, 0 [7].
As can be seen from the system (2) that its left-hand side maps §" x R™ x S" to
R™" x R™ x 8", where R"*" denotes the set of all n x n matrices with real entries.
It follows that system (2) is not a square system when X and S are restricted to S”.
Assuming P € R"*" as a non-singular matrix and using the symmetrization operator
Hp : R™" . Sn

1
Hp(M) = E(PMP_l +@PMPHT), MeRrR™",

proposed by Zhang [28], we replace the parameterized equation XS = tul by
Hp(XS) = tul, where the matrix P belongs to the specific class

C(X,S):={PeS", :PXSP ' eS"},

where X, S € &', . The most common choices for the scaling matrix P are P =

S %, P =X"%and P = W? which respectively lead to the H.K.M. search directions
[8,13] and the NT search direction [18], where

W=X"2(X2SX1)IX 7 = §1(§2XS7) 287 3)
Thus, system (2) can be rewritten in equivalent form as follows:
Tr(A; X)=b;, X>=0,i=1,...,m
iYiAi—i-S:C, S >0, 4)
i?-llp(XS) =tul.
For the scgling matrix f eC(X,S),we Ecale the matrices X ang S and the other data as
follows: X = PXP,S=P 'SP~ A, = P~ 'A;P "and C = P~'CP~'. In this

way, we have XS =SXand H p(XS) = Hj (% §) = XS.Inthe scale-aforementioned,
system (4) becomes the following system

Te(A; X)=b;, i=1,....m
m
> viAi+S=C, ()
i=l
Hi(XS) = tul.
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Applying Newton’s method for the system (5) leads to the following system
Tr(A; AX) =0, i=1,....m

m
3" Avdi + 45 =0,
i=1
H (XAS + AXS) = tul — XS, (6)
where the scaled directions AX = PAXP and AS = P~1ASP~!.
In the primal-dual IPMs, it is needed that all the iterates to be in within a certain

neighborhood of the central path. One of the popular neighborhoods is the so-called
negative infinity neighborhood that is a wide neighborhood, defined as

No(l—p) ==1{(X,y,8) € F*: Amin(XS) > yul},

where y € (0, 1). Another popular wide neighborhood of the central path introduced
by Ai and Zhang [3] for LCP and generalized to SDO by Feng and Fang [6] which is
defined as

N, B) ={(X,y,8) € Fo [(rpt - X1/25X1/2)+||F <tBu}l.
where 8 € (0, 1) is given constant. One can easily verify that
N =1) SN (z, B).

Note that the neighborhood '/,\f (z, é) is scaling invariant, that is (X, y, S) is in the
neighborhood if and only if (X, y, S) is.

3 Search directions and algorithm

In this section, we present a new predictor-corrector wide neighborhood interior point
algorithm for SDO. The predictor step uses only the NT search direction when the
used direction in the corrector step can belong to the class C(X, S). This is one of the
differences of our algorithm with the existing algorithms in the literature.

In accordance with the Ai-Zhang’s original idea, we decompose the Newton direc-
tion into two separate parts corresponding to the positive and negative parts of the
right-hand side of the third equality of the system (6); i.e, Tl — XS. Given an iterate
(X, v, S)yeN (‘l,', 5), we compute the predictor direction by solving the following
system

Tr(A;AXP) =0, i=1,....m
Z(Ayp) A+ 48P =0,
H,(XASK + AX?S) = (-XS)". (7
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Then, the largest step size &, is computed such that for every ), € [0, o]
(X(@p), y(@p), S@p) = (X, 9, 9) +a,(AX?, Ay, ASP) e N(z, ). (8)

We use the iterate (X(ap), y(ap), S(@,)) and the direction (AX”, Ay, AS?)
obtained from the predictor step to compute the corrector directions given by the
following systems:

Tr(A;AX) =0, i=1,....,m

m

Z(Ay;)_A,- + AS¢ =0,

i=1

H(X(ap)ASE + AXE S(a)p)) = [tplap) ] — Hi(X(ap)S(@p)]™
—apH (AXP AS), 9

and
Tr(A;AX$) =0, i=1,....m
m
> Ay Ai + AS =0,
i=1

Hi(X(ap)ASS + AXS S(ap) = [tplap)] — Hi (X (@p)S@)IT.  (10)

In terms of Kronecker product, the third equations of (7), (9) and (10) can be expressed,
respectively, as follows:

Evec(AXP) 4+ Fuec(AS?) = vec((—=X$)7), (11)
g(a,,)vec(Afi) + .%(ap)vec(Agi)
= vec([tplap)! — Hi(X(ap)S(@p)]”) — apvecH; (AXP ASP), (12)

E(apvec(AXS) + Flap)vec(ASS) = vec([tulap) I — Hi (X (@p)Sap)1t),
(13)

where
5 1~ ~ o~ 1~ ~
E=38@I+10S), F=sXQI+I10X),

=~ I ~ ~ ~ 1 ~ ~
E(ap) = E(S(ozp) QI +1QS(yp)), Flap) = E(X(ap) I +1QX(ap)).
(14)

Furthermore, one easily checks that the following equations hold as P = W% [6]:

f:g, and & = F.
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Finally, the step size « = (a1, or2) € [0, 17% should be computed such that

(X (), y(@), S(@) == (X(@p), y(@,), S(@,))
HAX (@), Ay(@), AS(a)) € Nz, g), (15)

where
(AX (), Ay(@), AS(@)) = a1 (AX, Ay®, AS) + ar(AXS, AYS. ASY).

Here, we present a theoretical framework of our algorithm. Let 0 < 8 < 1 be
parameter measuring the size of neighborhood of the central path. Then an MTY type
algorithm moves the iterates forward to a neighborhood of size 8 and then back to the
smaller one of size 8/2 by alternately using the NT and a general commutative class
of directions.

Algorithm 1: Predictor-corrector algorithm for SDO

Input: accuracy parameter ¢ > 0; neighborhood parameters 0 < g < % and0 <t < %;
the initial point (XY, 9, §0) € N'(z, B/2).
Setk = 0;
If Tr(XOSO) < ¢, then stop; otherwise, go to next step.
Predictor step
1
Compute the scaling matrix Pk = (Wk)2 where W* is defined by (3).
Compute the search direction (Aff’k, Ayf’k, Agf'k) by (7);

k_ 1 /Bt.
Setap, = 24/ 7

Compute (X (k). y(@k), S(@k)) from (8);

Corrector step

Compute the scaling matrix Pk e C(X(otﬁ), S(all‘,));

Compute the directions (Aiﬁk, Ayi’k, Agi’k) and (A)?ik, Ay_?k, Ag_c’_’k) by (9) and (10);
Seto = -l andaf = ok JE:

Compute (g(ak), y(ak), §(ak)) from (15);

Set (XKF1, k1 Skt 1y = (X (oh), y(ab), S(ek)):;

If Tr(X k+1Sk+1) < ¢, then stop; otherwise, go to predictor step.

4 Analysis of the algorithm

In this section, we discuss the convergence analysis of the proposed algorithm and
also present our main convergence result which establishes the iteration-complexity
bound for Algorithm 1. To this do, we analyze the steps of predictor and corrector
separately.
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4.1 Analysis of the predictor step
From (8) and the third equation of system (7), we obtain

Hi (X (@)S(@)) = Hi (X +a,AX")(S +a,457))
= XS +apH (XAS” + SAX?) + o Hi (AX" AS?)
= (1 — o) XS+ o} H (AX" A5, (16)

and using Tr(H1 (A)?fA:Sv'f)) = Tr(Afngf) = 0, we have

l—ap

1~ o~ —
ju(ay) = r—lTr(X(ap)S(a,,)) - Tr(XS) = (1 — ap)p. (17)

n

Lemma1 Let (}?v Y, §) € N(z, B/2) and (Aff, Ay?, Agf) be the solution of sys-
tem (7). Tﬁen ~ . L
(i) H(AX? ASP) < YX5. (i) I1H (AXP ASD)|lF < dnpe.

Proof Using X = S and the following inequalities

—_—

XASPAR?S < (RaS! + AXPS)

and

—

S(AS?ART)'X < (IXAS! + AXPITY,

we obtain
ASP AX? 4 (ASP AXD)T
2
X1 ((XA3? + aR73) + (1XAF” + a%73)7))3!

IA
0| — 00|

~ ~ o~ ~ o~ ~ o~ ~ o~ 2~
X! (XASZ T AXPS +[XASP + AXKS]T) 51,
which implies

~ ~ 1~ ~ o~ D
Hi(AS? AX?) < SX ' Hy(XASY + ARPS)'S .

From the above inequality and the third equation of (7) we can find

X5,

| =

~ ~ 1~ ~~ o~
Hi(AS? AX") < EX_I(—XS)2S_1 =
which proves part (i).

@ Springer



A new wide-neighborhood predictor-corrector interior-point method... 1373

Multiplying both sides of (11) by Eand using & = F, we obtain
vec(Aif) + vec(Agf) = gflvec((—)?g)f).
Taking 2-norm squared on both sides of the above equation and using 0 =
Tr(AX? AS”) = vec(AX? ) vec(AS?), we can get
H vec(A)N(f)H2 + ” vec(Agf)Hz = Hg_lvec((—fg)_)uz
~~ T ~ ~~
= (vee((=X5)7)) Evec((=X3)7)
n n
=Y (=M1 /hi =) ki =Te(XS) = np. (18)
i=1 i=1

On the other hand, we have
IH (AX? ASP) | F < 10X ASP | < 1AXP ||| AS ||

= [vec(aX2)[[[vec(aS2)]

< —(”vec(AXp)H + vec(a3)|?) = 5=

where the last inequality follows from (18). Thus we have completed the proof. O

Lemma 2 Let &), be the largest possible step size such that (8) holds. Then

_ 2
(Xp > —4
1N
1+ ./1+ B
Proof We have

[[rntern)t = Xep)> S Xep)2 ]|,
= “[H)?(a,,)% (tulep)! - )?(ap)%g(ap))?(o‘p)%)r”zv
= |[rnt@n ! — Hi (X @p)S@p)] |,
= |[(0 = ap)(zul — X5) — a2 H (AKX 23D
< (1 —ap)|lrul — XST*| , + 02| [ Hi (AKX AT))]"|
= (1 —ap)|[tul = XS] |, + 2| [HI(AX? ASP)]”

< —ap)ﬂ +aj|H(AX" AST)|

F

[

fﬁu np
-+ o,

where the first inequality is due to [14, Lemma 3.3], the second equality follows with
equations (16) and (17), the second inequality used [14, Proposition 3.1], the third
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inequality follows from the fact that |[[H;(AX? ASP)"||F < |Hi(AX" ASP)|F
and ()N(, v, §) e N(z, g) and the last inequality is concluded from Lemma 1 (ii).
Thus (X (atp), y(ap), S(ap)) € N(z, B) if

B np
(1= ap) = + -y = tpuley) = Tp( —apn,
or by rearranging,
n 8 8

flap) = zaﬁ + 5y —— <0
Therefore, the largest «, satisfying the above inequality is the largest positive root
of f(ap) = 0, which is 2 . Therefore, for all 0 < o), < 2 , we have

1+,/1+% 1+,/1+%

f(ap) < 0. Thus we have completed the proof. O

4.2 Analysis of the corrector step

From (15), together with (9) and (10), we obtain

Hi(X(@)S(@) = Hi(X(ap)S(ap))
+ai(lrplap)] — Hi (X (ep)S@p)]™ —apH(AX? AST))
+aalru(ap)l — Hi(X(@p)S@p)]™ + Hi(AX (@) AS(@)),

(19)
and the duality gap corresponding to the corrector step is as follows
1 ~ o~
ple) = ~Tr(H (X (@35(@)) = ()
+ ST ([, = Hy (K@) Sep)))
a ~ ~ n
+ 7Tr([tu(ap)1 — Hi(X(ap)S(ap)]h). (20)

Furthermore, using Tr(H;(M)) = Tr(M), it is easy to see that
Tr([rplep)] — Hi(X(ep)S(@p)]”) < —(1 — Dnplay)
and

Tr([rp(ep)] — Hi (X (@p) St < Vo ltu@p)l = X(@p) S|,
< ﬁfﬁﬂ(ap)-
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From these inequalities and (20) it follows that
p@) < (1= 1 =1)ay +artf//n)ulay), (21)
and

@) > ulapy) + %Tr( — X(ap)S(p)) = (1 —appulap). (22)

Lenlma3 Let G =~é~’(ap)"ﬂ?(ap),ap <2 /8 0 <a /P p<tandr < 1.
If (X(ap), y(ap), S(ap)) € N(z, B), then we have

~ ~ 6 _
|Hi(AX (@) AS(@) ], < Ea%rﬁ,u«/cond(G).

Proof Notifying the definition H;(-) and the properties of || - ||z and || - ||, we have

|Hi (AX (@) AS@) ], < [AX (@ AS@) |, < [aX @], |AS@)],
= H vec(Ai(oz))H H vec(AS(oz))H

< LD (5 Fvec(aX@) | + [GHvec(a3@) ). @3)

where the last inequality is due to [16, Lemma 4.6]. From (12) and (13), we have

g(ap)vec(A)?(a)) + ]?(ap)vec(AE(a))
= ajvec([Tu(ay)l — Hl(f(a,,)g(ap))]_) - ala,,vecHI(A)?ngf)
+asvec([Tplap)l — Hi (X (@p)S@p)]™).

Multiplying both sides of the above equation by (E (o p)]-N' (o p))_% and taking norm-
squared on both side of the resulting equation, we obtain
||67% vec(A}?(a)) ||2 + ||E% vec(Ag(a)) ||2
< (alH EapFap) Tvec(lrnlan! — Hi (X (@S|
+ajap H (g(ap).f’-:(ap))_% vecH; (Aingf) ||

~ ~ ~ ~ 2
+ oo ) Frep) 2 vee([rui@p) = HiX(@p)Sani®)| )

< (a1/Tr(X(@)3(ep) + N |lvecH; (AX" A3?)]
\/mm(

Ami X(ozp)S(otp))

~ ~ ~ ~ 2
+ o (5(011;)7:(0!17))_% I vee(lzmlap) — Hi(X(ap)S(ep)]™) ||)
o wmey TP AT
= (“1\/”H(ap) t —Btita,) H HI(AX—AS—)”F

@ Springer



1376 B. Kheirfam, N. Osmanpour

~ 2
LRI CHRCAIN Y

_l’_
TThe @)
npe oy o2 2
= (cayfmtep) + 2= Prentay) | O Peatpy " @)

2
zfﬂ nojo
( (crrv/r+ ﬁ),/m,,w NUEAIE _ﬁ)rf)

2
ay/B
)‘XZ\/TﬂM(ap) + T = ﬂ)az\/rﬁu)
< | TIBM(O‘]?)"*'S\/— 6\/__1 2\/Tﬂﬂ)

(1+ ) 2,3 (221)2 2/3 <6 2'3
— ) a5t —a5 TP,
202/) “2TPH = \50p) ¥2TPH = 50TPR

where the argument for the second inequality is similar to the one given for the proof of
[14, Lemma 5.10] and noticing that kmln(é'(ap).?’-"(ap)) = Amln(X(ap)S(ap)) >(1-
B)tu(ap), the four inequality follows from Lemma 1 and (X (atp), y(ap), S(ap)) €
N (z, B) and the last equality is due to (17). Substituting this bound into (23), we
obtain the inequality in the lemma. O

Lemma4 Let

(@) == Hi (X (o) S(@p)) + o1 ([rpe(ap) ] — Hy (X (o) S(arp))]™
—a, Hi(AX? AS?)) + asltp(ap) ] — Hi (X () Sap)]™.

If (X(ap), y(@p), S(@p)) € N(z, B), then

ajopn

Amin(I" () > (1 — B)Tu(ap) +axBrulay) — >

Proof We first consider the position of T (ap) 1 — H; (f(ozp)g(oep)) > 0. In this case,
we have

Amin(F@)) = Jomin(Hr (R (@p)S(ep)) = o1, Hy (AK7 A37)
+erltuiap)! — Hi (X))
= kmm(Hl (X(ap)S(ap)) —aja, H(AXP ASP)
+erltp@p)l — Hi(R(@pS@p))
= hamin((1 = a2) Hy (R () Stetp)) + axtalep) 1

— 10, H (AR AF?))
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> min (1 = ) Hy (R(e)S(@p) + catpa(p) 1)
—aiap [H (AX"ASD) |,

= (1 — 02)min (H1 (X (@) S(ep))) + €27 pa(et)
—ana, | Hi(AX? ASD) |,

> (1 — @2)hmin(X (@) S(ep)) + 2t pa(er)
—ana, | H(AX? ASD) |,

aXpni
2

= (=) = p)rulep) +arrp(ey) —
ajopnpl

= (1 - Brulap) +axBrulay) — T

where the second inequality is due to Lemma 1. ~ ~
Now, let us consider the case that Tuu(ap)!l — Hy (X (ap)S(ap)) < 0. In this way,
we have

hin(F(@) = Aamin (H1 (R (@) S@p)) + arlznep)l = Hi(X(@p)S@,)1
10, Hy (AXP AT?))
= hanin (1 (X (@p)S@,)) + arlznep) = Hi(X(@p)Se,)]
—ala,,H,(AifAEK))
= min( i (X (@p)S(@p) + ealrpntep) I = Hi(X(@p)S@,)))
—aja,| H,(A)?fA§f)”F

> min(Hi (X () S(p)) + Tpatep) 1 = Hi (X (@) Stety)))
—ajap “H](A)?fﬂgf)”f-

e pni
> tplap) — T Brulayp) + Brulap)
Qo pniL
= (= Bruley) +awfruleay) — ——.
Thus we have completed the proof. O

B B 1 1 1
LeNmmaS Leta,lf %2,/5—”,0:1 < az‘/?,ﬁ < §~,1: < zanday < m.lf
(X(ap), y(ap), S(ap)) € N(z, B), then X () and S(«) are in ST} .

Proof Using (19) and the fact that A, (-) is a homogeneous concave function on the
space of symmetric matrices, we have

Amin(H1 (R(@3(@) ) = min(I (@) + Hi (A% (@) A3 (@) )

> Amin(I (@) — | H (AX (@) AS(@)) | ,
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ajapn

> <(l — BT+t — m) ula p) Olz‘lfﬂ//L\/ con (G)
p

3V2Bas 36+/2Bas
1— _ _
2< Pred = /i) 106 - 1)>T @p)
3V2Bar 36+/2Bar
= (1 P dova—1  Toeva— 1)>T “r)

> <% — ! — 6v2 )ru((xp) > 0,
3 2J2(6V2-1) 50642-1)

where the second inequality is due to Lemmas 3 and 4 and (17). By using continuity,
it follows that X () and S (@) are in 8! | since X (ap) and S (ap) are. The proof is
completed. O

Lemma6 Suppose (}~(, y, §) € N(t, B/2) and I (@) is defined as in Lemma 4. If
(X(ap), y(ap), S(ap)) € N(z, B), then we have

ekt = r@] |, = 0~ —ap o

Proof Assume that the eigenvalues of A; () := A; (H; (i (a p)g(a p))) are ordered so
that 'L’,LL(Olp) —Ai(ap) > Oforeachi =1,...,k —1and tu(ap) — Ai(ap) < 0 for
i =k,...,n.Now, let us consider the diagonal elements of A(ap) + o[Tu(ep)l —
Alap)]™ zozlapk + as[tu(ap)l — A(Otp)]+ where A(xp) = diag(A(ap)). In
this way, fori =1,...,k — 1, X;(ap) — alotpk +a2(r//,(o:,,) — A (Otp)) =(1-
az)Ai(ap) — %alapki + apt (o), together with (21), we obtain

(@) — ((1 — a2)hi(ap) — lawtpk + anTi(ep))
<t(l = (1 = Dai +artB/v/n)nlay)

—(A—a)(I —ap+ %0512,))\1‘ - %alap)\i + onTi(ay))
(1= (I = Dy + aatB/v/n)u(ap)

1, 1 , 1
—(1 -y —ap +axa, + 2“” — Eazap 2a1ap)ki —optu(ap)

=tu(l —ap — oy +aray) + T u(l —ap) (o) + ap/v/n)

1 1 1
_(1 —ay —ap +axx, + Ea’% — Eagai — Ealap)ki — QT+ 0TI
1 1 5, 1
< (l —ay —ap +ax, + 2Olp — Eazap — Ealo{p)(t,u —Ai)

1 1
+( — 143y /;_:L +T V28T i—;)oqm — ey (a1 + @2 B//n)

! =2
—5 (- w)Tpd,
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1, 1 , 1
< (1 —ay —ap +axx, + Ea” — Eazap — Ealap)(t,u — i)

1
= (1= a2)(1 = ap) + Saplep —an) )t = 1)
= (L= a)(1 = ap)(r = %),

where the last inequality follows if tu — A; > Ofori € {1,...,k — 1}. Now, we
consider the case T — A; < 0fori € {1, ...,k — 1}. Using (16) and (17), we derive
that

0 < tp(op)] — Hi(X(p)S(ep) = (1 — ap)(rpul — XS) — o2 H (AXP ASD),
which implies Hj (A)Nf P ASP ) < 0. Therefore, from (16), one has

Hy(X(@p)S(ep) — ara, H(AXP ASP) + as[tple,) T — Hy (X () S(ep))]
= (1 —a)(1 — o)) XS+ (1 — e} — o) Hy (AXP AS?) + anrju(ay) ]
> —a)d—ap)tul +ar(l —ap)tpul =1 —ap)tul,

where the inequality is due to T — A; < 0 and (17).
From the last inequality and (21) we deduce that

wiae) — i (1 (R(@p)S@p)) — anap Hy (AXP AFY) + ol putap) 1 — Hy K(p)Sep)l)

<t(l = = ey +artB/v/n)ulep) — (1 —ap)tp

1— 1—-42
=(- 7’ + /7B )artep) % < (Tf)azwap),/’i—r <0,

where the equality is due to (17). Fori =k, ..., n, by (16), we have

F@) =1—anH(X(@p)S@,y)) +artp(ap)l —aja, H (AX? ASP)
= —a)(l —ap) XS+ ((1 — aped — aja,) H(AX? AS?) + artu(ay)]
1 2

1 1 ~~
> (1 —ap —a) +aja, + Ealz, — Eapoc] — 5051061;>XS +ajtulap)l,

where the inequality follows from Lemma 1 (i). Therefore, we have

1 1 1
(o) — (1 —ap —a) +aja, + 50{% — Eaf,oel — 5“1%;)%‘ —ajtu(ap)
< (1= (1 = D)1 +atf/v/n)uley) — artley)
1, 1, 1
_(1 —ap —a) +aja, + Eotp — Eozpoel — Ealap)Ai
< (l — 201 + T +a1\/21:,3))\,~(a,,)

1, 1, 1
_(1 —ap —a) +aja, + Eotp — EO‘pO‘l — Ealap)ki
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1
< (1 =201 +ta) +a1y/278) (1 —a, + 5%27)/\:'

1 1 1
_(1 —op —o] oy + 20tp - 2 127051 Zalocp)ki
<(-1+7+ 2;3+3,/’%) ai=( 2+ 11)
— T T = =— oA - =
= 4\ 2n )7 = 1242

<0.
Therefore, we can find

[z = @],

= |[[rmi@) ! = (Hi (X (o) S(etp)) + o1 ([rpe(orp) ] — Hy (X (o) S(etp))]™
—ay Hi(AX? AS?)) + aaleplap) T — Hy (X (@) S )] |,

< |[ru@) ! = (Hi(X(ep)S(ep) + arltplep) ] — Hy (X (ep)S(ep))]™
S X5+l ] — Hy (RS )]

= |[Q(tu@) = (Alep) + arltp(ap)] — Alap)]™ — %“1%/‘
+arltp(@p)l — A1) 0",

= |[rr@)I — (Alap) + arltplap) ] — Alap)]™ — %“lo‘p/‘
+aslrpap)l — A",

< (=) —ap)|[rul — 4],

= (1~ —ap|Q[rul — A 07|,

= (=) —ap)|[eul = XS]] = (1 a1 - a»?w

where the first inequality is followed by Lemma 1 (1), the second equality used [14,

Lemma 3.2] and the last inequality is due to the fact that (X y, S) € N(z, B/2). The

proof is completed. O

Proposition 1 Suppose o), < %,/%,al = az,/%, B < ,%JT E % and oy <
1 , where G = E(ap)’lf(ap). If the current iterate (X, y, S) € N(t, B/2)

24/cond(G)

, then
(X (), y(@), S(@) € N(z, B/2).
Proof We have

I[zp)r1 — )?(a)l/zg(a)g(“)mr”}v
< |[Hz e (tn@1 = X@'*S@X@")]" |,
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el — Hy(X@)3@)]" |,

(@) — I'(a) — Hy (A)?(a)A§(a))]+||F

tu@) I — @], + [ - B (aX (@ AS@)]" | »
tue) — T@)] |, + |[[Hi (AX @ AS@)] |
< |[tn@1 - r@]"), + U H(AX @ AS@) |,

<({—-a)(l— ap)ﬁtu + 2‘5,3,&\/0011 (G)

+

=1 —a)(l —oep>§w
6 _
+(a1 —op — a1y +oa, + goé\/cond(G))gru

< -ap@ —ap)éw

,/'g—’:—l az,/'Bt—i— a2«/c0n (G)) —aaT

3
<(1—a1)<1—oep>ﬁm+(3f 1+12[ )'Bazfu

< (1—a)(1 - ap)gw =(- al)gmaxp) < grw)

where the first inequality is followed from [14, Lemma 3.3], the second equality is
from (19) and the definition I"(«). The fourth step used from [14, Proposition 3.1]
and the fourth inequality is due to Lemmas 3 and 6. The last equality is due to (17)
and the last inequality follows from (22). We have completed the proof. O

We end this section by stating the main result of this paper, which establishes an
iteration-complexity bound for the proposed algorithm.

o] Bt _ 1 1
Theorem 1 Suppose ap < 5 = 2 S0 = ZW(G) B <3andt < 3. Then

the algorithm will terminate in O(,/nks log W) iterations with a solution such
that Tr(X S) < &, where koo = sup{cond(G)*, k =0, 1,...} < oo.

Proof By Lemma 2 and Proposition 1, we have

(X(ap), y(@p), S@)p) € N(z, B), (X (@), y(@), S(@)) € N(z, B/2).

Using (21), we can find
e = (1= (1 =0 +az%)u(ap>

- (1 —w(l-17- \/MTT)\/’B»)M(OW)
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e (e v s
< (1 - 532 /#’d@) n(@p)
< (1 -~ 5%\/%) 1n(etp).

By [24, Theorem 3.2] the lemma follows. |

5 Numerical results

In this section, we compare our algorithm (Algor.1) with the algorithms by Yang et al.
in [25] (Algor.2) and Feng and Fang in [6] (Algor. 3) to test some SDO problems
from [22]: Max-cut problem(Mc); Norm-min problem(Nm); Control problem(C);
Graph partitioning problem (Gp); Lovasz theta number problem(Ltn); Random fea-
sible SDP problem(Rfs); Education testing problem (Etp); Ideal GMRES polynomial
problem (Igmres); logarithmic Chebyshev approximation problem(Logcheby); for the
NT directions and give the results in Table 1. Numerical results were obtained by using
MATLAB R2017a on an Intel Core i7 PC with 8GB RAM under Windows 10. The
algorithms are stopped when . < euo with ¢ = 107>, In Table 1, we present the
names of the test problems, the dimension of the blocks and the number of the con-
straint equations (denoted by (n, m)), the number of iterations (iter) and the total CPU
time (time) for each algorithms. Also the notation “— means that the algorithm is
not able to solve the problem in less than 500s. We run 10 times for the same m and
n and obtain the average results which presented in Table 1. From Table 1, it can be
seen that not only is Algorithm 1 faster than the other two algorithms, but it is also
better in terms of number of iterations.

6 Concluding remarks

In this paper, we presented a predictor-corrector path-following interior-point algo-
rithm for SDO based on the large neighborhood. We proved that the algorithm has
O(/nks log w) iteration complexity bound which coincides with the currently
best known theoretical complexity bound so far. Our algorithm was different from the
existing wide neighborhood algorithms because it applied a new corrector strategy.
Moreover, the numerical results show that our algorithm performs efficiently.
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Table 1 Number of iterations and CPU time on SDO problems

Name (n, m) Algor. 1 Algor. 2 Algor. 3
iter CPU iter CPU iter CPU

Mc (50, 50) 6.9 1.62 12.5 3.51 118.8 29.10
(100, 100) 6.3 20.41 10.8 46.47 163.4 459.38
(150, 150) 7.2 94.42 11.6 125.96 - -
(200, 200) 6.8 304.83 9.7 423.32 - -

Nm (50, 50) 6.4 1.82 11.7 3.83 118.4 31.71
(100, 100) 6.9 22.05 10.8 50.98 - -
(150, 150) 6.1 105.46 9.6 141.14 - -
(200,200) 7.3 330.01 10.5 441.25 - -

C (35,16) 6.3 0.19 8.1 0.27 98.3 1.79
(80, 37) 6.7 2.24 8.4 3.85 151.7 52.63
(120, 56) 7.3 10.25 8.9 16.08 186.5 307.94
(168, 79) 6.2 38.17 9.7 49.56 - -
(224, 106) 6.6 117.36 9.3 155.28 - -

Gp (50,51) 6.9 1.67 9.4 3.13 118.4 31.85
(100,101) 6.3 21.58 9.7 38.83 - -
(150, 151) 7.5 104.52 8.9 139.26 - -
(200, 200) 6.6 330.72 8.7 439.56 - -

Ltn (49, 85) 6.3 431 8.0 5.46 117.8 82.2
(100, 181) 6.8 69.10 8.7 91.31 - -
(144,265) 6.1 299.33 7.8 397.73 - -

Rfs (50,50) 7.8 1.57 10.2 2.96 118.5 28.56
(100, 100) 8.3 20.17 9.7 26.61 - -
(150, 150) 6.9 95.38 10.5 127.06 - -

Etp (50,25) 73 0.43 9.1 0.56 118.2 8.17
(100,50) 6.8 5.37 8.7 10.07 169.9 147.62
(150, 75) 6.9 24.79 8.9 32.92 - -
(200, 100) 7.5 74.59 9.4 98.70 - -

Igmres (50,25) 6.8 0.49 8.8 0.47 118.5 7.82
(100,50) 6.5 5.31 8.5 7.86 169.3 145.34
(150, 75) 7.4 24.27 9.4 32.20 - -
(200, 100) 6.2 77.94 8.6 96.67 - -

Logcheby (45, 16) 75 0.23 9.3 0.21 112.7 2.90
(90, 31) 7.2 1.83 9.5 2.31 160.2 45.69
(135, 46) 6.7 7.99 10.1 10.52 198.0 257.61
(180, 61) 6.9 23.61 8.6 34.69 - -
(225, 76) 7.8 56.01 8.9 83.27 - -
(270, 91) 7.3 118.86 9.3 157.98 - -
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