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Abstract
The purpose of the present work is to introduce and study the concept of interval
type-2 (IT2) fuzzy grammar which recognizes the given IT2 fuzzy languages. The
relationship between IT2 fuzzy automata and IT2 fuzzy (weak) regular grammars is
discussed. Specifically, the results we obtained here are (i) IT2 fuzzy weak regular
grammar and IT2 fuzzy regular grammar generate the same classes of IT2 fuzzy
languages (i i) for a given IT2 fuzzy regular grammars, there exists an IT2 fuzzy
automata such that they accept the same IT2 fuzzy languages, and vice versa. In
addition, we define some operations on IT2 fuzzy languages and it is shown that IT2
fuzzy languages recognized by IT2 fuzzy automata are closed under the operations
of union, intersection, concatenation and Kleene closure, but are not closed under
complement.

Keywords Interval type-2 fuzzy set · Interval type-2 fuzzy automata · Interval type-2
fuzzy grammar · Interval type-2 fuzzy languages

1 Introduction

It is well-known that the simplest and most important type of automata is finite-
automata and it is closely related to formal language as finite-automata can be classified
by the class of formal languages (cf., [5,6,25]). In finite automaton, the input alphabet
consists of a finite number of discrete input symbols. Fuzzy automata proposed by
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Wee [30] considered as a generalization of finite automaton in which the knowledge
about the system’s next state is vague or uncertain. Thereafter, a numerous works has
been contributed towards the generalization of finite-automata by many authors such
as Santos [23], Lee and Zadeh [10], Wechler [29], especially the most simplest one by
Mordeson andMalik [13,19].Meanwhile, the notions of fuzzy languages generated by
fuzzy grammars was firstly proposed by Lee and Zadeh [10]. In the last few decades,
the relationship between fuzzy automata and its counterpart fuzzy grammars has been
introduced and studied by may authors in many forms (cf., eg., [9], [3], [20], [33,34],
[21,22], [11], [24], [4]). Among these studies, in [9], the concept of L-fuzzy gram-
mar based on distributive lattice and Boolean lattice has been discussed; while [3] is
towards the study of fuzzy grammars and recursively enumerable fuzzy languages. As
a further extension,Moore et al. [20], Cheng andWang [2] introduced quantumversion
of finite automata and grammars; while Qiu [21,22] proposed automata theory based
on the complete residuated lattice-valued logic.Meanwhile, Jančić and Ć irić [7] intro-
duced Brzozowski type determinization for fuzzy automata, one of the canonization
methods for computing fuzzy finite automata. Further, Micić et al. [17] figured one
more determinization method for fuzzy finite automaton over a complete residuated
lattice produces a minimal crisp-deterministic fuzzy automaton which is equivalent to
the fuzzy finite automaton. In [24] and [4], Sheng and Guo studied about regular gram-
mars with truth values in lattice-ordered monoid and discussed the relationship with
languages. Subsequently, Li and Pedrycz [11] presented a basic framework of fuzzy
finite automata with membership values in lattice-ordered monoids. Thereafter, Sheng
and Li [24] introduced and studied the notions of lattice-valued finite automata and
lattice-valued regular grammars. However, in [4], it has been found that the concept of
lattice-valued grammars and lattice-valued regular grammars are not so satisfactory.

The notions of type-2 (T2) fuzzy sets was proposed by Zadeh [37], generalizing
the existing type-1 (T1) fuzzy sets [36]. In [15], it has been pointed out that T1
fuzzy sets whose membership function is totally crisp provides limited platform for
computational complexity and also not able to handle linguistic uncertainty involved
in the model whereas T2 fuzzy set is capable to model such uncertainty because their
membership functions are themselves fuzzy. Also, the membership function of T2
fuzzy sets is three dimensional which gives additional degrees of freedom to model
the uncertainty directly in comparison to T1 fuzzy sets which have two-dimensional
membership function. Unfortunately, T2 fuzzy sets are not easy to understand and use
than are T1 fuzzy sets. In view of the difficulties involved in T2 fuzzy sets, Mendel and
John [15] have tried to overcome the difficulties by giving a new representation of T2
fuzzy sets in a preciseway andmakes it easy to use and understand.Based on the idea of
T2 fuzzy sets by Zadeh [37], Mizumoto and Tanaka [18] firstly proposed the notions
of fuzzy-fuzzy automata (or T2 fuzzy automata). They investigated that T2 fuzzy
languages characterized by T2 fuzzy automata is closed under the operations of union,
intersection, concatenation and Kleene closure but are not closed under complement.
The author in [35] has pointed out that all previous kind of fuzzy automata are still
computing with values although a certain vagueness or uncertainty are involved in the
process of computing. Afterward, Ying [35] proposed new kind of fuzzy automata
considered as formal models of computing with words whose input is a string of
T1 fuzzy subsets of the input alphabet, instead of a string of symbols from the input
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alphabet. However, researchers in [14,28,31] have been noticed the limitations of using
T1 fuzzy sets in computingwithwords. Inspired by thework ofYing [35] on computing
with words, recently, Jiang and Tang [8], introduced new kinds of formal model of
computing with words into IT2 fuzzy environment named IT2 fuzzy automata and
IT2 fuzzy pushdown automata whose inputs are strings of IT2 fuzzy subsets of the
input alphabet. They have also studied the behavior of these automata and establish
their relationship with IT2 fuzzy languages.

Aswe know, the characterization of fuzzy languages by fuzzy grammar is an impor-
tant issue in computation theory. The present paper introduce and study the concept of
grammar theory in the sense of IT2 fuzzy sets. That is, we propose IT2 fuzzy grammar
and established their relationship with IT2 fuzzy automata. In particular, we get the
following results (i) IT2 fuzzy weak regular grammar and IT2 fuzzy regular grammar
generate the same classes of IT2 fuzzy languages (i i) if an IT2 fuzzy language is
generated by an IT2 fuzzy grammar, it can be accepted by an IT2 fuzzy automata,
and vice versa. Furthermore, we define some operations on IT2 fuzzy languages and
show that IT2 fuzzy languages characterized by IT2 fuzzy automata is closed under
the operations of union, intersection, concatenation and Kleene closure, but are not
closed under complement.

2 Preliminaries

In this section, we recall some concepts related to type-2 fuzzy sets, IT2 fuzzy sets, IT2
fuzzy relation, and collect some results, which we need in the subsequent sections.
Throughout this paper, X is a nonempty set, I = [0, 1] and [I ] = {[a, b] : a ≤
b, a, b ∈ I }.

We begin with the following:

Definition 2.1 [15]AT2 fuzzy set Ã is characterized by a type-2membership function
μ Ã : X × Jx → I , ∀x ∈ X and Jx ⊆ I , i.e.,

Ã = {((x, u), μ Ã(x, u)) : x ∈ X , u ∈ Jx ⊆ I },
in which 0 ≤ μ Ã(x, u) ≤ 1. Ã can also be expressed as

Ã =
∫
x∈X

∫
u∈Jx

μ Ã(x, u)/(x, u), Jx ⊆ I ,

where
∫ ∫

denotes the union over all admissible x and u. For discrete universes of
discourse

∫
is replaced by

∑
.

Definition 2.2 [12,16] A T2 fuzzy set Ã is called an IT2 fuzzy set if μ Ã(x, u) = 1,
∀x ∈ X and ∀u ∈ Jx ⊆ I .

An IT2 fuzzy set Ã can be expressed as follows:

Ã = {((x, u), 1) : x ∈ X , u ∈ Jx }
or as:
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Ã =
∫
x∈X

∫
u∈Jx

1/(x, u), Jx ⊆ I .

Definition 2.3 [15] Let Ã be a T2 fuzzy set in X . Then for each x ′ ∈ X , a vertical
slice μ Ã(x ′) of Ã is the intersection between the two-dimensional plane whose axes
are u ∈ Jx and μ Ã(x ′, u) and the three dimensional type-2 membership function Ã,
i.e.,

μ Ã(x ′) ≡ μ Ã(x = x ′, u) =
∫
u∈Jx ′

fx ′(u)/u, Jx ′ ⊆ I ,

in which 0 ≤ fx ′(u) ≤ 1. Clearly, for an IT2F set Ã, μ Ã(x = x ′, u) is defined as
follows:

μ Ã(x ′) ≡ μ Ã(x = x ′, u) =
∫
u∈Jx ′

1/u, Jx ′ ⊆ I ,

By the abuse of notation, we shall write μ Ã(x) instead of μ Ã(x ′), ∀x ′ ∈ X . It is a T1
fuzzy set, known as secondary membership function. The domain of a secondary
membership function is called the primary membership of x , which we also called
as secondary set.

In terms of vertical slice, an IT2 fuzzy set Ã can also be re-expressed as:

Ã = {(x, μ Ã(x)) : x ∈ X}
or, as the following:

Ã =
∫
x∈X

μ Ã(x)/x =
∫
x∈X

[∫
u∈Jx

1/u

]
/x, where Jx ⊆ I

is the primary membership of x .

In this paper, I T 2F(X) will denote the set of all IT2 fuzzy sets in X .
If both X and Jx are discrete, Ã ∈ I T 2F(X) can be expressed as follows

Ã =
∑
x∈X

⎡
⎣∑
u∈Jx

1/u

⎤
⎦ /x =

N∑
i=1

⎡
⎣ ∑
u∈Jxi

1/u

⎤
⎦ /xi

=
[

M1∑
k=1

1/u1k

]
/x1 + ... +

⎡
⎣ Mi∑
k=1

1/uik

⎤
⎦ /xi + ... +

⎡
⎣MN∑
k=1

1/uNk

⎤
⎦ /xN ,

where + denotes the union.
Throughout this paper, we consider both X and Jx are discrete.
In [15], it has been observed that x is discretized into N values and at each of these

values u has been discretized into Mi values. The discretization along each uik does
not have to be the same, however, if the discretization of each uik is the same, then
M1 = M2 = ... = MN = M .
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Definition 2.4 [32,38] The footprint of uncertainty, denoted by DÃ, of a T2 fuzzy
set Ã is given by

DÃ =
⋃
x∈X

Jx .

Let DÃ(x) = Jx ,∀x ∈ X . Then a T2 fuzzy set Ã can be re-expressed as:

Ã =
∫ ∫

(x,u)∈DÃ
μ Ã(x, u)/(x, u).

For given T2 fuzzy set Ã, a lower and an uppermembership function are the two type-1
membership functions that are the bounds of DÃ. The lower membership function
(denoted as DÃ) is associated with the lower bound of DÃ, and the upper membership
function (denoted as DÃ) is associated with the upper bound of DÃ.

For Ã ∈ I T 2F(X) and x ∈ X , μ Ã(x) is an IT1 fuzzy set on I . Thus

DÃ(x) =
[
DÃ(x), DÃ(x)

]
, where DÃ(x) and DÃ(x) are lower and upper mem-

bership functions (both of which are T1 fuzzy sets) respectively. For simplicity, let
DÃ(x) = [

l Ã(x), r Ã(x)
]
. Consequently, the membership grade of each element of an

IT2 fuzzy set is an interval
[
l Ã(x), r Ã(x)

]
.

Note that, any Ã ∈ I T 2F(X) can also be represented as

Ã = 1/DÃ.

Now, we recall the following operations on IT2 fuzzy sets from [38].

Definition 2.5 Let Ã, B̃ ∈ I T 2F(X). Then ∀x ∈ X ,

1. the union of two IT2 fuzzy sets Ã, B̃ is

Ã ∪ B̃ = 1/
[
l Ã(x) ∨ l B̃(x), r Ã(x) ∨ rB̃(x)

]

2. the intersection of two IT2 fuzzy sets Ã, B̃ is

Ã ∩ B̃ = 1/
[
l Ã(x) ∧ l B̃(x), r Ã(x) ∧ rB̃(x)

]

3. the complement of IT2 fuzzy set Ã is

Ãc = 1/
[
1 − l Ã(x), 1 − r Ã(x)

]

4. the scale product of λ and IT2 fuzzy set Ã is

λ · Ã = 1/
[
λ ∧ l Ã(x), λ ∧ r Ã(x)

]
,

where λ = 1/
[
λ, λ

]
,
[
λ, λ

] ∈ I nt([0, 1]), stands for the set of all closed subin-
tervals of [0, 1].
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5. the height of IT2 fuzzy set Ã is

height( Ã) = 1/
[∨x∈Xl Ã(x),∨x∈XrÃ(x)

]

We close this section by recalling the concept of fuzzy finite automaton from [35].

Definition 2.6 A fuzzy finite automaton (FFA) is a 5-tuple M = (Q, �, δ, q0, F),
where

(i) Q and � are nonempty finite sets called the state-set and input-set, respectively;
(ii) q0 ∈ Q is called the initial state;
(iii) F is a fuzzy subset of Q, called the fuzzy set of final states and for each q ∈ Q,

F(q) indicates intuitively the degree to which q is a final sate, and
(iv) δ : Q × � → F(Q), the set of all fuzzy subsets of Q, is a map called transition

map. For any q ∈ Q and a ∈ �, δ(q, a) is a fuzzy subset of Q, and it may be seen
as the possibility distribution of the states that the automaton in state q and with
input a can enter. More explicitly, for each p ∈ Q, δ(q, a)(p) is the possibility
degree to which the automaton in state q and with input a may enter state p.

To define the notion of the degree to which a string of input symbols is accepted by a
fuzzy finite automaton, we need to extend the transition function. Let X∗ = ⋃∞

n=0 X
n

be the set of all strings of finite length over X and let � denote the empty string..

Definition 2.7 [35] Let M = (Q, X , δ, q0, F) be a FFA.

1. The transition function δ is extended to δ∗ : Q × X∗ → F(Q), where

δ(q,�) = 1

q

δ∗(q, wa) =
⋃
p∈Q

[δ∗(q, w)(p).δ(p, a)]

for all w ∈ X∗ and a ∈ X , where 1
q is a singleton in Q. i.e., the fuzzy subset of Q

with membership 1 at q and with zero membership for all the other elements of Q.
In addition, δ(q, w)(p).δ(p, a) stands for the scale product of fuzzy set δ(p, a)

with the parameter δ(q, w)(p).
2. For any w ∈ X∗, the degree to which w is accepted by M is

L(M, w) = height(δ∗(q0, w) ∩ F).

3. The language L(M) accepted by M is a fuzzy subset of X∗ and it is defined by

L(M)(w) = L(M, w), ∀ w ∈ X∗.

2.1 IT2 fuzzy automata and its languages

In this section, we recall the concept of IT2 fuzzy finite automata and its languages
from [8].
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Definition 2.8 An interval type-2 fuzzy automaton (IT2 FA) is a five-tuple M =
(Q, X , δ, q0, F), where

1. Q is a finite set of states;
2. X is a finite input alphabet;
3. q0 ∈ Q is an initial state;
4. δ is a mapping from Q × X into I T 2F(Q), the set of all IT2 fuzzy subsets of Q.

For any qi ∈ Q and a ∈ X , δ(qi , a) is an IT2 fuzzy subset of Q, and it may be seen
as the possibility distribution of the states that the automaton is state qi and with
input a can enter. More explicitly, for each q j ∈ Q, δ(qi , a)(q j ) is the possibility
degree (i.e., T2 fuzzy membership degree) to which the automaton in state qi and
with input a may enter state q j . Formally, δ(qi , a) and δ(qi , a)(q j )are defined as
follows:

δ(qi , a) =
[∑M0

k=1
1
u0k

]

q0
+ ... +

[∑Mi
k=1

1
uik

]

qi
+ ... +

[∑MN
k=1

1
uNk

]

qN
,

where, uik ∈ Jx ⊆ [0, 1], 0 ≤ i ≤ N .

δ(qi , a)(q j ) = 1

{u j1, u j2, . . . , u jM j } = 1

[u j1, u jM j ] , where

u jk ∈ Jx ⊆ [0, 1], 0 ≤ j ≤ N , 1 ≤ k ≤ Mj .
5. F is an I T 2 fuzzy subset of Q, called the I T 2 fuzzy set of final states, and for

each qi ∈ Q, F(qi ) indicates intuitively the degree to which qi is a final state.
That is, F and F(qi ) are define as follows:

F =
[∑M0

k=1
1
u1k

]

q1
+ ... +

[∑Mi
k=1

1
uik

]

qi
+ ... +

[∑MN
k=1

1
uNk

]

qN
,

where, uik ∈ Jx ⊆ [0, 1], 1 ≤ i ≤ N .

F(qi ) = 1

{ui1, ui2, . . . , uiMi } = 1

[ui1, uiMi ] , where,

u jk ∈ Jx ⊆ [0, 1], 1 ≤ i ≤ N , 1 ≤ k ≤ Mj .

In view of Definitions 2.6 and 2.7, IT2 fuzzy finite automata can be considered as a
generalizations of fuzzy finite automata as fuzzy finite automata are based on T1 fuzzy
set; however, IT2 fuzzy finite automata are based on IT2 fuzzy sets.

Definition 2.9 [8] Let M = (Q, X , δ, q0, F) be an IT2 FA.

1. The transition function δ is extended to δ∗ : Q × X∗ → I T 2F(Q), where

δ(q,�) = 1/[1, 1]/q
δ∗(q, wa) =

⋃
p∈Q

[δ∗(q, w)(p).δ(p, a)]
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for allw ∈ X∗ and a ∈ X , where 1/[1, 1]/q (i.e., 1/{1}/q) is a singleton in Q. i.e.,
the IT2 fuzzy subset of Q with membership 1 (i.e., [1,1])at q and with zero mem-
bership (i.e., [0,0]) for all the other elements of Q. In addition, δ(q, w)(p).δ(p, a)

stands for the scale product of IT2 fuzzy set δ(p, a)with the parameter δ(q, w)(p).
2. For any w ∈ X∗, the degree to which w is accepted by M is

L(M, w) = height(δ∗(q0, w) ∩ F).

3. An IT2 fuzzy language L(M) ∈ I T 2F(X∗) accepted by M is defined as

L(M)(w) = L(M, w), ∀ w ∈ X∗,

where I T 2F(X∗) denotes the set of all IT2 fuzzy sets in X∗.

Example 2.1 Consider an IT2 FAM = (Q, X , δ, q0, F)where Q = {q0, q1, q2), X =
{a, b}, F = 1/0.2/q1+1/0.3/q1+1/0.4/q1+1/0.7/q2+1/0.9/q2+1/1/q2 (or F =
1/[0.2, 0.4]/q1 + 1/[0.7, 1]/q2) and δ is given by

δ(q0, a) = 1/0.3/q1 + 1/0.5/q1,

δ(q1, a) = 1/0.7/q1 + 1/0.8/q1 + 1/0.9/q1 + 1/0.3/q2 + 1/0.4/q2,

δ(q2, a) = 1/0.5/q2 + 1/0.7/q2,

δ(q1, b) = 1/0.3/q1 + 1/0.4/q1 + 1/0.4/q2 + 1/0.6/q2,

δ(q2, b) = 1/0.2/q1 + 1/0.3/q1 + 1/0.5/q1 + 1/0.7/q2 + 1/0.8/q2.

If w = aaab, we have the following:

δ(q0, a) = 1/0.3/q1 + 1/0.5/q1 = 1/[0.3, 0.5]/q1,
δ∗(q0, aa) = 1/[0.3, 0.5].δ(q1, a)

= 1/[0.3, 0.5].(1/[0.7, 0.9]/q1 + 1/[0.3, 0.4]/q2
= 1/[0.3, 0.5]/q1 + 1/[0.3, 0.4]/q2

δ∗(q0, aaa) = 1/[0.3, 0.5].δ(q1, a) ∪ 1/[0.3, 0.4].δ(q2, a)

= 1/[0.3, 0.5].(1/[0.7, 0.9]/q1 + 1/[0.3, 0.4]/q2)
∪ 1/[0.3, 0.4].(1/[0.5, 0.7]/q2)

= (1/[0.7, 0.9]/q1 + 1/[0.3, 0.4]/q2) ∪ (1/[0.3, 0.4]/q2)
= 1/[0.3, 0.5]/q1 + 1/[0.3, 0.4]/q2

δ∗(q0, aaab) = 1/[0.3, 0.5].δ((q1, b) ∪ 1/[0.3, 0.4].δ(q2, b))
= 1/[0.3, 0.5].(1/[0.3, 0.4]/q1 + 1/[0.4, 0.6]/q2)

∪ 1/[0.3, 0.4].(1/[0.2, 0.5]/q1 + 1/[0.7, 0.8]/q2)
= (1/[0.3, 0.4]/q1 + 1/[0.3, 0.5]/q2)

∪ (1/[0.2, 0.4]/q1 + 1/[0.3, 0.4]/q2)
= 1/[0.3, 0.4]/q1 + 1/[0.3, 0.5]/q2.
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δ∗(q0, aaab) ∩ F = (1/[0.3, 0.4]/q1 + 1/[0.3, 0.5]/q2)
∩ (1/[0.2, 0.4]/q1 + 1/[0.7, 1]/q2)

= 1/[0.2, 0.4]/q1 + 1/[0.3, 0.5]/q2.

The degree to which string aaab of values accepted by M is

L(M, aaab) = height(δ∗(q0, aaab) ∩ F)

= height(1/[0.3, 0.4]/q1 + 1/[0.3, 0.5]/q2)
= 1/[∨{0.3, 0.3},∨{0.4, 0.5}]
= 1/[0.3, 0.5].

3 IT2 fuzzy grammar and IT2 fuzzy automata

In this section we introduce and study the concept of IT2 fuzzy grammar and establish
their relationship with IT2 fuzzy languages.

Definition 3.1 An IT2 fuzzy grammar (IT2 FG) is a quadruple G = (N , T , P, S),
where

1. N is a finite alphabet of nonterminal symbols,
2. T is a finite alphabet of terminal symbols, such that N ∩ T = φ,
3. S ∈ N is a starting nonterminal symbol,
4. P is a finite collection of IT2 fuzzy productions over N ∪ T such that P =

{α ρ−→ β|α ∈ (N ∪ T )∗N (N ∪ T )∗, β ∈ (N ∪ T )∗}, where ρ is a mapping from
(N ∪ T )∗ × (N ∪ T )∗ to I T 2F(T ∗), called IT2 fuzzy transition function.

We may interpret ρ(α, β) as the grade of membership that α will be replaced by β,

denoted by ρ(α, β) = ρ(α → β). For the sake of convenience, α
ρ→β is sometimes

written as α → β in P.

Definition 3.2 Let α
ρ−→ β be a production and γ, δ ∈ (N ∪ T )∗. Then γβδ is said to

be directly derivable from γαδ, which we shall denote by

γαδ
ρ�⇒γβδ.

If αi ∈ (N ∪ T )∗, for i = 1, 2, 3, ...,m and αi+1 is directly derivable from αi for
i = 1, 2, 3, ...,m − 1, then αi is said to derive αm in grammar G or αm is derivable

from α1 in grammar G, which we shall denoted by α1
ρ�⇒
G

∗
αm . We call

α1
ρ1�⇒α2

ρ2�⇒α3
ρ3�⇒...

ρm−1�⇒αm .

the derivation chain of αm from α1, and define

ρ = height(ρ1 ∩ ρ2 ∩ ρ3 ∩ ... ∩ ρm−1)
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Definition 3.3 Let G = (N , T , P, S) be an IT2 FG. An IT2 fuzzy language L(G) ∈
I T 2F(T ∗) generated by G is defined as

L(G, w) = height{ρ : S ρ�⇒
G

∗
w | w ∈ T ∗},

where I T 2F(T ∗) denotes the set of all IT2 fuzzy sets in T ∗.

Example 3.1 Let G = (N , T , P, S) be an IT2 FG, where N = (S, A, B), T = {a}
and P =

{
S

1/[0.1,0.2]−−−−−−→ aS, S
1/[0.3,0.7]−−−−−−→ aA, A

1/[0.5,0.7]−−−−−−→ aA, A
1/[0.3,0.4]−−−−−−→ aB,

B
1/[0.7,0.9]−−−−−−→ aS

}
.

If the derivations of w = (aaa) in G are as follows:

1. S
1/[0.1,0.2]−−−−−−→ aS

1/[0.1,0.2]−−−−−−→ aS
1/[0.1,0.2]−−−−−−→ aS,

2. S
1/[0.1,0.2]−−−−−−→ aS

1/[0.1,0.2]−−−−−−→ aS
1/[0.3,0.7]−−−−−−→ aA,

3. S
1/[0.1,0.2]−−−−−−→ aS

1/[0.3,0.7]−−−−−−→ aA
1/[0.5,0.7]−−−−−−→ aA,

4. S
1/[0.3,0.7]−−−−−−→ aA

1/[0.5,0.7]−−−−−−→ aA
1/[0.5,0.7]−−−−−−→ aA,

5. S
1/[0.3,0.7]−−−−−−→ aA

1/[0.3,0.4]−−−−−−→ aB
1/[0.7,0.9]−−−−−−→ aS, then

L(G, w) = height{1/[0.1, 0.2] ∩ 1/[0.1, 0.2] ∩ 1/[0.1, 0.2],
1/[0.1, 0.2] ∩ 1/[0.1, 0.2], 1/[0.3, 0.7],
1/[0.1, 0.2] ∩ 1/[0.3, 0.7] ∩ 1/[0.5, 0.7],
1/[0.3, 0.7] ∩ 1/[0.5, 0.7] ∩ 1/[0.5, 0.7],
1/[0.3, 0.7] ∩ 1/[0.3, 0.4] ∩ 1/[0.7, 0.9]}

= height{1/[0.1, 0.2], 1/[0.1, 0.2], 1/[0.1, 0.2], 1/[0.3, 0.7],
1/[0.3, 0.4]}

= 1/[∨{0.1, 0.1, 0.1, 0.3, 0.3},∨{0.2, 0.2, 0.2, 0.7, 0.4}]
= 1/[0.3, 0.7].

Definition 3.4 (Chomsky-like classification) Let G = (N , T , P, S) be an IT2 FG.
Then G is said to be

1. arbitrary if there are no restrictions on the form of IT2 fuzzy productions rules,
i.e., productions are of the general form α

ρ�⇒β, α, β ∈ (N ∪ T )∗. Accordingly,
LG is called IT2 fuzzy type 0 language;

2. monotone or context-sensitive if for every production α
ρ−→ β ∈ P , α, β ∈

(N∪T )∗, implies |α| ≤ |β|. Accordingly, LG is called IT2 fuzzy context-sensitive
language;

3. context free if for every production α
ρ−→ β ∈ P, α, β ∈ (N ∪ T )∗ implies

|α| ≤ |β| and α ∈ N . Accordingly, LG is called IT2 fuzzy context free language;
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4. week regular if for every production α
ρ−→ β ∈ P, α, β ∈ (N ∪ T )∗ implies

α ∈ N and β ∈ T+B, B ∈ N ∪ {�} or α = S, β = �. Accordingly, LG is called
IT2 fuzzy week regular language;

5. regular if for every production α
ρ−→ β ∈ P, α, β ∈ (N ∪T )∗, ρ(α, β) > 1/[0, 0]

implies α ∈ N and β ∈ T B, B ∈ N ∪ {�} or α = S, β = �. Accordingly, LG is
called IT2 fuzzy regular language.

Definition 3.5 Two IT2 FGs G1 and G2 are said to be equivalent if they generate the
same IT2 fuzzy language, i.e., L(G1) = L(G2).

Theorem 3.1 An IT2 fuzzy weak regular grammar is equivalent to IT2 fuzzy regular
grammar, i.e., they generate the same classes of IT2 fuzzy languages.

Proof LetG1 = (N1, T , P1, S) andG = (N,T , P, S) ba an IT2 week and IT2 regular
grammar respectively. Also, let the languages generated by G1 and G are denoted by
L(G1) and L(G) respectively. We need to show that L(G1) = L(G). In view of
Definition 3.4, it is easy to see that L(G) ⊆ L(G1). In the following, we only need to
show that L(G1) ⊆ L(G).

(i) For each production

α → w1w2 · · · wmβ ∈ P1,

where wi ∈ T1 for i = 1, 2, · · · ,m and αβ ∈ N1. When m = 1, we have w1 ∈
T , α, β ∈ N1 ⊆ N and α → w1β ∈ P as required, while if m ≥ 2, α, β ∈ N1 ⊆ N ,
we can define new nonterminal symbols as λ1, λ2, · · · , λm−1 ∈ N and denote the set
of these symbols as N0, then we have N = N1 ∪ N0.
Let ρG and ρG1 represent the grade of membership of productions in G and G1
respectively. Now we can reproduce the production α → w1w2 · · · wmβ by means
of productions α → w1λ1, λ → w2λ2, · · · , λm−1 → wmβ ∈ P with ρG(α →
w1λ1) = ρG(λ1 → w2λ2) = · · · = ρG(λm−2 → wm−1λm−1) = 1/[1, 1];
ρG(λm−1 → wmβ) = ρG1(α → w1w2 · · ·wmβ). Then

ρG(α → w1w2 · · · wmβ) = ρG(α → w1λ1) ∩ ρG(λ1 → w2λ2) ∩ · · · ∩
ρG(λm−2 → wm−1λm−1) ∩ ρG(λm−1 → wmβ)

= ρG1(α → w1w2 · · ·wmβ).

(ii) For each production

α → v1v2 · · · vm ∈ P1,

where vi ∈ T1 for i = 1, 2, · · · , n and α ∈ N1. When n = 1, we have v1 ∈ T and
α → v1 ∈ P as required, while if n ≥ 2, α,∈ N1 ⊆ N , we define new nonterminal
symbols as μ1, μ2, · · · , μn−1 ∈ N and denote the set of these symbols as N0, then
we have N = N1 ∪ N0.

Now, we can reproduce the production α → v1v2 · · · vnβ by means of productions
α → v1μ1, μ1 → v2μ2, · · · , μn−1 → vn ∈ P with ρG(α → v1μ1) = ρG(μ1 →
v2μ2) = · · · = ρG(μn−2 → vn−1μn−1) = 1/[1, 1]; ρG(μn−1 → vn) = ρG1(α →
v1v2 · · · vn). Then
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ρG(α → v1v2 · · · vn) = ρG(α → v1μ1) ∩ ρG(μ1 → v2μ2) ∩ · · · ∩
ρG(μn−2 → vn−1μn−1) ∩ ρG(μn−1 → vn)

= ρG1(α → v1v2 · · · vn).

Thus, G can be specified is an I T 2 fuzzy regular grammar. Therefore, from α →
w1w2 · · ·wmβ ∈ P and α → v1v2 · · · vn ∈ P we conclude that L(G1) ⊆ L(G).

To prove the reverse inclusion, suppose that for some w ∈ T ∗, there is a deviation

S
ρ�⇒∗

w.

in G2 with ρG2(S → w) = ρG(S → w).

We shall show that there is a derivation of w in G1 by induction on the number of

symbols from NN1 appearing in the derivation S
ρ�⇒∗

w. If no such symbols appear

then S
ρ�⇒∗

w is already a deviation in G1. Otherwise the first appearance of a symbol
of N N1 is based either on a production α → w1λ1 with ρG2(α → w1λ1) = ρG(α →
w1λ1), whereα → w1w2 · · · wmβ is a production inG1, or on a productionα → v1μ1
with ρG2(α → v1μ1) = ρG(α → v1μ1), where α → v1v2 · · · vn is a production in
G1. Now consider the first case, for any of the symbols of N N1, the only way in
which μi can subsequently appear must involve changes from λ1 to w2λ2, · · · , λm−1
to wmβ. Then the chain of transitions α → w1λ1, λ1 → w2λ2, · · · , λm−1 → wmβ

with

ρG2(α → w1λ1) = ρG(α → w1λ1)

ρG2(λ1 → w2λ2) = ρG(λ1 → w2λ2)

· · · · · · · · · · · ·
ρG2(λm−1 → wmβ) = ρG(λm−1 → wmβ)

can be reproduced by a single transition α → w1w2 · · · wmβ in G with

ρG2(α → w1w2 · · · wmβ) = ρG2(α → w1λ1) ∩ ρG2(λ1 → w2λ2) ∩ · · · ∩
ρG2(λm−1 → wmβ)

= ρG(α → w1λ1) ∩ ρG(λ1 → w2λ2) ∩ · · · ∩
ρG(λm−1 → wmβ)

= ρG(α → ww2 · · · wmβ)

= ρG1(α → ww2 · · ·wmβ).

Similarly, in the second case the derivation must involve subsequently changes from
m1 to v2μ2, · · · , μn−1 to vn , and these n transitions can be replaced by a single
transitions in G2 from w to v1v2 · · · vn with

ρG2(α → v1v2 · · · vn) = ρG2(α → v1μ1) ∩ ρG2(μ1 → v2μ2) ∩ · · · ∩
ρG2(μn−1 → vn)

= ρG(α → v1μ1) ∩ ρG(μ1 → v2μ2) ∩ · · · ∩

123



Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar 1517

ρG(μn−1 → vn)

= ρG(α → v1v2 · · · vn)
= ρG1(α → vv2 · · · vnβ).

In both cases, the derivation S
ρ�⇒∗

w is replaced by one with fewer occurrence of
symbols from N N1 with ρG2(w) = ρG(w), then it follows that L(G2) ⊂ L(G1).
Thus L(G) ⊂ L(G1), showing that L(G) = L(G1).

The following example illustrate above proposition.

Example 3.2 Let G1 = (N1, T , P1, S) be an IT2 fuzzy week regular grammar, where
N1 = {S, A, B}, and T = {x, y, z},

P1 = {S ρ1−→xx A, A
ρ2−→xyB, B

ρ3−→yA, A
ρ4−→zy, B

ρ5−→za}.
We construct an IT2 fuzzy regular grammar G = (N , T , P, S), where

P = {S1/[1,1]−→ xλ1, λ1
ρ1−→x A, A

1/[1,1]−→ xλ2, λ2
ρ2−→yB,

B
ρ3−→yA, A

1/[1,1]−→ zμ1, μ1
ρ4−→y, B

1/[1,1]−→ zμ2, μ2
ρ5−→x, }.

and N = N1 ∪ {λ1, λ2, μ1, μ2}.
Clearly, for w = x3y2zy the derivation of w in G1 is as follows:

S
ρ1−→xx A

ρ2−→xxxyB
ρ3−→xxxyyA

ρ4−→xxxyyzy,

so L(G1)(w) = ρ1 ∩ ρ2 ∩3 ∩ρ4.
The derivation of w in G is as follows:

S
1/[1,1]−→ xλ1

ρ1−→xx A
1/[1,1]−→ xxxλ2

ρ2−→xxxyB
ρ3−→xxxyyA

1/[1,1]−→ xxxyyzμ1
ρ4−→xxxyyzy.

then

L(G)(w) = 1/[1, 1] ∩ ρ1 ∩ 1/[1, 1] ∩ ρ2 ∩ ρ3 ∩ 1/[1, 1] ∩ ρ4

= ρ1 ∩ ρ2 ∩ ρ3 ∩ ρ4

= L(G1)(w).

Now we have following result.

Theorem 3.2 Let G = (N , T , P, S) be an IT2 fuzzy regular grammar, then there exists
an IT2 FA M = (Q, X , δ, q0, F) such that L(M) = L(G).

Proof For given an IT2 fuzzy regular grammarG = (N , T , P, S), we can construct an
IT2 FA M = (Q, X , δ, q0, F), where Q = N ∪ qF , X = T , q0 = 1/[1, 1]/S, F =
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(1/[1, 1]/S + LG(�)/qF ) and a/b

δ(A, u)(B) =
⎧⎨
⎩

ρ(A → uB) A, B ∈ N
ρ(A → u) A ∈ N , B = F
0 otherwise

For any λ,μ ∈ (N ∪ T )∗, ρ(λ → μ) = height{ρ : λ
ρ�⇒∗

μ}. We will show that
L(M)(w) = L(G)(w). Let w ∈ V ∗

T , there are two cases for w.

1. If w = �, then L(M)(w) = L(G)(�).

2. If w �= �, let w = u1u2u3...un, where ui ∈ T for i = 1, 2, ..., n. If S
ρ�⇒∗

w

there must exist some derivation of w with the form

S
ρ1�⇒ u1 A1
ρ2�⇒ u1u2 A2
ρ3�⇒ . . . . . . . . .

ρn−1�⇒ u1u2 . . . un−1 An−1
ρn�⇒ u1u2 . . . un−1un .

where Ai−1
ρi�⇒ui Ai ∈ P for i = 1, 2, ..., n and A0 = S, An = un with ρ =

ρ1 ∩ ρ2 ∩ ρ3 ∩ ... ∩ ρn .

By the definition of δ∗ of IT2 FA, we get

δ∗(S, w)(F) ⊇ δ(S, u1)(A1) ∧ δ(A1, u2)(A2) ∧ ...δ(An−1, un)(F)

= ρ1 ∩ ρ2 ∩ .... ∩ ρn

= ρ.

Hence, L(M)(w) = height(δ∗(S, w) ∩ F) = δ∗(S, w)(F) ≥ ρ.

Thus, we have shown that L(G)(w) ⊆ L(M)(w) for any w ∈ X∗, that is L(G) ⊆
L(M).

Conversely, if L(M)(w) = δ∗(S, w)(F) ⊇ δ(S, u1)(A1) ∧ δ(A1, u2)(A2) ∧
. . . δ(An−1, un)(F) For any Ai ∈ Q, let

δ(S, u1)(A1) = ρ1,

δ(S, u2)(A2) = ρ2,

. . . . . . . . . . . . . . .

δ(An−1, un)(An) = ρn,

and let

ρ = ρ1 ∩ ρ2 ∩ ρ3 ∩ ... ∩ ρn,
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then there exists corresponding derivation S
ρ�⇒∗

w. Then it shows that if ρ ⊆
L(M)(w), then ρ ⊆ L(G)(w), that L(M) ⊆ L(G). Therefore, L(M) = L(G),
that is, IT2 fuzzy languages can be accepted by IT2 fuzzy automata.

We give an example to illustrate the proof of the above theorem.

Example 3.3 Consider an IT2 fuzzy regular grammar G = (N , T , P, S) given in
Example 3.2. An equivalent IT2 FA M = (Q, X , δ, q0, F) is constructed as fol-
lows: Q = N ∪ qF = {S, A, B, qF }, X = T = {a}, q0 = S = 1/[1, 1]/S ,
F = 1/[1, 1]/S + (1/[0.4, 0.7]/A + 1/[0.3, 0.6]/S) and the transition function δ

is define as:

δ(S, a) = 1/[0.1, 0.2]/S + 1/[0.3, 0.7]/A,

δ(A, a) = 1/[0.5, 0.7]/A + 1/[0.3, 0.4]/B,

δ(B, a) = 1/[0.7, 0.9]/S,

if w = aaa, the transition steps of w in M are as follows:
δ(S, a) = 1/[0.1, 0.2]/S + 1/[0.3, 0.7]/A.

δ∗(S, aa) = 1/[0.1, 0.2].δ(S, a) ∪ 1/[0.3, 0.7].δ(A, a)

= 1/[0.1, 0.2].(1/[0.1, 0.2]/S + 1/[0.3, 0.4]/A)

∪ 1/[0.3, 0.7].(1/[0.5, 0.7]/A + 1/[0.3, 0.4]/B)

= 1/[0.1, 0.2]/S + 1/[0.1, 0.2]/A
∪ 1/[0.3, 0.7]/A + 1/[0.3, 0.4]/B

= 1/[0.1, 0.2]/S + 1/[0.3, 0.7]/A + 1/[0.3, 0.4]/B.

δ∗(S, aaa) = 1/[0.1, 0.2].δ(S, a) ∪ 1/[0.3, 0.7].δ(A, a)

∪ 1/[0.3, 0.4].δ(B, a)

= 1/[0.1, 0.2].(1/[0.1, 0.2]/S + 1/[0.3, 0.7]/A)

∪ 1/[0.3, 0.7].(1/[0.1, 0.2]/S + 1/[0.3, 0.7]/A)

∪ 1/[0.3, 0.4].(1/[0.7, 0.9]/S)

= 1/[0.1, 0.2]/S + 1/[0.3, 0.7]/A
∪ 1/[0.1, 0.2]/S + 1/[0.3, 0.7]/A ∪ 1/[0.3, 0.4]/S

= 1/[0.3, 0.4]/S + 1/[0.3, 0.7]/A
δ∗(S, aaa) ∩ F = (1/[0.3, 0.4]/S + 1/[0.3, 0.7]/A ∩ 1/[0.3, 0.6]/S

+ 1/[0.4, 0.7]/A)

= 1/[0.3, 0.4]/S + 1/[0.3, 0.7]/A

The degree to which string aaa of value is accepted by M is

L(M, aaa) = height(δ∗(S, aaa) ∩ F)

= height(1/[0.3, 0.4]/S + 1/[0.3, 0.7]/A)

= 1/[∨{0.3, 0.3},∨{0.4, 0.7}]
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= 1/[0.3, 0.7]

Theorem 3.3 Let M = (Q, X , δ, q0, F) be an IT2 FA, then there exists an IT2 regular
grammar G = (N , T , P, S) such that L(G) = L(M).

Proof We can construct an IT2 regular grammar G = (N , T , P, S) ,where T =
X , N = Q ∪ S. The production rules in P is defined as follows:

1. For each δ(A, u)(B) �= 0 then A
ρ1→uB ∈ P such that ρ1 = δ(A, u);

2. If δ(A, u)(B) �= 0 and F(B) �= 0, then A
ρ2→u ∈ P , such that ρ2 =

heightB∈Q(δ(A, u) ∩ F(B)) ;

3. If δ(A, u)(B) �= 0 and q0(A) �= 0, then S
ρ3→uB ∈ P , such that ρ3 = (δ(A, u);

4. If δ(A, u)(B) �= 0 , q0(A) �= 0and F(B) �= 0, then S
ρ4→u ∈ P , such that

ρ4 = heightB∈Q(δ(A, u) ∩ F(B)).

We will show that L(G) = L(M). Let w ∈ T ∗, then there are two cases for w.

1. If w = � then L(G)(w) = ρ(S → �) = L(M)(w) .

2. When w �= �, let w = u1u2u3...un , where ui ∈ T for i = 1, 2, ..., n. If S
ρ�⇒∗

w

there must exist some derivation of w with the form

S
ρ1�⇒ u1 A1
ρ2�⇒ u1u2 A2
ρ3�⇒ . . . . . . . . .

ρn−1�⇒ u1u2 . . . un−1 An−1
ρn�⇒ u1u2 . . . un−1un
= w

where Ai−1
ρi�⇒ui Ai ∈ P for i = 1, 2, ..., n and A0 = S, An = un with ρ =

ρ1 ∩ ρ2 ∩ ρ3 ∩ ... ∩ ρn . From the definition of P , we know that

L(M)(w) = height (δ∗(S, w) ∩ F)

⊇ height(δ(S, u1)(A1) ∧ δ(A1, u2)(A2) ∧ ...δ(An−1, un)(An)

∩F(An))

= ρ1 ∩ ρ2 ∩ .... ∩ ρn

= ρ.

Hence, we have shown that L(G, w) ⊆ L(M, w) for any w ∈ X∗, that is L(G) ⊆
L(M) Conversely, if

L(M)(w) = height(δ∗(S, w) ∩ F)

= heightA1,...,An∈Q(δ(S, u1)(A1) ∧ δ(A1, u2)(A2) ∧ ... ∧
δ(An−1, un)(An) ∩ F(An))

⊇ height(δ(S, u1)(A1) ∧ δ(A1, u2)(A2) ∧ ... ∧
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heightAn∈Qδ(An−1, un)(An) ∩ F(An))

For any A1, ..., An ∈ Q, let height (δ(S, u1)(A1)∧ δ(A1, u2)(A2)∧ ...∧ heightAn∈Q
δ(An−1, un)(An)∩F(An) = ρ1∩ρ2∩ρ3∩...∩ρn = ρ, then there exists corresponding

derivation S
ρ�⇒∗

w. Thus it shows that if ρ ⊆ L(M)(w), then ρ ⊆ L(G)(w), that is
L(M)(w) ⊆ L(G)(w) for any w ∈ X∗, that is L(M) ⊆ L(G) . Therefore L(G) =
L(M), that is the languages accepted by IT2 fuzzy automata are IT2 regular languages.

Example 3.4 Let M = (Q, X , δ, q0, F) be the IT2 FA in Example 3.1. An equiva-
lent IT2 fuzzy regular grammar G = (N , T , P, S) is constructed as follows, where

T = X = {a, b}, N = Q ∪ {S}, S = q0, and production P = {S 1/[0.4,0.6]−−−−−−→
aq1, q1

1/[0.7,0.9]−−−−−−→ aq1, q1
1/[0.3,0.4]−−−−−−→ aq2, q2

1/[0.5,0.7]−−−−−−→ aq2, q1
1/[0.3,0.4]−−−−−−→

bq1, q1
1/[0.4,0.6]−−−−−−→ bq2, }

If w = aaab, the derivations of w in G are as follows:

1. S
1/[0.3,0.5]−−−−−−→ aq1

1/[0.7,0.9]−−−−−−→ aq1
1/[0.7,0.9]−−−−−−→ aq1

1/[0.3,0.4]−−−−−−→ bq1,

2. S
1/[0.3,0.5]−−−−−−→ aq1

1/[0.7,0.9]−−−−−−→ aq1
1/[0.7,0.9]−−−−−−→ aq1

1/[0.4,0.6]−−−−−−→ bq2,

3. S
1/[0.3,0.5]−−−−−−→ aq1

1/[0.7,0.9]−−−−−−→ aq1
1/[0.3,0.4]−−−−−−→ bq2

1/[0.2,0.5]−−−−−−→ bq1,

4. S
1/[0.3,0.5]−−−−−−→ aq1

1/[0.7,0.9]−−−−−−→ aq1
1/[0.3,0.4]−−−−−−→ bq2

1/[0.7,0.8]−−−−−−→ bq2,

5. S
1/[0.3,0.5]−−−−−−→ aq1

1/[0.3,0.4]−−−−−−→ aq2
1/[0.5,0.7]−−−−−−→ aq2

1/[0.2,0.5]−−−−−−→ bq1,

6. S
1/[0.3,0.5]−−−−−−→ aq1

1/[0.3,0.4]−−−−−−→ aq2
1/[0.5,0.7]−−−−−−→ aq2

1/[0.7,0.8]−−−−−−→ bq2,

Thus

L(G)(w) = height{1/[0.3, 0.5] ∩ 1/[0.7, 0.9] ∩ 1/[0.7, 0.9] ∩ 1/[0.3, 0.4],
1/[0.3, 0.5] ∩ 1/[0.7, 0.9] ∩ 1/[0.7, 0.9] ∩ 1/[0.4, 0.6],
1/[0.3, 0.5] ∩ 1/[0.7, 0.9] ∩ 1/[0.3, 0.4] ∩ 1/[0.2, 0.5],
1/[0.3, 0.5] ∩ 1/[0.7, 0.9] ∩ 1/[0.3, 0.4] ∩ 1/[0.7, 0.8],
1/[0.3, 0.5] ∩ 1/[0.3, 0.4] ∩ 1/[0.5, 0.7] ∩ 1/[0.2, 0.5],
1/[0.3, 0.5] ∩ 1/[0.3, 0.4] ∩ 1/[0.5, 0.7] ∩ 1/[0.7, 0.8]}

= height{1/[0.3, 0.4], 1/[0.3, 0.5], 1/[0.2, 0.4], 1/[0.3, 0.4],
1/[0.2, 0.4], 1/[0.3, 0.4]}

= 1/[∨{0.3, 0.3, 0.2, 0.3, 0.2, 0.3},∨{0.4, 0.5, 0.4, 0.4, 0.4, 0.4}]
= 1/[0.3, 0.5]

Finally, in the light of Propositions 3.2 and 3.3, we have following two corollaries.

Corollary 3.1 IT2 fuzzy regular grammars are equivalent to IT2 fuzzy automata.

Corollary 3.2 IT2 fuzzy automata are equivalent to IT2 fuzzy weak regular grammars.
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4 IT2 fuzzy language characterize by IT2 fuzzy automata

An IT2 fuzzy language L is an IT2 fuzzy subset of X∗ which is defined in Definition
2.9. In this section, we shall investigate the closure properties of IT2 fuzzy languages
recognized by IT2 fuzzy automata.

Definition 4.1 Let L1, L2 ∈ I T 2F(X∗). Then ∀w ∈ X∗

(1) the union of L1 and L2, denoted by L1 ∪ L2, defined as L1 ∪ L2 =
1

[μ
L1

(w)∨μ
L2

(w),μL1
(w)∨μL2

(w)] ,

(2) the intersection of L1 and L2, denoted by L1 ∩ L2, defined as L = L1 ∩ L2 =
1

[μ
L1

(w)∧μ
L2

(w),μL1
(w)∧μL2

(w)] ,

(3) the complement of L , denoted by LC , defined as LC = 1
[1−μL1

(w),1−μ
L1

(w)] ,

(4) the concatenation of L1 and L2, denoted by L1 · L2, defined as L = L1 · L2 =
1

[∨{∧{μ
L1

(u),μ
L2

(v)}},∨{∧{μL1
(u),μL2

(v)}}] , where w = uv,

(5) the Kleene closure of L , denoted by L∗, defined as L̃∗ = ⋃∞
i=0 L

i = L0 ∪ L1 ∪
L2 ∪ ..., where

L0 =
{
1/[1, 1] x = �

1/[0, 0] x �= �

Theorem 4.1 Let M1 and M2 be two IT2 FAs. Then there exists an IT2 FA M such
that

L(M) = L(M1) ∪ L(M2).

Proof Let L(M1) and L(M2) be the IT2 fuzzy automata languages accepted by IT2
FAs M1 = (Q1, X1, δ1, q01 , F1) and M2 = (Q2, X2, δ2, q02 , F2) respectively. Then
we define an IT2 FA M = (Q, X , δ, q0, F) as follows

Q = Q1 ∪ Q2, where Q1 ∩ Q2 = ∅,

F(qi ) =
{
F1(qi ) if qi ∈ Q1,
F2(qi ) if qi ∈ Q2;

δ(qi , a) =
⎧⎨
⎩

δ1(qi , a) if qi ∈ Q1,

δ2(qi , a) if qi ∈ Q2,

1/[0, 0] otherwise;

and

δ∗(qi , w)(q j ) =
⎧⎨
⎩

δ∗
1(qi , w)(q j ) if qi , q j ∈ Q1,

δ∗
2(qi , w)(q j ) if qi , q j ∈ Q2,

1/[0, 0] otherwise
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Therefore, ∀w ∈ X∗, L(M, w) = height[δ∗(q0, w) ∩ F] = height[{δ∗
1(q0, w) ∩

F1} ∨ {δ∗
2(q0, w) ∩ F2}] = height[δ∗

1(q0, w) ∩ F1] ∨ height[δ∗
2(q0, w) ∩ F2] =

L(M1, w) ∨ L(M2, w). Hence L(M) = L(M1) ∪ L(M2).

Theorem 4.2 Let M1 and M2 be two IT2 FAs. Then there exists an IT2 FA M such
that

L(M) = L(M1) ∩ L(M2).

Proof Let L(M1) and L(M2) be the IT2 fuzzy automata languages accepted by IT2
FAs M1 = (Q1, X1, δ1, q01 , F1) and M2 = (Q2, X2, δ2, q02 , F2) respectively. Then
we define an IT2 FA M = (Q, X , δ, q0, F) as follows

Q = Q1 × Q2 (direct product o f Q1 and Q2),

F = F1 ∩ F2,

δ((qi × q j ), (a.b)) = δ1(qi , a) ∧ δ2(q j , b), (qi , q j ) ∈ Q1 × Q2,

and

δ∗((qi , q j )(x, y))(pi , p j ) = δ∗
1(qi , x)(pi ) ∧ δ∗

2(q j , y)(p j ),

∀(qi , q j ) ∈ Q1 × Q2, (pi , p j ) ∈ Q1 × Q2.
Therefore, ∀w ∈ X∗, L(M, w) = height[δ∗(q0, w) ∩ F] = height[δ∗

1(q0, w) ∩
F1 ∩ δ∗

2(q0, w) ∩ F2] = height[δ∗
1(q0, w) ∩ F1] ∧ height[δ∗

2(q0, w) ∩ F2] =
L(M1, w) ∧ L(M2, w). Hence L(M) = L(M1) ∩ L(M2).

Theorem 4.3 Let M1 and M2 be two IT2 FAs. Then there exists an I T 2F automaton
M such that

L(M) = L(M1) · L(M2).

Proof Let L(M1) and L(M2) be the IT2 fuzzy automata languages accepted by IT2
FAs M1 = (Q1, X1, δ1, q01 , F1) and M2 = (Q2, X2, δ2, q02 , F2) respectively. Then
we define an IT2 FA M = (Q, X , δ, q0, F) as follows

Q = Q1 ∪ Q2, where Q1 ∩ Q2 = ∅,

F = FF = F2

and

δ(qi , a) =
{∨{∧{δ1(qi , a), δ2(qi , a)}}, (qia) ∈ Q1 × �1

∨{∧{δ1(qi , a), δ2(qi , a)}}, (qia) ∈ Q2 × �2

δ∗(qi , w)(q j ) =

⎧⎪⎪⎨
⎪⎪⎩

δ∗
1(qi , w)(q j ) qi , q j ∈ Q1,

δ∗
2(qi , w)(q j ) qi , q j ∈ Q2,

δ(qi , a) qi ∈ Q1, q j ∈ Q2
1/[0, 0] otherwise.
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Therefore, ∀w ∈ X∗, L(M, w) = height[δ∗(q0, w) ∩ F] = ∨
w1w2=w[height

{δ∗
1(q0, w1)∩ F1}∧ height{δ∗

2(q0, w2)∩ F2}] = ∨
w1w2=w[L(M1, w1) · L(M2, w2).

Hence L(M) = L(M1) · L(M2).

Following result can be prove easily by using Propositions 4.1 and 4.3.

Theorem 4.4 Let M1 and M2 be two IT2 FAs. Then

L(M1) = L(M2)
∗.

Definition 4.2 Let M be an IT2 FA and λ = 1/
[
λ, λ

]
,
[
λ, λ

] ∈ I nt([0, 1]), set of
all closed subintervals of [0, 1]. Then a λ-IT2 fuzzy language accepted by M with
parameter λ is defined as

L(M; λ) = {x : LM (x) ⊇ λ, x ∈ X∗}

Theorem 4.5 Let M be an IT2 FA and L(M; λ) a λ-IT2 fuzzy language accepted by
M. Then L(M; λ) is not closed under IT2 fuzzy complement.

Proof Let M be an IT2 FA and L(M; λ) a λ-IT2 fuzzy language accepted by M . Then
we have L(M; λ1) ⊇ L(M; λ2) if λ1 ≤ λ2. That is L(M; λ) is non-increasing for λ.
On the other hand, if λ1 ≤ λ2, then LC (M; λ1) ⊆ LC (M; λ2) and thus LC (M; λ) is
non-decreasing, a contradiction appears.

Following example illustrate the fact of the above proposition.

Example 4.1 Consider Example 2.1, where L(M, aa) = height(δ(q0, aa) ∩ F) =
1/[0.3, 0.4], L(M, aaa) = height(δ(q0, aaa) ∩ F) = 1/[0.3, 0.4] and
L(M, aaab) = height(δ(q0, aa) ∩ F) = 1/[0.3, 0.5]. Let λ1 = 1/[0.2, 0.4] and
λ2 = 1/[0.3, 0.5] such that λ1 ≤ λ2. Then by the Definition 4.2, we have L(M; λ1) =
{aa, aaa, aaab} and L(M; λ2) = {aaab}. Thus L(M; λ1) ⊇ L(M; λ2). On the other
hand, LC (M, aa) = 1/[0.7, 0.6], LC (M, aaa) = 1/[0.7, 0.6] and LC (M, aaab) =
1/[0.7, 0.5]. Therefore LC (M; λ1) ⊆ LC (M; λ2) if λ1 ≤ λ2, and thus a contradiction
appears.

5 Conclusion

In this paper, we have proposed the concept of IT2 fuzzy grammar and established
their relationship with IT2 fuzzy automata. In particular, we obtained that an IT2
fuzzy weak regular grammars are equivalent to IT2 fuzzy regular grammars, and if
an IT2 fuzzy language is generated by an IT2 fuzzy grammar, it can be accepted by
an IT2 fuzzy automata, and vice versa. Furthermore, we obtained some important
operations on IT2 fuzzy languages and show that IT2 fuzzy languages recognized by
IT2 fuzzy automata is closed under the operations of union, intersection, concatenation
and Kleene closure but are not closed under complement. We hope that, like fuzzy
grammar, IT2F grammar which is another dimension of application IT2 fuzzy set
theory, will attract the researchers and the work initiated here will help in finding
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some successful application of IT2F grammar, as done for T2 fuzzy grammar in
[1]. Much more can be further done by introducing the concepts of their primaries
and decomposition (as done, e.g., in [27]). It may also be worthwhile to try using
topological and categorical methods in the study of IT2 fuzzy automata, as done for
fuzzy automata in, e.g, [26].

Acknowledgements The authors are greatly indebted to the referees for their valuable observations and
suggestions for improving the presentation of the paper.
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17. Micić, Z., Jančić, J.Ignjatović, Ćirić, M.: Determinization of fuzzy automata by means of the degrees

of language inclusion. IEEE Trans. Fuzzy Syst. 2, 2144–2153 (2015)
18. Mizumoto, M., Tanaka, K.: Fuzzy-fuzzy automata. Kybernetes 5, 107–112 (1976)
19. Mordeson, J.N., Malik, D.S.: Fuzzy Automata and Languages: Theory and Applications. Chapman

and Hall/CRC, London/Boca Raton (2002)
20. Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237,

275–306 (2000)
21. Qiu, D.: Automata theory based on complete residuated lattice-valued logic(I). Sci. China 44, 419–429

(2002)
22. Qiu, D.: Automata theory based on complete residuated lattice-valued logic(II). Sci. China 45, 442–452

(2002)
23. Santos, E.S.: Fuzzy automata and languages. Inf. Sci. 10, 193–197 (1981)
24. Sheng, L., Li, Y.M.: Regular grammars with truth value in lattice-ordered monoid and their languages.

Soft. Comput. 10, 79–86 (2006)
25. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing, Boston (1997)

123



1526 S. Sharan et al.

26. Srivastava A.K, Tiwari S.P (2002) A topology for fuzzy automata. In: Proc. 2002 AFSS Internat. Conf.
on Fuzzy Systems, Lecture Notes in Artificial Intelligence, vol. 2275, Springer, pp 485–490

27. Srivastava, A.K., Tiwari, S.P.: On another decomposition of fuzzy automata. J. Uncertain Syst. 5, 33–37
(2011)

28. Turksen, I.B.: Type-2 representation and reasoning for CWW. Fuzzy Sets Syst. 127, 17–36 (2002)
29. Wechler W. The concept of fuzziness in automata and languages theory. Addison-Wesley, Reading
30. WeeW.G. On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern

classification, Ph. D. Thesis, Purdue University
31. Wu, D., Mendel, J.M.: Aggregation using the linguistic weighted average and interval type-2 fuzzy

sets. IEEE Trans. Fuzzy Syst. 15, 1145–1161 (2007)
32. Wu, H.Y., Wu, Y.Y., Luo, J.P.: An interval type-2 fuzzy rough set model for attribute reduction. IEEE

Trans. Fuzzy Syst. 17, 301–315 (2009)
33. Ying, M.S.: Automata theory based on quantum logic (I). Int. J. Theor. Phys. 39, 981–991 (2000)
34. Ying, M.S.: Automata theory based on quantum logic (II). Int. J. Theor. Phys. 39, 2545–2557 (2000)
35. Ying, M.: A formal model of computing with words. IEEE Trans. Fuzzy Syst. 10, 640–652 (2002)
36. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
37. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf.

Sci. 8, 199–249 (1975)
38. Zhang, Z.: On characterization of generalized interval type-2 fuzzy rough sets. Inf. Sci. 219, 124–150

(2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 IT2 fuzzy automata and its languages

	3 IT2 fuzzy grammar and IT2 fuzzy automata
	4 IT2 fuzzy language characterize by IT2 fuzzy automata
	5 Conclusion
	Acknowledgements
	References




