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Abstract
Networks of evolutionary processors (NEP for short) form a class of models within
the new computational paradigms inspired by biological phenomena. They are known
to be theoretically capable of solving intractable problems. So far, there are two main
categories that differ from each other by the nature of filtering process controlling
the communication step: random-context clauses or polarization. Several studies have
proven that both of them are computationally complete through efficient simulations of
universal computationalmodels such as Turingmachines and 2-tag systems.Neverthe-
less, the indirect conversion between the two network variants results in an exponential
increase of the computational complexity. In this paper, we suggest a direct simula-
tion of polarized NEP through NEP with random-context filters which incurs in lower
complexity costs.
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1 Introduction

In the last two decades, new computational paradigms taken after natural behaviors
and phenomena have been of great interest for the researching community. The aim of
considering these new paradigms has been to overcome the limitations encountered
by the classic computational models. Theoretical scrutiny of many proposed systems
has proven their feasibility for the efficient solving of intractable problems. Networks
of bio-inspired processors embody a subcategory of massively parallel and distributed
computational paradigms identified by two properties: their inspiration from nature
and their exceptional parallel performance (in theory, unlimited). These networks
are analogous to several computational paradigms: tissue-like P systems [22] in the
membrane computing area [27], evolutionary systems abstracted from the evolution
of various cell populations [9], networks of parallel language processors, which has
been introduced as a parallel language-theoretic model [8], flow-based programming,
which is a programming model widely known [25], connection machine, which may
be viewed as a network, in the shape of a hypercube, consisting of microprocessors
that process one bit per unit time [12], distributed computing using mobile programs
[26], etc.

Informally, networks of bio-inspired processors can be visualized as graphs with
processors positioned in the vertices manipulating information from a wide spectrum
of data types: strings, pictures, graphs, multisets, etc. Thus far, research on two main
categories of networks of bio-inspired processors handling strings, namely splicing
and evolutionary processors, has been reported. The former [15], emulating a computa-
tional counterpart of the splicing procedure for DNAmolecules regulated by different
types of restriction and ligase enzymes [11], was considered as a theoretical prototype
for solving problems in [16]. The latter, introduced in [7], is a mathematical con-
struction designed for performing one of the following simple operations inspired by
the point mutations in DNA sequences: insertion, deletion or substitution of a single
base pair. In this paradigm, each node performs the computational counterpart of a
cell with genetic information encoded in DNA sequences which may evolve by local
evolutionary events. Networks of evolutionary processors (NEP) have been consid-
ered as tools for producing and accepting languages as well as means for problem
resolution in [7,18,21], respectively. Characterization of the complexity clases NP, P
and PSPACE according to accepting NEPs has been reported in [14], universal NEPs
and descriptional complexity problems are examined in [13,17]. An early survey of
the conclusions regarding NEPs is available in [19]. The computation in a network
of evolutionary processors follows after a succession of alternate steps (evolution and
communication) which is terminated once the calculations reach a predefined status.
Firstly, every processor yields new strings by means of application of all evolutionary
rules that can be applied to duplicates of the strings the processor hosts in. Thus, a
node actually contains enough string replications in order to allow the synchronous
execution of each applying rule. This simultaneous process is labeled as an evolution-
ary step. Next in order, the newly obtained data is concurrently shared between the
connected nodes in the following way, designated as a communication step: (i) the
data hosted by a processor leaves that processor after meeting the output requirements
associated to the processor; (ii) each of the adjacent nodes receives a copy of the
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previous data and accepts it based on its input specifications. The information flow
according to these communication strategies is managed through the introduction of
filters deciding on the acceptance or refusal of any string attempting to enter or exit
a node. Initially, two different filters have been considered in the literature based on
the nature of their limitations: random-contexts and polarization. Furthermore, three
versions of random-context filters have been discussed: (i) a pair of different filters
to handle the incoming (input) and exiting strings (output) [21], (ii) the same filters
for both cases [6] and (iii) the two filters of every pair of adjacent nodes collapse in
an unique filter associated to the edge between them [10]. Later on, several variants
of filters that are generalizations of those defined by random-context conditions have
been considered for both accepting and generating networks of evolutionary proces-
sors. These filters are defined by different classes of regular languages, see [20] and
the references therein. It is worth mentioning that filters defined by regular languages
permit to networks with at most two types of nodes be still sufficiently powerful, see
[23].

The polarized branch of networks of evolutionary processors was introduced in
[1]. In this version, the filters based on random-context requirements are replaced
with a filtering strategy built around the concept of polarization. A generalization of
the model of this kind of networks of polarized evolutionary processors (NPEP) was
examined in [2]. The paradigm proposes the removal of the node filters in favor of
a filtering process established upon a polarity affinity between the nodes and strings
present in the network. A node has a polarity in the range {−, 0,+}. On the other hand,
the computation for the strings polarization is done by a valuation mapping which is a
morphismbetween twomonoids: the freemonoid of all strings and the additivemonoid
of integers. The communication strategy is abstracted from the electromagnetic theory.
The polarization of the string is taken after the sign of the integer value computed by
this function. Therefore, the acceptance of a string by a node relies on the polarization
of the node and the string which in this model is required to be the same.

We say a simulation between two computational paradigms preserves the time
complexity if there is a constant factor between the numbers of computational steps
required by each model to achieve any desired result. Although the NPEP and NEPRC
are determined to be computationally complete because of the complexity-preserving
simulations of Turing machines in [3,14], respectively, an indirect simulation between
both of them and their variants through the intermission of a Turing machine produces
a great spike in the complexitymaking this procedure unfeasible. Research for efficient
conversion procedures between the first and third submodels ofNEPRC is documented
in [5] and further extended to include the subcategory (ii) with the investigations in
[6]. Consequently, it is proven the three variants are equivalent from the computational
point of view. This paper attempts to advance further on this line of research with the
proposition of a direct simulation of networks of polarized evolutionary processors
by networks of evolutionary processors with random-context filters (NEPRC). The
converse simulation has been reported in [24].
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2 Definitions and notations

We define the basic concepts and notations employed in this paper. The reader can
refer to [28] for all unexplained notions. A finite and nonempty set of symbols is
denoted as an alphabet. Given a finite set S, its cardinality is denoted by card(S).
Any finite sequence of symbols from an alphabet V is called string over V . The set of
strings over V is denoted by V ∗ and the empty string is denoted by ε. The length of a
string w is symbolized by |w| while alph(w) denotes the minimal alphabet W such
that w ∈ W ∗. Furthermore, |w|a specifies the number of occurrences of the symbol a
in w. Further on, the absolute value of an integer k is denoted by |k|.

We now recall some definitions from a few papers where the networks of evolu-
tionary processors have been introduced, see, e.g., [7], for the generating model, and
[13,14,17], for the accepting model which will be further considered here. A rule
a → b, with a, b ∈ V ∪ {ε}, a �= b and ab �= ε is a substitution rule if both a and b
are not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion rule if a = ε and
b �= ε. The set of all substitution, deletion, and insertion rules over an alphabet V are
denoted by SubV , DelV , and I nsV , respectively.

Given a rule σ as above and a string w ∈ V ∗, we define the following actions of σ

on w:

– If σ ≡ a → b ∈ SubV , then

σ ∗(w) =
{ {ubv | ∃u, v ∈ V ∗ (w = uav)},

{w}, otherwise.

σ r (w) =
{ {ub | w = ua)},

{w}, otherwise.

σ l(w) =
{ {bu | w = au)},

{w}, otherwise.

– If σ ≡ a → ε ∈ DelV , then

σ ∗(w) =
{ {uv : ∃u, v ∈ V ∗(w = uav)},

{w}, otherwise

σ r (w) =
{ {u : w = ua},

{w}, otherwise

σ l(w) =
{ {v : w = av},

{w}, otherwise

– If σ ≡ ε → a ∈ I nsV , then

σ ∗(w) = {uav : ∃u, v ∈ V ∗(w = uv)}
σ r (w) = {wa}
σ l(w) = {aw}.
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In the aforementioned definitions, α = {l, r , ∗} conveys the limitations in the
application of a rule σ to the string w, namely in the left (α = l), in the right (α = r )
or at any position (α = ∗). Given a substitution rule σ ≡ a → b with α = ∗, its
application to a string w with k occurrences of a yields the set of all k different strings
that can be obtained from w depending on the position in w where the rule is applied.
As a special case, if k = 0, applying the rule doesn’t yield any new string and thus,
the string w remains unmodified. A deletion and insertion rule can be considered as a
specific substitution rule with b = ε and a = ε respectively. Consequently, a deletion
rule that deletes a at any position in a string w with k occurrences of a, as above,
generates all the strings with one occurrence of a removed in different positions in
w. Analogously, an insertion rule of a at any position in w produces |w| + 1 new
strings as a consequence of the possible insertion of the symbol a in the beginning of
w, the end of w, and at any intermediate positions between two consecutive letters of
w. For α = l (resp. α = r ), a deletion rule a → ε applied to a string w produces a
new string if a is the first symbol of w (resp. final symbol). Otherwise, the string w

remains unchanged. Analogously, an insertion rule ε → a applied to w yields a new
string by concatenating a to the left (resp. right) of w.

For every rule σ , action α ∈ {l, r , ∗}, and L ⊆ V ∗, we define the α-action of σ on
L by σα(L) = ⋃

w∈L σα(w). Given a finite and non-empty set of rules M , we define
the α-action of M on the string w and the language L by:

Mα(w) =
⋃
σ∈M

σα(w) and Mα(L) =
⋃
w∈L

Mα(w),

respectively. In the original papers referenced above, the rewriting operations defined
above were designated as evolutionary operations since they may viewed as formal
operations abstracted from local DNA mutations.

Let V be an alphabet, we define the following predicates for a string w ∈ V+ and
two disjoint subsets P, F of V :

ϕ(s)(w, P, F) ≡ (P ⊆ alph(w)) ∧ (F ∩ alph(w) = ∅).

ϕ(w)(w, P, F) ≡ (alph(w) ∩ P �= ∅) ∧ (F ∩ alph(w) = ∅).

In the prior definitions, the set P (permitting contexts) includes the allowed symbols
while F (forbidding contexts) encompasses those which are forbidden. Both clauses
require the nonexistence of any symbol a ∈ F in the stringw. The former specification
imposes stronger (s) restrictions since it requires that all permitting symbols are present
inw while the latter demands a weaker (w) condition of at least one permitting symbol
appearing in w.

Given a β ∈ {w, s}, we generalize the above predicates to a language L ⊆ V ∗ by

ϕβ(L, P, F) = w ∈ L | ϕβ(w, P, F).

An evolutionary processor with random context filters (EPRC) over an alphabet V
is a tuple (M, PI, FI, PO, FO) where:
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– M is a set of substitution, deletion or insertion rules over the alphabet V . Formally:
(M ⊆ SubV ) or (M ⊆ DelV ) or (M ⊆ I nsV ). The set M represents the set of
evolutionary rules of the processor. As one can see, a processor is “specialized” in
one evolutionary operation only.

– P I , F I ⊆ V are the input permitting/forbidding contexts of the processor, while
PO, FO ⊆ V are the output permitting/forbidding contexts of the processor.
Informally, the permitting contexts are sets of symbols that should be present
in a string for it to be allowed to enter/leave the processor, while the forbidding
contexts are set of symbols that are required to not exist in a string entering/leaving
the processor.

A homomorphism from themonoid V ∗ into the monoid (group) of additive integers
Z is called valuation of V ∗ inZ.We now recall the definitions of polarized evolutionary
processors and networks of polarized evolutionary processors from [1] and [2].

A polarized evolutionary processor (PEP for short) over an alphabet V is a pair
(M, π), where:

– M is a set of substitution, deletion, or insertion rules following the same prescrip-
tions defined for the EPRCs.

– π ∈ {−,+, 0} is the polarization of the node (negatively or positively charged, or
neutral, respectively).

We denote the set of evolutionary processors with random context filters and polar-
ized evolutionary processors over V by EPRCV and PEPV , respectively.

A network of evolutionary processorswith randomcontext filters (NEPRC for short)
is a 8-tuple � = (V ,U ,G,N , α, β, I n, Out), where:

– V and U are the input and network alphabet, respectively, V ⊆ U .
– G = (XG , EG) is an undirected graph without loops with the set of vertices XG

and the set of edges EG . Each edge is given in the form of a binary set. G is called
the underlying graph of the network.

– N : XG → EPRCU is a mapping which associates with each node x ∈
XG an evolutionary processor with random context filters N (x) = (Mx , P Ix ,
F Ix , POx , FOx ).

– α : XG → {l, r , ∗};α(x) gives the action mode of the rules of node x on the
strings existing in that node.

– β : XG → {(s), (w)} defines the type of the input/output filters of a node. More
precisely, for every node x ∈ XG , the following filters are defined:

input filter: ρx (·) = ϕβ(x)(·; P Ix , F Ix ),
output filter: τx (·) = ϕβ(x)(·; POx , FOx ).

That is, ρx (w) (resp. τx (w)) indicates whether or not the string w can pass the
input (resp. output) filter of x . More generally, ρx (L) (resp: τx (L)) is the set of
strings of L that can pass the input (resp. output) filter of x .

– I n and Out ∈ XG are the input node, and the output node, respectively, of the
NEPRC.

A network of polarized evolutionary processors (NPEP for short) is a 8-tuple � =
(V ,U ,G,N , α, ϕ, I n, Out), where:
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– V ,U ,G, α, I n, Out follow the same specifications as the parameters in NEPRC,
while N : XG → PEPU associates with each node x ∈ XG the polarized
evolutionary processor N (x) = (Mx , πx ).

– ϕ is a valuation of U∗ in Z.

We denote the number of nodes of the underlying graph� as the size of the network
and specify it by card(XG). A configuration of � is a mapping C : XG −→ 2U

∗

which associates a set of strings C(x) with every node x of �. A configuration C(x)
may be understood as the support sets of the multsets of strings which are present in
a node x , in an arbitrarily large number of copies, at a given moment. Given a string
w ∈ U∗, the initial configuration of � is defined byC (w)

0 (I n) = {w} andC (w)
0 (x) = ∅

for all x ∈ XG\I n.
A configuration can be modified either by an evolutionary step or by a communi-

cation step. In an evolutionary step, each component C(x) of the configuration C is
altered according to a set of evolutionary rules M , associated with the node x . This
process is identical for the two variants of networks of evolutionary processors, namely
NPEP and NPERC. Formally, a configuration C ′ is achieved from a previous one C
through the execution of an evolutionary step, denoted as C �⇒ C ′, if and only if:

C ′(x) = Mαx
x (C(x)) for all x ∈ XG .

After each evolutionary step the network proceeds on with the communication step
which is different for each network variant.

In the communication step of a NEPRC the subsequent actions take place simulta-
neously for every node x ∈ XG :

– The data contained in a node x leaves it, granted that they meet the requirements
set by the output filters PO and FO of that node.

– Theprevious data enter the nodes connected to the source node x , provided that they
are not blocked by the input filters P I and F I of the receiving nodes. Otherwise,
these strings are lost.

Formally, a configuration C ′ follows a configuration C after a communication step
(we write C |� C ′) if for all x ∈ XG

C ′(x) = (C(x)\τx (C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx (C(y))).

A communication step in an NPEP is defined as follows for each x ∈ XG :

– Copies of the data present in a node x are sent to each neighbouring node y
connected to it. From these strings, x only keeps a copy of the strings having the
same polarity to that of the node.

– All the nodes receiving the incoming data sent by x take in a copy of the strings
with the same polarity while unaccepted copies are lost.

Note that, for the sake of simplicity, we follow a same polarity strategy to decide on
the acceptance or refusal of a string w by a node x . Formally, the configuration C ′ is
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produced from a configuration C as a consequence of a communication step, written
as C |� C ′, if:

C ′(x) = (C(x)\{w ∈ C(x) | sign(ϕ(w)) �= πx }) ∪⋃
{x,y}∈EG

({w ∈ C(y) | sign(ϕ(w)) = πx }),

for all x ∈ XG . Here, sign(m) is the sign of the integer m.
Let � be a NEPRC/N PEP the computation of � on the input string w ∈ V ∗ is

a sequence of configurations C (w)
0 ,C (w)

1 ,C (w)
2 , . . . , where C (w)

0 is the initial config-

uration of � on w, C (w)
2i �⇒ C (w)

2i+1 and C (w)
2i+1 |� C (w)

2i+2, for all i ≥ 0. Note that the
configurations are changed by alternative steps.

A computation as above halts, if there exists a configuration in which the set of
strings existing in the output node Out is non-empty. Given a NEPRC/N PEP�

and an input string w, we say that � accepts w if the computation of � on w halts.
Therefore, we define the language accepted by � by

L(�) = {w ∈ V ∗ | the computation of � on w halts }.

The time complexity of the halting computation C (w)
0 ,C (w)

1 ,C (w)
2 , . . . ,C (w)

m of �

on w ∈ V ∗ is denoted by time�(z) and equals m. The time complexity of � is the
function from N to N, T ime�(n) = max{time�(w) | w ∈ L(�), |w| = n}. In other
words, T ime�(n) delivers the maximal number of computational steps done by � for
accepting an input string of length n.

For a function f : N −→ N we define:

T imeNEPRC/N PEP ( f (n)) = {L | there exists a NEPRC/NPEP � which

accepts L , such that T ime�(n) ≤ f (n), for all n ≥ n0, for some n0 ≥ 1.}

3 Efficient simulation of NPEP by NEPRC

The predominant purpose of this research is a direct simulation of NPEP by NEPRC
that induces a time complexity improvement in comparison to an indirect simulation
through an intermediate Turing machine.

Theorem 3.1 For every NPEP �, there exists a NEPRC �′ such that L(�) = L(�′).
Moreover, si ze(�)(card(U ) + 15) ≤ si ze(�′) ≤ si ze(�)(3card(U ) + 15).

Proof Let � = (V ,U ,G,N , α, ϕ, I n, Out) be a NPEP with an arbitrary underlying
graph G. The working alphabet U ′ of �′ is defined as follows:

U ′ = U ∪ {ai | a ∈ U , 1 ≤ i ≤ |ϕ(a)|} ∪ {a′ | a ∈ U , ϕ(a) �= 0} ∪
{ā | a ∈ U } ∪ {T,T′,T′′, R+, R−}.
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Fig. 1 Subnetwork 1: setup

We associate with every node x of � the subnetwork of �′ composed in its turn by
the subnetworks illustrated in figures Figs. 1, 2, 3 and 4. It is worth mentioning that
all filters of �′ are weak filters. These subnetworks are connected as follows in �:

(i) The four subnetworks associated with a node x of � are connected such that the
nodes Startaux in the subnetworks in Figs. 1 and 2 is the same node, while the
nodes Check in Figs. 2, 3 and 4 is the same node.

(ii) Each node x of � is connected to y of � provided that {x, y} is an edge in G.

Let is suppose that w ∈ U∗ leaves the node x at a given moment in �. We consider
now that stringw enters Start from x of �′ at that moment. In this node, the symbol T
is inserted in the end of w. Note that the action mode of the insertion rule ε → T is in
the right. Further on, the string wT enters Startaux , where the symbol T is ultimately
replaced by T′, blocking the route back of wT′ to Start .

For each symbol a ∈ U , we distinguish two cases: ϕ(a) �= 0 and ϕ(a) = 0. Let us
consider the case ϕ(a) �= 0, for some a ∈ U . From Startaux , the string wT′ enters
Starta . Here, an occurrence of a is replaced by a1. From now on, a ping-pong process
between the nodes Starta and I nserta starts: each time when the string is in Starta ,
either an occurrence of a is replaced by a1 or ai is replaced by ai+1, provided that
1 ≤ i < |ϕ(a)|, while whenever the string is in I nserta , a symbol a′ is inserted
in its end. The total effect of this ping-pong process is that all occurrences of a are
eventually replaced by a|ϕ(a)| and a total number of |ϕ(a)| · |w|a of occurrences of
a′ are appended. When all occurrences of a are replaced by a|ϕ(a)|, the strings enter
Limita , where all these occurrences are replaced by ā. If the strings still contains
letters from U , the strings cannot enter Check, but they go back to Startaux , where
the process described above is resumed for another letter in U .

Returning to the two cases, if ϕ(a) = 0, then the strings enter the node Limita
associated with this case, where all occurrences of a are replaced directly by ā. In
conclusion, from wT′ one obtains all the strings w′T′u, where w′ is obtained from w

by replacing each occurrence of any symbol a ∈ U by ā and u is any permutation of
the strings in the set

{(a′)|w|a ·|ϕ(a)| | a ∈ U , ϕ(a) �= 0}.

123



562 V. Mitrana, J. A. Sanchez Martin

Fig. 2 Subnetwork 2: introducing ϕ(a) information

Fig. 3 Subnetwork 3: simplification

The aforementioned behavior carries on until all symbols a ∈ U are replaced by ā.
Once this requirement is met, the strings enter Check and T′ is changed to T′′. Note
that all these strings also return to Startaux , but they are ultimately lost in the next
communication step after not meeting the requirements imposed by the filters of the
connected nodes.

The computation continues on with the simplification process handled by the third
subnetwork illustrated in Fig. 3. Let us assume that a string z exits Check and enters
Reduce1. In this node one occurrence of a symbol a′ with ϕ(a) > 0 is changed to R+,
and the new string leaves Reduce1 for entering Reduce2. Here, an occurrence of a
symbol b′ with ϕ(b) < 0 is replaced with R−. These two new symbols are removed in
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Fig. 4 Subnetwork 4: polarization choice and string reset

Reduce3 and Reduce4 and the new string is returned back to Check. Consequently,
z is simplified until it does not contain two symbols a′, b′ with ϕ(a) · ϕ(b) < 0. Note
that any string which does not contains a pair of symbols a′, b′ with ϕ(a) · ϕ(b) < 0
can still enter Reduce1 but it ends up being blocked in either Reduce1 or Reduce2.

Lastly, the simulation ends with the steps executed in the subnetwork portrayed
in Fig. 4. From Check a string can enter either Null or Positive or Negative. It
can enter Null provided that it does not contain any symbol a′, a ∈ U . It can enter
Positive if it still contains a′ with ϕ(a) > 0 after the computational steps in the third
network, but no b′ with ϕ(b) < 0. Finally, it can enter Negative if it only contains a′
with ϕ(a) < 0, but no b′ with ϕ(b) > 0. In all of these nodes, the symbols ā return
to the original a ∈ U . Hereafter, the symbols a′ are removed in the Positive2 and
Negative2 nodes. Then, the simulation ends by removing the special symbol T′′ and
the strings, which collapse now to w, are sent to the nodes of the original network �

given that the node polarity is the same as that considered in each branch, namely +
for Positive, − for Negative and 0 for Null.

In this simulation, the symbols a ∈ U are replaced by their counterparts ā ∈ U ′
without altering their position in w and returned back to the original state in the last
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subnetwork before connecting with the nodes of �. Similarly, the special symbols T
and a′ used for the polarization simulation are removed at the end of the computation.
Therefore, the same string w ultimately enters the common nodes of the networks �

and �′. From these propositions, we conclude L(�) = L(�′).
Finally, it is easier to evaluate the si ze(�′). For each node x of � the new network

�′ has four subnetworks: Subnetwork 1 which has 2 new nodes (the node x belongs
already to �), Subnetwork 2 has at most 3card(U ) + 1 nodes (note that Startaux has
been counted with Subnetwork 1), but at least card(U )+1 nodes, Subnetwork 3 has 4
nodes, while Subnetwork 4 has 8 nodes, hence a total of at most 15+3card(U ) nodes,
but at least 15 + card(U ) nodes. Therefore, si ze(�)(card(U ) + 15) ≤ si ze(�′) ≤
si ze(�)(3card(U ) + 15) holds.

Theorem 3.2 For every NPEP �, with T ime�(n) ∈ O( f (n)), there exists a NEPRC
�′ which directly simulates � and T ime�′(n) ∈ O(P · f (n)(n + f (n))), where P is
the biggest absolute value of the valuation mapping ϕ of �.

Proof We evaluate now the number of evolutionary steps performed by �′ for simu-
lating a communication in �.

Let w be the string that enters Start in the simulation of a communication step in
�. The Subnetwork 1 always requires a constant number of 2 evolutionary steps. The
number of evolutionary steps in Subnetworks 1 and 2 is at most 2+|w|∗(2P+1)+1,
hence O(P|w|). The computation of Subnetwork 3 requires O(P|w|) evolutionary
steps as well. Lastly, the computation continues in exactly one of the three mutually
disjoint branches starting with the nodes: Null, Positive, and Negative, respec-
tively. Thus, the Subnetwork 4 requires a number ofO(|w|),O(P|w|), and O(P|w|)
evolutionary steps, respectively. Now, for an input string of length n, the length of any
string moving throughout the network at any step is bounded by f (n) + n. There-
fore, each simulation of a communication step takes O(P(n + f (n))) steps in �′.
Consequently, T ime�′(n) ∈ O(P · f (n)(n + f (n))).

We now compare our direct simulation with an indirect simulation via a Turing
machine. To this aim, we recall the following two statements from [4,14,17], respec-
tively.

Theorem 3.3 1. Every NPEP working within O( f (n)) time can be simulated by a
nondeterministic Turing machine in O( f (n)( f (n) + n)2).

2. Every nondeterminstic Turing machine working withinO( f (n)) time can be sim-
ulated by an NEPRC in O( f (n) time.

From these statements it immediately follows that every NPEP working within
O( f (n)) time can be simulated by an NEPRC in O( f (n)( f (n) + n)2) time. As one
can easily see, the direct simulation proposed by us in this note is far more efficient
than the indirect one.

An immediate and attractive question arises: Is the P factor necessary? Can it be
discarded? We are going to answer this question in the next section.
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Table 1 Changes in Subnetwork 1

Node Rules P I F I PO FO α

Start {ε → T} U {T′} ∪ {ā | a ∈ U }∪ {T} ∅ r

{a|ϕ(a)| | a ∈ U , ϕ(a) �= 0}
Startaux {T → T′} {T,T′} {a|ϕ(a)|} {T′} ∅ r

Table 2 Changes in Subnetwork 2

Node Rules P I F I PO FO α

Starta {a → a|ϕ(a)|} {a} ∅ {T′} ∅ ∗
I nserta {ε → Rϕ(a)} {T′} ∅ {T′} ∅ r

Limita {a|ϕ(a)| → ā} {Rϕ(a)} {a,T′′} {ā} {a|ϕ(a)|} ∗

4 Another efficient simulation

The answer is yes, the factor P can be removed at the price of a larger size of the
simulating network. In what follows, we discuss this construction.

Theorem 4.1 For every NPEP � = (V ,U ,G,N , α, ϕ, I n, Out) working in f (n)

time, there exists a NEPRC �′ such that L(�) = L(�′) and T ime�′(n) ∈
O( f (n)( f (n) + n))). Moreover, si ze(�)(13 + 4P + card(U )) ≤ si ze(�′) ≤
si ze(�)(13 + 4P + 3card(U )), where P = max{|ϕ(a)| : a ∈ U }.
Proof The construction of �′ is very similar to that from the proof of Theorem 3.1. We
shall just point out the differences. The structure of Subnetwork 1 remains the same,
but the description of nodes Start and Startaux are to be changed as shown in Table
1.

As one can see, the simulation starts in nodes Start and Startaux exactly as
explained in the proof of Theorem 3.1.

The structure of Subnetwork 2 remains unchanged, but the description of nodes
Starta , I nserta , and Limita , for all a ∈ U such that ϕ(a) �= 0, are to be changed as
shown in Table 2.

A similar ping-pong process between the nodes Starta and I nserta in the previous
construction starts: each time when the string is in Starta , an occurrence of a is
replaced by a|ϕ(a)|, while whenever the string is in I nserta , a symbol Rϕ(a) is inserted
in its end. The total effect of this ping-pong process is that all occurrences of a are
eventually replaced by a|ϕ(a)| and a total number of |w|a of occurrences of Rϕ(a) are
appended. When all occurrences of a are replaced by a|ϕ(a)|, the strings enter Limita ,
where all these occurrences are replaced by ā. If the strings still contains letters from
U , the strings cannot enter Check, but they go back to Startaux , where the process
described above is resumed for another letter in U .

In conclusion, from a string wT′ that goes out from Startaux one obtains all the
stringsw′T′u, wherew′ is obtained fromw by replacing each occurrence of any symbol
a ∈ U by ā and u is any permutation of the strings in the set {R|w|a

ϕ(a) | a ∈ U , ϕ(a) �= 0}.
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Fig. 5 New Subnetwork 3

The Subnetwork 3 in the proof of Theorem 3.1 is now replaced by a subnetwork
having 2P branches. We depicted such a branch in Fig. 5, for an arbitrary −P ≤
−k ≤ −1. Other 2P branches whose nodes are called Reduce1(k) and Reduce2(k),
1 ≤ k ≤ P are defined analogously.

It is important to note that there is an edge between Reduce3 and Reduce4 and
any node Reduce2(q), −P ≤ q �= 0 ≤ P .

We explain the role of this subnetwork. Let us assume that a string z exists Check
and enters Reduce1(q) for some −P ≤ q �= 0 ≤ P . In this node one occurrence
of a symbol Rq is changed to R0, and the new string leaves Reduce1(q) for entering
Reduce2(q). Here, an occurrence of a symbol Rt is replaced with R′

t+q , provided that
(t + q)q ≤ 0. These two new symbols are removed in Reduce3 and Reduce4 and
the new string is returned back to Check. Consequently, z is simplified until it does
not contain two symbols Ri , R j with i × j < 0.

Although the structure of Subnetwork 4 remains the same to that in the proof of
Theorem 3.1, the parameters of all nodes have to be changed, hence we prefer to give
it completely in Fig. 6.

The simulation ends in the subnetwork portrayed in Fig. 6. From Check a string
can enter either Null or Positive or Negative. It can enter Null provided that it
does not contain any symbol Rq , −P ≤ q �= 0 ≤ P . It can enter Positive if it still
contains Rq with q > 0, but no Rq with q < 0. Finally, it can enter Negative if it only
contains Rq with q < 0, but no Rq with q > 0. In all of these nodes, the symbols ā
return to the original a ∈ U . Hereafter, the symbols Rq are removed in the Positive2
and Negative2 nodes. Then, the simulation ends by removing the special symbol T′′
and the strings, which collapse now to w, are sent to the nodes of the original network
� given that the node polarity is the same as that considered in each branch, namely+
for Positive, − for Negative and 0 for Null. From these propositions, we conclude
L(�) = L(�′).

We now evaluate the si ze(�′). For each node x of � the new network �′ has four
subnetworks: Subnetwork 1 which has 2 new nodes (the node x belongs already to �),
Subnetwork 2 has at most 3card(U ) + 1 nodes (note that Startaux has been counted
with Subnetwork 1), but at least card(U )+1 nodes, Subnetwork 3 has 4P +2 nodes,
while Subnetwork 4 has 8 nodes, hence a total of at most 13+4P +3card(U ) nodes,
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Fig. 6 New Subnetwork 4

but at least 13 + 4P + card(U ) nodes. Therefore, si ze(�)(card(U ) + 13 + 4P) ≤
si ze(�′) ≤ si ze(�)(3card(U ) + 13 + 4P) holds.

Finally, it is easy to note that the computation on an input string w in Subnetworks
1 and 2 together requires O(|w|) evolutionary steps and the same time is required by
the computation in each of the Subnetworks 3 and 4. Therefore, if � works in f (n)

time, then T ime�′(n) ∈ O( f (n)(n + f (n))).

Finally, it is worth mentioning that this direct simulation completes the result
reported in [24] that states the following:

Theorem 4.2 For every NPERC �, there exists a NEPP �′ such that L(�) = L(�′).
Furthermore, T ime�′(n) ∈ O(T ime�(n)) holds.
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5 Conclusion

Direct simulations between different bio-inspired computational models are a matter
of interest in the community of the area. We propose here two direct simulations of the
communication controlledbypolarizationwith a communication regulatedby random-
context conditions. The differences between them is given by the trade-off between
the size of the networks and running times. A more time efficient simulation requires
an increase of the network size. This is the converse simulation of that reported in [24]
and completes the picture of the direct simulations initiated in [5] and [6]. Finally,
we would like to mention that a similar approach for networks of splicing processors
appears very attractive to us.
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