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Abstract
In this work, the numerical approximation of the time-fractional mobile/immobile
transport equation is considered.We investigate the solution regularity for two types of
the initial data regularities. By applying the continuous piecewise linear finite elements
in space, we obtain the spatial semidiscrete Galerkin scheme and derive its error
estimates. We then propose two finite element schemes for the equation by employing
convolution quadrature based on the backward Euler and the second-order backward
difference methods. The corresponding error estimates for the two schemes are also
given. Numerical examples of the two-dimensional problems are shown to confirm
the convergence theory results.
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1 Introduction

In this work, we study the numerical method for the time-fractional mobile/immobile
transport Eq.
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(κ1∂t + κ2RL D
α
0,t )(u(x, t) − v) = μ�u(x, t) + f (x, t), in � × (0, T ],

u(x, t) = 0, on ∂� × (0, T ],
u(x, 0) = v(x), in �. (1)

Here, � ⊂ R
2 is a bounded convex domain with the boundary ∂�. The parameters

κ1, κ2, and μ are positive constants. The f and v are both prescribed functions. The
fractional order α ∈ (0, 1) and the Riemann-Liouville derivative RL Dα

0,t is defined by

RL D
α
0,t u(·, t) = ∂

∂t

(
RL D

−(1−α)
0,t u(·, t)

)
,

in which the Riemann-Liouville integral RL D
−ν
0,t is given by

RL D
−ν
0,t u(·, t) = 1

�(ν)

∫ t

0
(t − s)ν−1u(·, s)ds,

with ν > 0.
The Eq. (1) has attracted more and more interests in the last two decades. By

introducing the power law memory function, the equation can be derived from the
classic mobile/immobile transport theory, and can be regarded as the limiting equation
that govern continuous time randomwalk with heavy tailed randomwaiting time [19].
There are many important applications in various fields for the fractional model (1),
especially in groundwater solute modeling. For related discussions, please refer to
[7,24].

For the numerical study of the model (1) or its variants, there have been some
research results so far, see [8,13,14] and the references therein. In [13], the authors
considered a meshless method based on radial basis functions to derive the numerical
scheme for solving the time-fractional mobile/immobile transport equation with dif-
ferent spatial domains. One can also refer to [17,18] for further investigation on the
radial basis functions technology in solving other fractional models. In [14], Liu et
al. proposed the compact difference scheme for the one-dimensional case of (1) with
a convection term. Jiang et al. presented the alternating direction implicit compact
difference scheme for the two-dimensional time-fractional mobile/immobile equation
with nonlinear terms based on the classical L1 method [8]. It can be seen that most of
the convergence analysis in these studies are based on the solution being sufficiently
smooth, which may be unrealistic in practice. Recently, Yin et al. employed a gener-
alized BDF2-θ method with starting parts to the fractional mobile/immobile transport
equations involving Riemann–Liouville derivative in time [21]. The starting term is
designed to capture the singularities and this method has been widely used in dealing
with the problem of non-smooth solutions in fractional models [6,12,22,23]. However,
one needs to impose certain compatibility condition on the source f since this method
relies on expanding the solution into power series with respect to t [10].

In this paper, we are interested in the numerical methods for the fractional model
with nonsmooth problemdata in the sense that v ∈ L2(�) and f is not compatiblewith
the data. The nonsmooth data analysis has received great attention due to the important
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roles in various applications, such as inverse problems, one can refer to the review
paper [10] for more details. It is known that the convolution quadrature developed by
Lubich and further investigated by Jin et al., can provide the flexible framework for
developing robust numerical schemes, one may refer to [10] for further discussion. In
[9], by combining the finite element method with convolution quadrature, Jin et al.
proposed two fully discrete schemes for the sudiffusion and diffusion-wave equations,
and established error estimates optimal in the sense of data regularity. Very recently, by
applying convolution quadrature, Chen and Nong developed the numerical schemes
for time-fractional Cattaneo equation. They also given the error estimates of their
schemes when the problem data is smooth or not smooth [3]. For the application of
convolution quadrature in other fractional models, readers can refer to the references
[1,11,25], just to name a few. However, to the best of our knowledge, there is no
report about the convolution quadrature to solve the time-fractional mobile/immobile
transport Eq. (1) with respect to data regularity, and this motivates our research for
this paper.

Themain contributions of this paper are as follows. First, we establish the regularity
results of the solution by using the Laplace transform tools and operator approach. Sec-
ond, by using the convolution quadrature time discretizationwith backward Euler (BE)
and second-order backward difference (SBD) methods, we propose two efficient finite
element schemes for numerically solving Eq. (1), cf. (14) and (17). Especially, when
applying theSBDmethod, in order tomaintain the temporal second-order convergence,
we add some appropriate corrections to the first time layer. Third, by exploiting the
operator trick, we further develop the error estimates of the proposed schemes with
respect to different data regularity, cf. Theorems 4–7.

The rest of the paper is organized as follows. In Sect. 2, we introduce some useful
notations and derive the properties of the solution operator. In Sect. 3, we propose
the semidiscrete finite element scheme with the error estimates. Two fully discrete
schemes based on convolution quadratures and the corresponding error analyses are
presented in Sect. 4. In Sect. 5, the extensive numerical examples are conducted to
verify the theoretical results. The conclusions of this paper are drawn in Sect. 6. We
denote c as a constant which is independent of the temporal stepsize τ and spatial grid
size h in this paper.

2 Preliminary

In this part, we present some useful notations and derive the integral representation of
the solution in Eq. (1).

Note that the Laplace transform of RL Dα
0,t g(t) is given by

L{RL Dα
0,t g(t); z} = zα ĝ(z),

with the notation ĝ(z) = ∫ ∞
0 e−zt g(t)dt . Letting A := −� and applying the Laplace

transform to (1), we obtain

(κ1z + κ2z
α)(̂u(z) − z−1v) + μAû(z) = f̂ (z). (2)
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Formally, we have

û(z) = Ê(z)
(
v + 1

κ1 + κ2zα−1 f̂ (z)
)
, (3)

with Ê(z) = �(z)
z (�(z)I + A)−1. Here, �(z) = κ1z+κ2zα

μ
.

The basic properties of the function �(z) are given by the following lemma. We
omit the proof here, one can refer to [3] for similar discussion.

Lemma 1 For any z ∈ �θ with the fixed θ ∈ (π/(2α), π), we have �(z) ∈ �θ̃ and

|�(z)| ≤ c(κ1|z| + κ2|z|α).

Here, θ̃ = αθ > π/2 and �θ = {z ∈ C, z �= 0, | arg z| < θ}.
Using the resolvent estimate ‖(z I + A)−1‖ ≤ c|z|−1,∀z ∈ �θ for the selfadjoint

and positive definite operator A, we have

‖Ê(z)‖ ≤ c|�(z)

z
| · |�(z)|−1 ≤ c|z|−1. (4)

It follows that the solution operator of Eq. (1) can be expressed by inverse Laplace
transform, that is,

E(t) = 1

2π i

∫

�θ,δ

ezt Ê(z)dz, (5)

in which �θ,δ = {re±iθ : r ≥ δ} ∪ {δeiφ : |φ| ≤ θ} with δ > 0 and θ ∈ (π/2, π).
Therefore, in view of the boundedness of Ê(z) in (4) and Theorem 2.1 in

[2], we conclude that the solution u of (1) is unique, and belongs to the space:
C([0, T ]; L2(�)) ∩ C((0, T ]; H2(�) ∩ H1

0 (�)).
Next, we present the stability properties of the solution operator E(t). To this end,

we let the Hilbert space Ḣr (�) be the subspace of L2(�) with the norm ‖v‖2
Ḣr (�)

=∑∞
k=1 λrk(v, ϕk)

2. Here, λk and ϕk are the Dirichlet eigenvalues and eigenfunctions of
A [20].

From here on, we always choose δ = 1/t in �θ,δ when deriving inequalities, unless
otherwise stated. We present the stability results of solution operator E(t) as follows.

Theorem 1 Let m be a nonnegative integer and k = 0, 1. Then for t > 0, we have:

(a) If v ∈ L2(�), then ‖Ak E (m)(t)v‖ ≤ ct−m−kα‖v‖.
(b) If v ∈ Ḣ2(�) and k + m ≥ 1, then ‖Ak E (m)(t)v‖ ≤ ct−m+(1−k)α‖Av‖.
Proof We first consider the case (a) with k = 0 and m ≥ 0. By the Eq. (5) and the
estimate (4), one gets

‖E (m)(t)‖ ≤ ‖ 1

2π i

∫

�θ,δ

zmezt Ê(z)dz‖ ≤ c
∫

�θ,δ

|z|me�(z)t‖Ê(z)‖|dz| ≤ ct−m .
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So by operating the operator A and using the identity AÊ(z) = �(z)
z (I −�(z)(�(z)I +

A)−1), we derive that

‖AE (m)(t)‖ ≤ c
∫

�θ,δ

|z|m−1|�(z)|e�(z)t |dz|.

Combining the Lemma 1 with the inequality t−m−1 ≤ T 1−αt−m−α , we further obtain

‖AE (m)(t)‖ ≤ c
∫

�θ,δ

(κ1|z|m + κ2|z|m+α−1)e�(z)t |dz| ≤ c(κ1t
−m−1 + κ2t

−m−α)

≤ ct−m−α.

For the case (b) with k = 0 andm ≥ 0, we apply the identity Ê(z) = z−1(I −(�(z)I +
A)−1A) to get

E (m)(t)v = 1

2π i

∫

�θ,δ

zm−1ezt (I − (�(z)I + A)−1A)vdz.

Since
∫
�θ,1/t

zm−1eztdz = 0 for m ≥ 1 and

‖(�(z)I + A)−1‖ ≤ c|�(z)|−1 ≤ cmin

{
1

κ1
|z|−1,

1

κ2
|z|−α

}
,

by observing the inequality tα−m ≤ T 1−αt1−m for m ≥ 1, we have

‖E (m)(t)v‖ ≤ c
∫

�θ,δ

|z|m−1e�(z)t min

{
1

κ1
|z|−1,

1

κ2
|z|−α

}
‖Av‖|dz|

≤ cmin

{
1

κ1
t1−m,

1

κ2
tα−m

}
‖Av‖ ≤ ctα−m‖Av‖.

Finally, the case k = 1 in (b) can be readily derived from the special case k = 0 in
(a). 
�

3 Semidiscrete scheme in space

In this section, we develop the semidiscrete scheme by using the finite element method
in space and derive the corresponding error estimates.

Let Th be a partition of the domain � with h = maxK∈Th hK , where hK denotes
the diameter of the triangles K [20]. The continuous piecewise linear finite element
space Vh over the triangulation Th is given by

Vh =
{
vh ∈ H1

0 (�) : vh |K is the linear function and ∀K ∈ Th
}

.
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The L2(�) orthogonal projection Ph : L2(�) → Vh is defined by

(Phϕ, χ) = (ϕ, χ), ∀χ ∈ Vh,

and the Ritz projection Rh : H1
0 (�) → Vh is given by

(Rhϕ, χ) = (∇ϕ,∇χ), ∀χ ∈ Vh .

The semidiscrete scheme for (1) is described as: Find uh(t) = uh(·, t) ∈ Vh such that

((κ1∂t + κ2RL D
α
0,t )(uh − vh), χ) + μ(∇uh,∇χ) = ( f , χ), ∀χ ∈ Vh,

with the initial value condition uh(0) = vh ∈ Vh . Here vh is the proper approximation
to the function v. By using the discrete Laplacian Ah : Vh → Vh defined by:

(Ahϕ, χ) = (∇ϕ,∇χ), ∀ϕ, χ ∈ Vh,

one further has

(κ1∂t + κ2RL D
α
0,t )(uh(t) − vh) + μAhuh(t) = fh(t), t > 0, (6)

where fh(t) = Ph f (t).
Next, we consider the error estimates for the semidiscrete scheme (6).
The semidiscrete solution uh(t) to (6) has the form:

uh(t) = 1

2π i

∫

�θ,δ

ezt Êh(z)vhdz, (7)

where Êh(z) is the form of Ê(z) by replacing A with Ah . For the convenience of
discussion, we denote F(z) = (�(z)I + A)−1 and Fh(z) = (�(z)I + Ah)

−1. We need
the following error estimate of (F(z) − Fh(z)Ph) which is useful in the error analysis
[2].

Lemma 2 Let v ∈ L2(�) and z ∈ �θ . Then we have the following estimate:

‖(F(z) − Fh(z)Ph)v‖ ≤ ch2‖v‖.

Let the error eh(t) := u(t) − uh(t). Now the error estimates for the semidiscrete
scheme (6) with f = 0 is presented as follows.

Theorem 2 Let f = 0 and v �= 0 in (1). Then for the semidiscrete scheme (6), we
have

(a) If v ∈ L2(�) and vh = Phv, then ‖eh(t)‖ ≤ ch2t−α‖v‖.
(b) If v ∈ Ḣ2(�) and vh = Rhv, then ‖eh(t)‖ ≤ ch2‖Av‖.
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Proof For vh = Phv, we have

eh(t) = 1

2π i

∫

�θ,δ

ezt
�(z)

z
(F(z) − Fh(z)Ph)vdz.

It follows from Lemmas 1 and 2 that

‖eh(t)‖ ≤ c
∫

�θ,δ

e�(z)t |�(z)|
|z| ‖(F(z) − Fh(z)Ph)v‖|dz|

≤ ch2‖v‖
∫

�θ,δ

e�(z)t 1

μ

(
κ1 + κ2|z|α−1

)
|dz|

≤ ch2
(
κ1t

−1 + κ2t
−α

)
‖v‖ ≤ ch2t−α‖v‖,

where the inequality t−1 ≤ T 1−αt−α is used. Hence the proof of case (a) is finished.
For case (b), using the identities�(z)F(z) = I−F(z)A and�(z)Fh(z) = I−Fh(z)Ah ,
we have

eh(t) = 1

2π i

∫

�θ,δ

ezt (−F(z)A + Fh(z)Ah Rh)vdz.

So combining the identity Ah Rh = Ph A with Lemma 2, we obtain the desired results
in case (b). 
�

In the following, we denote the space S := L∞(0, T ; L2(�)) for notation simpli-
fication.

Theorem 3 Let v = 0 and f ∈ S in (1). Then the error estimate of the semidiscrete
scheme (6) is given by

‖eh(t)‖ ≤ ch2| ln(tα/h2)|‖ f ‖S.

Proof From (3), we observe that the solution can be represented by means of inverse
Laplace transform:

u(t) = 1

2π i

∫

�θ,δ

eztμ−1F(z) f̂ (z)dz =
∫ t

0
F̃(t − s) f (s)ds, (8)

where

F̃(t) = μ−1

2π i

∫

�θ,δ

ezt F(z)dz. (9)

Similarly, the semidiscrete solution of (6) can be represented by

uh(t) =
∫ t

0
F̃h(t − s)Ph f (s)ds, (10)
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where F̃h(t) is the form of F̃(t) in (9) with replacing A with Ah .
From (8) and (10), we have the following error equation:

eh(t) =
∫ t

0

(
F̃(t − s) − F̃h(t − s)Ph

)
f (s)ds.

We then divide the discussion into two cases: t ≤ h2/α and t > h2/α . For the first case
t ≤ h2/α , one gets

‖eh(t)‖ ≤ c
∫ t

0

(
‖(F̃(t − s) f (s)‖ + ‖F̃h(t − s)Ph f (s)‖

)
ds

≤ c‖ f ‖S
∫ h2/α

0
‖F̃(t − s)‖ds

≤ c‖ f ‖S
∫ h2/α

0
(t − s)α−1ds ≤ ch2‖ f ‖S,

where we have used the estimate ‖F̃(t)‖ ≤ ctα−1 (or, see Theorem 4.2 in [3]). For
the second case t > h2/α , by applying Lemma 2, we derive that

‖F̃(t) − F̃h(t)Ph‖ ≤ c
∫

�θ,δ

e�(z)t‖F(z) − Fh(z)Ph‖|dz| ≤ ch2
∫

�θ,δ

e�(z)t |dz|

≤ ch2t−1.

So

‖eh(t)‖ ≤
(∫ t−h2/α

0
+

∫ t

t−h2/α

)
‖(F̃(t − s) − F̃h(t − s)Ph

)‖‖ f (s)‖ds

≤ ch2‖ f ‖
∫ t−h2/α

0
(t − s)−1ds ≤ ch2 ln

(
tα/h2

)‖ f ‖S.

Thus, the proof is completed. 
�

4 Two fully discrete schemes

Let K (z) be analytic and bounded in the sector �θ with θ ∈ (π
2 , π). Then K (z) is

the Laplace transform of the distribution k(t), see [5] for further discussion. Denote
K (∂t )g = k ∗ g with the time differentiation ∂t and kernel k. For a given positive
integer N , we divide the time interval [0, T ] into uniform grids {tn = nτ }Nn=0 with
τ = T /N . The numerical approximation of K (∂t )g at t = tn is described by

K (∂τ )g(tn) =
n∑

k=0

wk(τ )g(tn−k),
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in which the weights wk(τ ) are provided by

∞∑
k=0

wk(τ )sk = K
(ϕ(s)

τ

)
. (11)

Here ϕ(s) = 1− s for BE and ϕ(s) = 1− s+ (1− s2)/2 for the SBD. For other types
of the generating function ϕ, see [15]. We shall need the following error estimates for
convolution quadrature [16].

Lemma 3 Let K (z) be analytic in �θ and the boundedness ‖K (z)‖ ≤ M |z|−λ(∀z ∈
�θ) holds. Here, λ and M are some real numbers. Then for g(t) = ctσ−1, we have

‖ (K (∂t ) − K (∂τ )) g(t)‖ ≤
{
ctλ−1τσ , 0 < σ ≤ p,
ctλ−1+σ−pτ p, σ ≥ p,

where p = 1 for BE and p = 2 for SBD.

4.1 The BEmethod and its error estimates

We integrate the semidiscrete scheme (6) from 0 to t to get

κ1(uh − vh) + κ2RL D
α−1
0,t (uh − vh) + μRL D

−1
0,t Ahuh(t) = RL D

−1
0,t fh(t).

This is

κ1uh + κ2RL D
α−1
0,t uh + μRL D

−1
0,t Ahuh(t) = (κ1 + κ2RL D

α−1
0,t ))vh + RL D

−1
0,t fh(t).

(12)

Then applying the convolution quadratures based on the BE method to approximate
the convolution terms, we have the approximation of uh(t) at tn with Un

h by

κ1U
n
h + κ2∂

α−1
τ Un

h + μ∂−1
τ AhU

n
h =

(
κ1 + κ2∂

α−1
τ

)
vh + ∂−1

τ Fn
h , (13)

where n = 1, 2, · · · , N ,U 0
h = vh , and Fn

h = fh(tn). Operating ∂τ on (13), we get the
following BE scheme: Find Un

h for n ≥ 1 such that

(
κ1∂τ + κ2∂

α
τ

)
Un
h + μAhU

n
h = (

κ1∂τ + κ2∂
α
τ

)
vh + Fn

h . (14)

In the following, we give the error estimates for the BE scheme (14).

Theorem 4 For f = 0, v �= 0, and denote Un
h and u as the solutions of (14) and (1),

respectively. Then we have

(a) If v ∈ L2(�) and vh = Phv, then

‖Un
h − u(tn)‖ ≤ c

(
h2t−α

n + τ t−1
n

)‖v‖.
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(b) If v ∈ Ḣ2(�) and vh = Rhv, then

‖Un
h − u(tn)‖ ≤ c

(
h2 + τ tα−1

n

)‖Av‖.

Proof We only need to consider the error estimates of Un
h − uh(tn). Let �(z) =

�(z)(�(z)I + Ah)
−1. By (12) and (13), we have

Un
h − uh(tn) = (

�(∂τ ) − �(∂t )
)
vh .

Since ‖�(z)‖ ≤ c,∀z ∈ �θ , by letting λ = 0, σ = 1 and p = 1 in Lemma 3, we can
derive that

‖Un
h − uh(tn)‖ ≤ cτ t−1

n ‖vh‖.

This together the L2-stability of Ph yields the desired result of case (a). For the case
(b), we observe that the identity �(z) = I − (�(z)I + Ah)

−1Ah holds. So we have

Un
h − uh(tn) = (�̃(∂τ ) − �̃(∂t ))Ahvh,

with �̃(z) = (�(z)I + Ah)
−1. Combining the inequality ‖�̃(z)‖ ≤ cmin{ 1

κ1
|z|−1, 1

κ2|z|−α} with Lemma 3 (i.e., p = 1, σ = 1, λ = 1, α), we obtain

‖Un
h − uh(tn)‖ ≤ cτ min

{
1

κ1
,
1

κ2
tα−1
n

}
‖Ah Rhv‖ ≤ cτ tα−1

n ‖Ph Av‖,

where we have used tα−1
n ≤ T 1−α and Ah Rh = Ph A. The estimate in case (b) then

follows from the L2-stability of Ph . 
�
The error estimate for the inhomogeneous problem is stated as below.

Theorem 5 Let Un
h and u be the solutions of (14) and (1) with v = 0, respectively.

Then we have

‖Un
h − u(tn)‖ ≤ c

(
h2| ln(tαn /h2)|‖ f ‖S + τ tα−1

n ‖ f (0)‖

+ τ

∫ tn

0
(tn − s)α−1‖ f ′(s)‖ds

)
.

Proof Let �(z) = (�(z)I + Ah)
−1. It follows from (12) and (13) that

Un
h − uh(tn) = (�(∂τ ) − �(∂t )) fh(0) + ((�(∂τ ) − �(∂t ))1) ∗ f ′

h(t) = I + I I ,

where the Taylor expansion fh(t) = fh(0)+ (1∗ f ′
h)(t) and the associativity property

of convolution quadrature are applied. Using Lemma 3 with p = 1, σ = 1, λ = 1, α,
we obtain

‖Un
h − uh(tn)‖ ≤ ‖I‖ + ‖I I‖ ≤ c

(
τ tα−1

n ‖ f (0)‖ + τ

∫ tn

0
(tn − s)α−1‖ f ′(s)‖ds

)
,
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in which the last inequality holds for tα−1
n ≤ T 1−α . 
�

4.2 The SBDmethod and its error estimates

In this part, we consider the SBD method to approximate the convolution terms in
(12). We employ the following idea to guarantee the second-order accuracy in time.
In view of (12), we have the semidiscrete solution uh(t) given by

uh(t) = K (∂t )

(
vh + 1

μ
�(z)−1 fh(t)

)
,

where K (z) = �(z)(�(z)I + Ah)
−1. Since K (z) = I − (�(z)I + Ah)

−1Ah , the
semidiscrete solution uh can be further recast as

uh(t) = vh + (�(∂t )I + Ah)
−1

(
− Ah∂t RL D

−1
0,t vh + 1

μ
(∂t∂

−1
t fh(0) + f̃h(t))

)
,

(15)

where t > 0 and f̃h(t) = fh(t)− fh(0). Using the convolution quadratures generated
by the SBD method, we have

Un
h = vh + (�(∂t )I + Ah)

−1
(

− Ah∂τ RL D
−1
0,t vh + 1

μ
(∂τ RL D

−1
0,t fh(0) + f̃h(t))

)
.

(16)

Applying the identity 1τ = ∂τ RL D
−1
0,t with the notation 1τ = (0, 3/2, 1, 1, · · · ),

we get the following SBD scheme: Find Un
h for n ≥ 1 such that

(
∂τ + κ∂α

τ + μAh
)
(Un

h − vh) = −μAh1τ vh + 1τ fh(0) + F̃n
h . (17)

That is,

(
∂τ + κ∂α

τ

)
Un
h + μAhU

n
h = (

∂τ + κ∂α
τ

)
vh + F

n
h,

with F
1
h = − 1

2 (μAh)vh + 1
2 F

0
h + F1

h for n = 1, and F
n
h = Fn

h when n ≥ 2.
Similar to the discussion in the BE scheme (14), we present the error estimates of

the SBD scheme (17) for homogeneous and inhomogeneous problems in turn.

Theorem 6 Let Un
h and u be the solutions of (17) and (1) with f = 0, respectively.

Then we have

(a) If v ∈ L2(�) and vh = Phv, then

‖Un
h − u(tn)‖ ≤ c

(
h2t−α

n + τ 2t−2
n

)‖v‖.
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(b) If v ∈ Ḣ2(�) and vh = Rhv, then

‖Un
h − u(tn)‖ ≤ c

(
h2 + τ 2tα−2

n

)‖Av‖.

Proof From (15) and (16), we have the following error equation:

Un
h − uh(tn) = (�(∂τ ) − �(∂t ))RL D

−1
0,t (Ahvh),

with �(z) = −z(�(z)I + Ah)
−1. Since

‖�(z)‖ ≤ c|z||�(z)|−1 ≤ cmin

{
1

κ1
,
1

κ2
|z|1−α

}
,

applying the Lemma 3 (i.e., p = 2, σ = 2, λ = 0, α − 1) and the identity Ah Rh =
Ph A, we derive that

‖Un
h − uh(tn)‖ ≤ cτ 2 min

{
1

κ1
t−1
n ,

1

κ2
tα−2
n

}
‖Ph Av‖ ≤ cτ 2tα−2

n ‖Av‖,

where the inequality t−1
n ≥ T α−1tα−2

n is used. So the proof of case (b) is completed.
For case (a), one may observe that the identity �(z)Ah = −(z− z�(z)(�(z)I + Ah)

−1)

holds. It follows that ‖�(z)Ah‖ ≤ c|z|. By Lemma 3 (i.e., p = 2, σ = 2 and λ = −1),
we have the desired result of case (a). Thus we complete the proof. 
�
Theorem 7 Let Un

h and u be the solutions of (17) and (1) with v = 0, respectively.
Then we have

‖Un
h − u(tn)‖ ≤ c

(
h2| ln(tαn /h2)|‖ f ‖S + τ 2tα−2

n ‖ f (0)‖

+ τ 2tα−1
n ‖ f ′(0)‖ + τ 2

∫ tn

0
(tn − s)α−1‖ f ′′(s)‖ds

)
.

Proof Let �1(z) = z
μ
(�(z)I + Ah)

−1 and �2(z) = 1
μ
(�(z)I + Ah)

−1. By (12) and
(13), we have Un

h − uh(tn) = I + I I with

I = (�1(∂τ ) − �1(∂t ))t fh(0), and I I = (�2(∂τ )

−�2(∂t ))t f
′
h(0) + ((�2(∂τ ) − �2(∂t ))t) ∗ f ′′

h .

Here we have used the Taylor expansion fh(t) = fh(0) + f ′
h(0) + (t ∗ f ′′

h )(t) and
the associativity property of convolution quadrature. We observe that ‖�1(z)‖ ≤
cmin{ 1

κ1
, 1

κ2
|z|1−α} and ‖�2(z)‖ ≤ cmin

{
1
κ1

|z|−1, 1
κ2

|z|−α
}
. By Lemma 3 (i.e.,

p = 2, σ = 2, λ = 0, α − 1 for the first term I; λ = 1, α for the second term
II), one has

‖I‖ ≤ cτ 2 min

{
1

κ1
t−1
n ,

1

κ2
tα−2
n

}
‖ fh(0)‖,
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Table 1 The temporal errors and convergence orders for case (a)

Scheme N α = 0.1 α = 0.5 α = 0.9

L2 error Order L2 error Order L2 error Order

BE3 16 5.12E–04 – 4.47E–04 – 3.97E–04 –

32 2.58E–04 0.99 2.25E–04 0.99 2.01E–04 0.98

64 1.30E–04 0.99 1.13E–04 0.99 1.01E–04 0.99

128 6.50E–05 1.00 5.66E–05 1.00 5.07E–05 1.00

SBD3 16 3.03E–05 – 2.34E–05 – 8.34E–06 –

32 7.56E–06 2.00 5.81E–06 2.01 2.17E–06 1.94

64 1.88E–06 2.00 1.45E–06 2.00 5.52E–07 1.98

128 4.70E–07 2.00 3.61E–07 2.00 1.39E–07 1.99

and

‖I I‖ ≤ cτ 2 min

{
1

κ1
,
1

κ2
tα−1
n

}
‖ f ′

h(0)‖ + cτ 2
∫ t

0
min

{
1

κ1
,
1

κ2
(tn − s)α−1

}
‖ f ′′

h (s)‖ds

≤ cτ 2
(
tα−1
n ‖ f ′

h(0)‖ +
∫ tn

0
(tn − s)α−1‖ f ′′

h (s)‖ds
)
.

Combining the L2 stability of Ph , we obtain the desired result. 
�

5 Numerical examples

Let � = (0, 1)2, and the parameter κ1 = κ2 = μ = 1. All the tests are executed by
using the continuous piecewise linear finite elements in space and the iFEM software
package presented in [4]. We denote χS as the characteristic function of the set S. For
the model problem (1), we consider the data:

(a) v(x, y) = x(1 − x)y(1 − y) and f = 0,
(b) v(x, y) = χ(0,1/2]×(0,1)(x, y) and f = 0,
(c) v = 0 and f = (1 + t2.1)χ(0,1/2]×(0,1)(x, y).

It can be seen that the three types of data listed above cover the cases discussed in
the error estimates in Sect. 4, so it suffices to use them to verify that the BE and SBD
schemes have the theoretical convergent order, which is the focus of interest in this
paper.

Since the analytical solution of the equation is difficult to obtain, the reference
solution is used instead. The temporal errors for the schemes (14) and (17) with fixed
h = 1/10 are tested at T = 0.1. The reference solution uh(tn) is computed by SBD
schemebyfixed N = 4096 and h = 1/10.Wepresent the numerical results inTables 1,
2 and 3.

Here, the L2-norm errors are denoted by e(N , h) = ‖UN
h −u(tN )‖ and the temporal

convergence orders are computed by log(e(N , h)/e(2N , h)). As can be seen from
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Table 2 The temporal errors and convergence orders for case (b)

Scheme N α = 0.1 α = 0.5 α = 0.9

L2 error Order L2 error Order L2 error Order

BE 16 6.58E–03 – 6.04E–03 – 7.07E–03 –

32 3.29E–03 1.00 3.01E–03 1.00 3.54E–03 1.00

64 1.65E–03 1.00 1.50E–03 1.00 1.77E–03 1.00

128 8.23E–04 1.00 7.52E–04 1.00 8.85E–04 1.00

SBD 16 5.39E–04 – 4.77E–04 – 5.17E–04 –

32 1.28E–04 2.08 1.13E–04 2.08 1.24E–04 2.06

64 3.12E–05 2.03 2.75E–05 2.04 3.05E–05 2.03

128 7.70E–06 2.02 6.80E–06 2.02 7.55E–06 2.01

Table 3 The temporal errors and convergence orders for case (c)

Scheme N α = 0.1 α = 0.5 α = 0.9

L2 error Order L2 error Order L2 error Order

BE 16 3.08E–04 – 2.71E–04 – 2.56E–04 –

32 1.55E–04 0.99 1.36E–04 0.99 1.29E–04 0.99

64 7.79E–05 0.99 6.83E–05 1.00 6.48E–05 0.99

128 3.90E–05 1.00 3.42E–05 1.00 3.25E–05 1.00

SBD 16 1.99E–05 – 1.60E–05 – 1.09E–05 –

32 4.89E–06 2.02 3.91E–06 2.03 2.66E–06 2.03

64 1.21E–06 2.01 9.69E–07 2.01 6.58E–07 2.01

128 3.02E–07 2.01 2.41E–07 2.01 1.64E–07 2.01

Table 1, for smooth initial data, the L2-norm errors at the three different fractional
orders α become smaller as the time stepsize τ is continuously halved for a fixed h, and
the SBD scheme (17) ismore accurate than the BE one (14). Furthermore, the temporal
accuracy of the BE and SBD schemes are O(τ ) and O(τ 2), respectively, which are in
good agreement with the theoretical analysis. Similar results are observed in Tables 2
and 3 for the other two cases (b) and (c). Thus, the numerical results illustrate the
effectiveness of the schemes and the accuracy of the error estimates.

Finally, in order to better understand the dynamical behaviors of Eq. (1), we perform
numerical simulations using non-smooth initial data, i.e., the case (b) in the above
example. We give the numerical results in Fig. 1 by applying the SBD scheme (17)
with fixed h = 0.05 and N = 64.

From Fig. 1, we can observe that the solution profiles of the equation all tend to
decaywith timewhen the fractional order is fixed. Comparing the solutions at different
fractional orders, i.e.,α = 0.1 andα = 0.9, we find that for the case of larger fractional
order, it decays more slowly than that of smaller fractional order for a short time, while
this phenomenon is becoming reversed as time evolves continuously, see T = 1. This
may illustrate the flexibility of the fractional model (1) in depicting anomalous diffu-
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Fig. 1 Comparison behavior of numerical solutions for Eq. (1)

sion, which needs further study for its physical interpretation in practical applications
[19].

6 Conclusions

In this paper, the properties of the corresponding solution operator are given for the
homogeneous problem in fractional model (1), and then the semidiscrete scheme is
obtained by using the finite element method in space. Two finite element schemes are
derived by convolution quadrature based on the BE and the SBD methods. We fully
exploit the operator trick and prove the error estimates of the semidiscrete and fully
discrete schemes under the data regularity. Numerical examples including smooth and
nonsmooth data verify the accuracy of the convergence theory.

It is worth noting that although we consider only Laplacian in Eq. (1), our results in
this paper can be extended to some general sector operators, such as the second-order
coercive and symmetric elliptic differential operatorwith spatially variable coefficients
[10]. However, the generalization to the one with temporal variable coefficients is not
easy and requires further study.
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