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Abstract
The main purpose of this paper is to develop a new method based on operational
matrices of the linear cardinal B-spline (LCB-S) functions to numerically solve of
the fractional stochastic integro-differential (FSI-D) equations. To reach this aim,
LCB-S functions are introduced and their properties are considered, briefly. Then,
the operational matrices based on LCB-S functions are constructed, for the first time,
including the fractional Riemann-Liouville integral operational matrix, the stochastic
integral operational matrix, and the integer integral operational matrix. The main
characteristic of the new scheme is to convert the FSI-D equation into a linear system
of algebraic equations which can be easily solved by applying a suitable method. Also,
the convergence analysis and error estimate of the proposed method are studied and
an upper bound of error is obtained. Numerical experiments are provided to show
the potential and efficiency of the new method. Finally, some numerical results, for
various values of perturbation in the parameters of the main problem are presented
which can indicate the stability of the suggested method.

1 Introduction

Themost physical phenomena can bemodeled as different stochastic equations includ-
ing stochastic integral equations or stochastic integro-differential equations.
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An integral equation is called a stochastic integral equation if it contains at least one
term as a stochastic process, accordingly the solution of this equation is a stochastic
process. In most cases, such equations can not be solved explicitly. So, the different
numerical methods and different basis functions have been presented for solving of
them such as cubic B-spline and bicubic B-spline collocation method [19], hybrid of
block-pulse and parabolic functions [22], Bernoulli polynomials andBernoulliwavelet
metrhods [23,36], delta basis functions [29], quintic B-spline collocation method [21],
Euler polynomial [27], wavelet-based computational method [30] and the other meth-
ods [5–7,12,13,16,18,26,31,34].

Fractional differential equations (FDEs) arise in the various sciences including
finance, physics, signal processing and control theory [3,8–11,32,33]. Sometimes,
these equations are combined with the stochastic integral equations. A stochastic
integro–differential equation is called a FSI-D equation if the order of derivative is
non–integer. Due to non–existing of the analytical solution for these type equations,
it is clear that obtaining the numerical solutions of them can be interesting issue for
the researchers.

The basis functions are one of the most common methods used to solve such
equations [1,20,24,25,28]. When the basis functions are applied, the solution of the
considering problem is approximated as the linear combination of the basis functions
with unknown coefficients. The main characteristic of such methods is to convert
the differential or integral equation to a algebraic system of equations. It not only
simplified the problem but also speeds up the computation.

In this work, a new scheme based on the LCB-S basis functions is introduced for
solving FSI-D equation as

C
0 D

υ
τ Y (τ ) = U (τ ) +

∫ τ

0
λ1(τ, s)Y (s)ds +

∫ τ

0
λ2(τ, s)Y (s)dB(s),

Y (0) = 0, (1.1)

wherein C
0 D

υ
τ is the Caputo fractional derivative of order 0 < υ < 1. Also, U (t) ∈

C2([0, 1]), λi (τ, s) ∈ C2([0, 1] × [0, 1]) for i = 1, 2 are stochastic processes defined
on the probability space (�, F, P) andB(τ ) is Brownian motion process. In Eq. (1.1),
Y (τ ) is an unknown function that must be determined. Lakestani et al. [15] have
applied the LCB-S functions for solving the fractional differential equations. They
have constructed the operational matrix of derivative and fractional derivative. Here,
the LCB-S functions are developed for solving the FSI-D Eq. (1.1). For this purpose,
the operational matrices based on LCB-S functions are constructed, for the first time,
including the fractional Riemann-Liouville integral operational matrix, the stochastic
integral operational matrix, and the integer integral operational matrix. The mentioned
matrices are all upper triangular which can be calculated simply. It is worth noting that
the LCB-S functions have the interpolation properties. Therefore, the coefficients of
each known function can be easily calculated without using any integration and this
is a major advantage of the LCB-S functions respect to the other basis functions [4].
Moreover, these functions have cardinality properties and using this characteristic, the
cost of calculation is decreased(see cpu times of proposed method in the tables of
numerical verifications section).
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The organization of this work is as follows: Some definitions, notations, the formu-
lation of LCB-S functions on [0, 1] and the derivative operational matrix are expressed
in Sect. 2. The operational matrices of fractional Riemann-Liouville, stochastic and
integer integrals are constructed in Sect. 3. The proposedmethod is used to the approxi-
mate solution of the FSI-D equation in Sect. 4. Convergence analysis and error estimate
of the proposed method are studied in Sect. 5. In Sect. 6, numerical experiments are
reported. Also in this section, some numerical results, for various values of pertur-
bation in the parameters of the main problem are presented which can indicate the
stability of the suggested method. A brief conclusion is presented in Sect. 7.

2 Some definitions and notations

Definition 2.1 [14] For the given function Z(τ )

τ0J υ
τ Z(τ ) = 1

�(υ)

∫ τ

τ0

(τ − p)υ−1Z(p)dp, υ > 0,

RL
τ0

Dυ
τ Z(τ ) = 1

�(q − υ)
(
d

dτ
)q
∫ τ

τ0

(τ − p)q−υ−1Z(p)dp, q − 1 ≤ υ < q,

C
τ0
Dυ

τ Z(τ ) = 1

�(q − υ)

∫ τ

τ0

(τ − p)q−υ−1Z (q)(p)dp, q − 1 < υ ≤ q, (2.1)

are called the Riemann-Liouville integral, the Riemann-Liouville derivative and the
Caputo derivative of order υ, respectively.

Definition 2.2 [14] If Z ∈ Cq [τ0, τ ] then
RL
τ0

Dυ
τ

(
Z(τ ) − �(τ)

)
= C

τ0
Dυ

τ Z(τ ), q − 1 < υ < q, q ∈ Z
+, (2.2)

wherein �(τ) =
q−1∑
j=0

Z ( j)(τ0)

�( j + 1)
(τ − τ0)

j .

2.1 LCB-S functions on [0, 1]

In this part, a brief definition of the cardinal B-spline (CB-S) functions is expressed.
In the sequel, the operational matrix of derivative based on the LCB-S functions is
presented.

Definition 2.3 [17] Let the CB-S function of first order, represented by N1(τ ) =
X[0,1)(τ ), wherein X[0,1)(τ ) is a characteristic function on the interval [0, 1). Also,
The CB-S function of order r , defined as

Nr (τ ) = (Nr−1∗N1)(τ ) =
∫ ∞

−∞
Nr−1(τ −s)N1(s)ds =

∫ 1

0
Nr−1(τ −s)ds, (2.3)
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recursively, and supp[Nr (τ )] = [0, r ].
In explicit form, the LCB-S function of 2 order is presented as

N2(τ ) =
⎧⎨
⎩

τ, τ ∈ [0, 1],
2 − τ, τ ∈ [1, 2],
0, elsewhere.

(2.4)

Let Nr ,q(τ ) = N2(2rτ − q), r , q ∈ Z. It can easily be shown that

supp[Nr ,q(τ )] = [2−r q, 2−r (2 + q)], r , q ∈ Z.

Define Sr = {q : [2−r q, 2−r (2 + q)] ∩ (0, 1) �= ∅}, r ∈ Z. It can be derived that
min{Sr } = −1 and max{Sr } = 2r − 1, r ∈ Z.

Since it is required that the support of Nr ,q(τ ) is restricted on [0, 1], so put

ψq(τ ) = ψr
q (τ ) = Nr ,q(τ )χ[0,1)(τ ), r ∈ Z, q ∈ Sr . (2.5)

As a result, one can write

ψq(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
1 − 2rτ, τ ∈ [0, 2−r

)
,

0, otherwise,
for q = −1,

⎧⎨
⎩

2rτ − q, τ ∈ [2−r q, 2−r (q + 1)
)
,

2 − (2rτ − q), τ ∈ [2−r (q + 1), 2−r (q + 2)
)
,

0, otherwise,
for q = 0, 2r − 2,

{
2rτ − 2r + 1, τ ∈ [1 − 2−r , 1

)
,

0, otherwise,
for q = 2r − 1,

.

(2.6)

2.2 Vector form and function approximation

Suppose
�(τ ) = [ψ−1(τ ), ψ0(τ ), . . . , ψ2r−1(τ )]T , (2.7)

where r ∈ Z is a fixed number. A function U (τ ) ∈ L2[0, 1] is approximated by the
LCB-S functions as

U (τ ) ≈
2r−1∑
q=−1

uqψq(τ ) = UT�(τ ), (2.8)

where

U = [u−1, u0, . . . , u2r−1]T , uq = U
(
2−r (q + 1)

)
, q = −1, . . . , 2r − 1. (2.9)
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Let eq be the (q + 2)-th column of unit matrix of order 2r + 1, so it is easy to verify
that

�(ξq) = eq , ξq = 2−r (q + 1), q = −1. . . . , 2r − 1. (2.10)

Also, a function λ(τ, s) ∈ L2([0, 1] × [0, 1]) may be approximated by LCB-S func-
tions as

λ(τ, s) ≈
2r−1∑
q=−1

2r−1∑
p=−1

uq,pψq(τ )ψp(s) = �(τ )T��(s), (2.11)

where � is the (2r + 1) × (2r + 1) coefficient matrix with entries �q,p as follows

�q,p = U
(
2−r (q + 1), 2−r (p + 1)

)
, q, p = −1, . . . , 2r − 1. (2.12)

2.3 Operational matrix of the derivative

Suppose

P = 2−r

⎡
⎢⎢⎢⎢⎢⎣

1
6

1
12

1
12

1
3

1
12

. . .
. . .

. . .
1
12

1
3

1
12

1
12

1
6

⎤
⎥⎥⎥⎥⎥⎦

, E =

⎡
⎢⎢⎢⎢⎢⎣

− 1
2 − 1

2
1
2 0 − 1

2
. . .

. . .
. . .

1
2 0 − 1

2
1
2

1
2

⎤
⎥⎥⎥⎥⎥⎦

. (2.13)

The differentiation of �(τ ) in (2.7) is calculated as

� ′(τ ) = D�(τ ), D = E(P−1), (2.14)

where D recalls (2r + 1) × (2r + 1) operational matrix of derivative for the LB-S
functions on [0, 1] (for more details see [15]).

3 Operational matrices of the fractional integral, stochastic integral
and integer integral

In this section, the fractional integral, stochastic integral and integer integral of the
LCB-S functions on [0, 1] are constructed.

3.1 Operational matrix of the fractional integral

Let υ ∈ (0, 1) then applying Definition 2.1, one can write

0J υ
τ ψq(τ ) = 1

�(υ)

∫ τ

0
(τ − s)υ−1ψq(τ )ds. (3.1)

To calculate the above integral, the following three cases are considered:
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Case 1: q = −1.
In this case, if τ ∈ [0, 2−r ] then Eq. (3.1) can be calculated as follows

0J υ
τ ψ−1(τ ) = 1

�(υ)

∫ τ

0
(τ − s)υ−1ψ−1(τ )ds,

= 1

�(υ)

∫ τ

0
(τ − s)υ−1(1 − 2r s)ds,

where above integral can be solved using integration by parts. Therefore, one can
write

0J υ
τ ψ−1(τ ) = 1

�(υ)
(
τυ

υ
− 2rτυ+1

υ(υ + 1)
). (3.2)

If τ > 2−r then Eq. (3.1) can calculated as

0J υ
τ ψ−1(τ ) = 1

�(υ)

∫ 2−r

0
(τ − s)υ−1(1 − 2r s)ds,

= 1

�(υ)
(
τυ

υ
− 2rτυ+1

υ(υ + 1)
+ (2rτ − 1)υ+1

υ(υ + 1)2rυ
). (3.3)

Case 2: q = 0, . . . , 2r − 2.
In this case, if τ ∈ [0, 2−r q] then it can be proven 0J υ

τ ψq(τ ) = 0.
If τ ∈ [2−r q, 2−r (q + 1)] then

0J υ
τ ψq(τ ) = 1

�(υ)

∫ τ

2−r q
(τ − s)υ−1(2r s − q)ds,

= 1

2rυ�(υ + 2)

[
(2rτ − q)υ+1]. (3.4)

If τ ∈ [2−r (q + 1), 2−r (q + 2)] then

0J υ
τ ψq(τ ) = 1

�(υ)
[
∫ 2−r (q+1)

2−r q
(τ − s)υ−1(2r s − q)ds

+
∫ τ

2−r (q+1)
(τ − s)υ−1(2 − (2r s − q))ds],

= 1

2rυ�(υ + 2)

[
(2rτ − q)υ+1 − 2(2rτ − q − 1)υ+1]. (3.5)

If τ > 2−r (q + 2) then

0J υ
τ ψq (τ ) = 1

�(υ)
[
∫ 2−r (q+1)

2−r q
(τ − s)υ−1(2r s − q)ds
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+
∫ 2−r (q+2)

2−r (q+1)
(τ − s)υ−1(2 − (2r s − q))ds],

= 1

2rυ�(υ + 2)

[
(2r τ − q)υ+1 − 2(2r τ − q − 1)υ+1 + (2r τ − q − 2)υ+1]. (3.6)

Case 3: q = 2r − 1.
In this case, if τ ∈ [0, 2−r q] then it can be derived 0J υ

τ ψ2r−1(τ ) = 0.
If τ ∈ [1 − 2−r , 1] then

0J υ
τ ψ2r−1(τ ) = 1

�(υ)

∫ τ

1−2−r
(τ − s)υ−1(2r s − 2r + 1)ds,

= 1

2rυ�(υ + 2)

[
(2rτ − 2r + 1)υ+1].

(3.7)

If τ > 1 then

0J υ
τ ψ2r−1(τ ) = 1

�(υ)

∫ 1

1−2−r
(τ − s)υ−1(2r s − 2r + 1)ds,

= −(2r τ − 2r )υ (υ + 1) − (2r τ − 2r )υ+1 + (2r τ − 2r + 1)υ+1

2rυ�(υ + 2)
.

(3.8)

Using Eqs. (3.2)–(3.8), one can write

0J υ
τ ψq(τ ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( τυ

υ
− 2r τυ+1

υ(υ+1) )

�(υ)
, τ ∈ [0, 1

2r
)
,

( τυ

υ
− 2r τυ+1

υ(υ+1) + (2r τ−1)υ+1

υ(υ+1)2rυ )

�(υ)
, τ ≥ 1

2r ,

0, otherwise,

for q = −1,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2r τ−q)υ+1

2rυ�(υ+2) , τ ∈ [ q
2r ,

q+1
2r

)
,

(2r τ−q)υ+1−2(2r τ−q−1)υ+1

2rυ�(υ+2) , τ ∈ [ q+1
2r ,

q+2
2r

)
,

(2r τ−q)υ+1−2(2r τ−q−1)υ+1+(2r τ−q−2)υ+1

2rυ�(υ+2) , τ ≥ q+2
2r ,

0, otherwise,

for q = 0, 2r − 2, .

⎧⎪⎨
⎪⎩

(2r τ−2r+1)υ+1

2rυ�(υ+2) , τ ∈ [1 − 1
2r , 1

)
,

−(2r τ−2r )υ−(2r τ−2r )υ+1+(2r τ−2r+1)υ+1

2rυ�(υ+2) , τ ≥ 1,
0, otherwise,

for q = 2r − 1,

(3.9)
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Applying Eqs. (2.7)–(2.8) on (3.9), it can be obtained

0J υ
τ �(τ ) = Jυ�(τ ), (3.10)

wherein

(Jυ)p,q = 0J υ
τ ψq(ξp), ξp = p + 1

2r
, p, q = −1, . . . , 2r − 1. (3.11)

It can be proven that Jυ is a (2r + 1) × (2r + 1) matrix as follows

Jυ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ω0 ω1 ω2 . . . ω2J−1
γ0 γ1 γ2 . . . γ2J−1

γ0 γ1 . . . γ2J−2
. . .

. . .
...

γ0 γ1
γ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.12)

where

ω0 = υλ,

ωq = [(υ + 1)(q + 1)υ − (q + 1)υ+1 + qυ+1]λ, q = 1, . . . , 2r − 1,

γ0 = λ,

γ1 = [2υ+1 − 2]λ,

γq = [(1 + q)υ+1 − 2qυ+1 + (q − 1)υ+1]λ (3.13)

and λ = 1
2rυ�(υ+2) .

3.2 Operational matrix of the stochastic integral

Suppose

Isψq(τ ) =
∫ τ

0
ψq(s)dB(s). (3.14)

To calculate the above integral, the following three cases are considered:
Case 1: q = −1.
In this case, if τ ∈ [0, 2−r ] then Eq. (3.14) is calculated as

Isψ−1(τ ) =
∫ τ

0
(1 − 2r s)dB(s) = B(t) − 2r

∫ τ

0
sdB(s), (3.15)
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where the above integral can be solved using integration by parts. Therefore, it can be
written

Isψ−1(τ ) = B(τ ) − 2r
(
τB(τ ) −

∫ τ

0
B(s)ds

)
. (3.16)

In Eq. (3.16), the integral can be approximated by Simpson’s rule. So it can be obtained
that

Isψ−1(τ ) = B(τ )
(
1 − 2r+1τ

3

) + 2r+2τ

3
B(

τ

2
). (3.17)

If τ > 2−r then Eq. (3.17) can be written as

Isψ−1(τ ) =
∫ 2−r

0
(1 − 2r s)dB(s) = B(2−r ) − 2r

∫ 2−r

0
sdB(s),

= B(2−r ) − 2r
(
sB(s)

∣∣∣2
−r

0
−
∫ 2−r

0
B(s)ds

)
. (3.18)

Applying Simpson’s rule on the above integral, one can derive that

Isψ−1(τ ) = 4

3
B(2−r−1) + 1

3
B(2−r ). (3.19)

Case 2: q = 0, . . . , 2r − 2.
In this case, if τ ∈ [0, 2−r q] then it can be proven Isψq(τ ) = 0.
If τ ∈ [2−r q, 2−r (q+1)] then using integral by parts and Simpson’s rule, it is obtained
that

Isψq(τ ) =
∫ τ

q2−r
(2r s − q)dB(s),

= 2rτ − q

3
[2B(τ ) − B(

q

2r
) − 4B(

2rτ + q

2r+1 )].
(3.20)

If τ ∈ [2−r (q + 1), 2−r (q + 2)] then

Isψq (τ ) =
∫ 2−r (q+1)

2−r q
(2r s − q)dB(s) +

∫ τ

2−r (q+1)
(2 − (2r s − q))dB(s),

= 5 + 2q − 2r+1τ

3
B(τ ) − 1

3
B(q2−r ) + −2 + 2r τ − q

3
B((q + 1)2−r )

− 4

3
B((2q + 1)2−r−1) + 2r+2

3
[τ − 2−r (q + 1)]B(

τ + 2−r (q + 1)

2
).

(3.21)
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If τ > 2−r (q + 2) then

Isψq (τ ) =
∫ 2−r (q+1)

2−r q
(2r s − q)dB(s) +

∫ 2−r (q+2)

2−r (q+1)
(2 − (2r s − q))dB(s),

= −1

3
B(q2−r ) + 1

3
B((q + 2)2−r ) − 4

3
B((2q + 1)2−r−1) + 4

3
B((2q + 3)2−r−1).

(3.22)

Case 3: q = 2r − 1.
In this case, if τ ∈ [0, 2−r q] then it can be derived Isψ2r−1(τ ) = 0.
If τ ∈ [1 − 2−r , 1] then

Isψ2r−1(τ ) =
∫ τ

1−2−r
(2r s − 2r + 1)dB(s),

= 2rτ − q

3
[2B(τ ) − B(q2−r ) − 4B(

τ + q2−r

2
)]. (3.23)

If τ > 1 then

Isψ2r−1(τ ) =
∫ 1

1−2−r
(2r s − 2r + 1)dB(s),

= 1

3
[2B(2−r (q + 1)

) − B(2−r q) − 4B(2−r−1(2q + 1)
)]. (3.24)

Using Eqs. (3.15)–(3.24), one can write

Isψq (τ ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩
B(τ )

(
1 − 2r+1τ

3
) + 2r+2τ

3 B( τ
2 ), τ ∈ [0, 1

2r
)
,

4
3B(2−r−1) + 1

3B(2−r ), τ ≥ 1
2r ,

0, otherwise,

, for q = −1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2r τ−q
3 [2B(τ ) − B(

q
2r ) − 4B(

2r τ+q
2r+1 )], τ ∈ [ q

2r ,
q+1
2r

)
,

5+2q−2r+1τ
3 B(τ ) − 1

3B(q2−r ) + −2+2r τ−q
3 B((q + 1)2−r )

− 4
3B((2q + 1)2−r−1) + 2r+2

3 [τ − 2−r (q + 1)]
×B(

τ+2−r (q+1)
2 ), τ ∈ [ q+1

2r ,
q+2
2r

)
,

−1
3 B(q2−r ) + 1

3B
(
(q + 2)2−r ) − 4

3B
(
(2q + 1)2−r−1)

+ 4
3B

(
(2q + 3)2−r−1), τ ≥ q+2

2r ,

0, otherwise,

for q = 0, 2r − 2, .

⎧⎪⎨
⎪⎩

2r τ−2r+1
3 [2B(τ ) − B(1 − 2−r ) − 4B( τ+1−2−r

2 )], τ ∈ [1 − 1
2r , 1

)
,

1
3 [2B(1) − B(1 − 2−r ) − 4B(1 − 2−r−1)], τ ≥ 1,
0, otherwise,

, for q = 2r − 1,

(3.25)
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Applying Eqs. (2.7)–(2.8) on (3.25), it can be achieved as

Is�(τ ) = Is�(τ ), (3.26)

wherein

(Is)p,q = Isψq(ξp), ξp = p + 1

2r
, p, q = −1, . . . , 2r − 1. (3.27)

It can be demonstrated that Is is a (2r + 1) × (2r + 1) matrix as follows

Is =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 μ μ μ . . . μ

κ0 η0 η0 . . . η0
κ1 η1 . . . η1

. . .
. . .

...

κ2r−2 η2r−2
γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.28)

where

μ = 1

3

[
4B(

1

2r+1 ) + B(
1

2r
)
]
,

κq = 1

3

[
2B(

q + 1

2r
) − B(

q

2r
) − 4B 2q + 1

2r+1

]
, q = 0, . . . , 2r − 2,

ηq = 1

3

[
B(

q + 2

2r
) − B(

q

2r
) − 4B(

2q + 1

2r+1 ) + 4B(
2q + 3

2r+1 )
]
, q = 0, . . . , 2r − 2,

γ = 1

3

[
2B(1) − B(

2r − 1

2r
) − 4B(

2r+1 − 1

2r+1 )
]
. (3.29)

3.3 Operational matrix of the integer integral

Define

Iψq(τ ) =
∫ τ

0
ψq(τ )ds. (3.30)

To calculate the above integral, the following three cases are investigated:
Case 1: q = −1.
In this case, if τ ∈ [0, 2−r ] then Eq. (3.1) is calculated as follows

Iψ−1(τ ) =
∫ τ

0
ψ−1(τ )ds =

∫ τ

0
(1 − 2r s)ds = τ − 2r−1τ 2. (3.31)

If τ > 2−r then Eq. (3.32) can be obtained as

Iψ−1(τ ) =
∫ 2−r

0
ψ−1(τ )ds =

∫ 2−r

0
(1 − 2r s)ds = 2−r−1. (3.32)
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Case 2: q = 0, . . . , 2r − 2.
In this case, if τ ∈ [0, 2−r q] then it can be proven Iψq(τ ) = 0.
If τ ∈ [2−r q, 2−r (q + 1)] then

Iψq(τ ) =
∫ τ

2−r q
(2r s − q)ds = 2r−1τ 2 − qτ + 2−r−1q2. (3.33)

If τ ∈ [2−r (q + 1), 2−r (q + 2)] then

Iψq(τ ) =
∫ 2−r (q+1)

2−r q
(2r s − q)ds +

∫ τ

2−r (q+1)
(2 − (2r s − q))ds

= (2 + q)τ − 2r−1τ 2 − 2−r−1(q2 + 4q + 2). (3.34)

If τ > 2−r (q + 2) then

Iψq(τ ) =
∫ 2−r (q+1)

2−r q
(2r s − q)ds +

∫ 2−r (q+2)

2−r (q+1)
(2 − (2r s − q))ds = 2−r .(3.35)

Case 3: q = 2r − 1.
In this case, if τ ∈ [0, 2−r q] then it can be derived Iψ2r−1(τ ) = 0.
If τ ∈ [1 − 2−r , 1] then

Iψ2r−1(τ ) =
∫ τ

1−2−r
(2r s − 2r + 1)ds = 2r−1τ 2 − qτ + 2−r−1q2. (3.36)

If τ > 2−r (q + 1) then

Iψ2r−1(τ ) =
∫ 1

1−2−r
(2r s − 2r + 1)ds = 2−r−1. (3.37)

Using Eqs. (3.31)–(3.37), one can write

Iψq (τ ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

τ − 2r−1t2, τ ∈ [0, 1
2r
)
,

2−r−1, τ ≥ 1
2r ,

0, otherwise,
, for q = −1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2r−1τ2 − qτ + 2−r−1q2, τ ∈ [ q
2r ,

q+1
2r

)
,

2−r−1, τ ∈ [ q+1
2r ,

q+2
2r

)
,

2−r , τ ≥ q+2
2r ,

0, otherwise,

, for q = 0, 2r − 2, .

⎧⎨
⎩
2r−1τ2 − (2r − 1)τ + 2−r−1(2r − 1)2, τ ∈ [1 − 1

2r , 1
)
,

2−r−1, τ ≥ 1,
0, otherwise,

, for q = 2r − 1,

(3.38)
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Using Eqs. (2.7)–(2.8) on (3.38), it can be obtained

I�(τ ) = I�(τ ), (3.39)

wherein

Ip,q = I(ψq(ξp)
)
, ξp = p + 1

2r
, p, q = −1, . . . , 2r − 1. (3.40)

It can be proven that I is a (2r + 1) × (2r + 1) matrix as follows

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 � � � . . . �

� 2� 2� . . . 2�
� 2� . . . 2�

. . .
. . .

...

� 2�
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.41)

where � = 2−r−1.

4 Numerical solution of FSI-D equation

In this section, a numerical scheme is presented for solving FSI-D Eq. (1.1).
From Definition 2.1, one can derive

C
τ0
Dυ

τ Y (τ ) =τ0 J 1−υ
τ Y ′(τ ), 0 < υ < 1. (4.1)

Therefore Eq. (1.1) is written as follows

τ0J 1−υ
τ Y ′(τ ) = U (τ ) +

∫ τ

0
λ1(τ, s)Y (s)ds +

∫ τ

0
λ2(τ, s)Y (s)dB(s), 0 < υ < 1.

(4.2)
Now functions Y (τ ), U (τ ), λ1(τ, s) and λ2(τ, s) can be approximated by using
LCB-S functions as the following form

Y (τ ) ≈ yT�(τ ) = �T (τ )y,

U (τ ) ≈ uT�(τ ) = �T (τ )u,

λ1(τ, s) ≈ �T (τ )λ1�(s) = �T (s)λT
1 �(τ ),

λ2(τ, s) ≈ �T (τ )λ2�(s) = �T (s)λT
2 �(τ ), (4.3)

wherein vector u from Eq. (2.9) and matrices λ1, λ2 from Eq. (2.12) can be obtained.
Moreover, y is an unknown vector that must be found.
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Considering Eq. (4.2) and using the presented operational matrices in the previous
section, one can write Eq. (4.2) as follows

yTDJ1−υ�(τ ) = uT �(τ ) +
∫ τ

0
�T (τ )λ1 �(s)�T (s)y︸ ︷︷ ︸

ỹT �(s)

ds +
∫ τ

0
�T (τ )λ2 �(s)�T (s)y︸ ︷︷ ︸

ỹT �(s)

dB(s)

= uT �(τ ) + �T (τ )λ1 ỹ
T I�(τ ) + �T (τ )λ2 ỹ

T Is�(τ ). (4.4)

Also, using the initial condition of problem (1.1), one can write

yT�(0) = 0. (4.5)

Collocating Eq. (4.4) at the point ξ j = ( j + 1)2−r , j = 0, . . . , 2r − 1 and using Eq.
(2.10) it can be obtained as

yTDJ1−υe j = uT e j + eTj λ1 ỹ
T Ie j + eTj λ2 ỹ

T Ise j . (4.6)

Moreover from Eq. (4.5) it can be derived

yT e−1 = 0. (4.7)

Now, from Eq. (4.6) and Eq. (4.7), a linear system of equations is obtained which is
calculated to find the unknown function Y (τ ) in Eq. (4.3).

5 Convergence and error analysis

In this section, the error analysis of the proposed method is studied.

Theorem 5.1 Suppose U (t) ∈ C2[0, 1] and Ũ (t) =
2r−1∑
q=−1

U (2−r (q + 1))ψq(t) be the

LCB-S approximation of U (t), then the upper bound of error for the LCB-S method
is obtained as

E(t) = ||U (t) − Ũ (t)|| ≤ 1

2 × 22r
||U ′′(t)||, (5.1)

eventually, it is derived that

E(t) = O

(
1

22r

)
. (5.2)

Proof Let

Dq =
{
t
∣∣ q

2r
≤ t ≤ q + 1

2r

}
, q = 0, . . . , 2r − 1

and define

Eq(t) =
{
U (t) − Ũ (t), t ∈ Dq ,

0, otherwise.
(5.3)
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Then it can be written that

Eq(t) = U (t) −
2r−1∑
z=−1

U (2−r (z + 1))ψz(t)

= U (t) −
[
U (

q

2r
)ψq−1(t) +U (

q + 1

2r
)ψq(t)

]

= U (t) −
[
U (

q

2r
)(−2r t + q + 1) +U (

q + 1

2r
)(2r t − q)

]

= U (t) −
[
U (

q

2r
) −U (

q

2r
)(2r t − q) +U (

q + 1

2r
)(2r t − q)

]

= U (t) −
[
U (

q

2r
) + 2r (t − q

2r
)
(
U (

q + 1

2r
) −U (

q

2r
)
)]

= U (t) −
[
U (

q

2r
) + (t − q

2r
)
U (

q+1
2r ) −U (

q
2r )

2r

]
.

It is clear that when 1
2r → 0, one can write

Eq(t)  U (t) − [U (
q

2r
) + (t − q

2r
)U ′( q

2r
)]. (5.4)

By replacing the Taylor expansion of U (t) in terms of (t − q
2r ) in Eq. (5.4), one can

derive that

Eq(t)  (t − q
2r )

2

2
U ′′(ζq),

wherein ζq ∈ (
q
2r ,

q+1
2r ). Since |t − q

2r | < 1
2r , then it is concluded that

|Eq(t)| ≤ 1

2 × 22r
|U ′′(ζq)|.

Thus

||E(t)|| = sup
t∈Dq

|Eq | ≤ 1

2 × 22r
||U ′′(ζq)||. (5.5)

Also from (5.5), it can be derived

||E(t)|| = O

(
1

22r

)
.

��
Theorem 5.2 Suppose λ(t, s) ∈ C2([0, 1] × [0, 1]) and

λ̃(t, s) =
2r−1∑
q=−1

2r−1∑
p=−1

U (2−r (q + 1), 2−r (p + 1))ψq(t)ψp(s),
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be the LCB-S aproximation of λ(t, s), then

E(t, s) = ||λ(t, s)−λ̃(t, s)|| ≤ 1

2 × 22r

( ∣∣∣
∣∣∣∂

2λ(t, s)

∂t2

∣∣∣
∣∣∣+2

∣∣∣
∣∣∣∂

2λ(t, s)

∂t∂s

∣∣∣
∣∣∣+

∣∣∣
∣∣∣∂

2λ(t, s)

∂s2

∣∣∣
∣∣∣
)
,

(5.6)
finally, it is derived that

E(t, s) = O(
1

22r
). (5.7)

Proof Let

Dq,p =
{
(t, s)

∣∣ q

2r
≤ t ≤ q + 1

2r
,

p

2r
≤ s ≤ p + 1

2r

}
, q, p = 0, . . . , 2r − 1.

It can be defined

Eq,p(t, s) =
{

λ(t, s) − λ̃(t, s), t ∈ Dq,p,

0, otherwise.
(5.8)

Then one can write that

Eq,p(t, s) = λ(t, s) −
2r−1∑
z=−1

2r−1∑
l=−1

λ
(
2−r (z + 1), 2−r (l + 1)

)
ψz(t)ψl(s)

= λ(t, s) − [λ(
q

2r
,
p

2r
)ψq−1(t)ψp−1(s) + λ(

q + 1

2r
,
p

2r
)ψq(t)ψp−1(s)

+λ(
q

2r
,
p + 1

2r
)ψq−1(t)ψp(s) + λ(

q + 1

2r
,
p + 1

2r
)ψq(t)ψp(s)]. (5.9)

In Eq. (5.9) after using two-dimensional Taylor expansion of λ(t, s) in terms of (t− q
2r )

and (s − p
2r ), when

1
2r → 0, as a result, it can be written that

Eq,p(t, s)  1

2!
(
(t − q

2r
)

∂

∂t
+ (t − p

2r
)

∂

∂s

)2
λ(ζq , ηp),

wherein ζq ∈ (
q
2r ,

q+1
2r ) and ηp ∈ (

p
2r ,

p+1
2r ). Since |t − q

2r |, |t − p
2r | < 1

2r , then it can
be concluded that

|Eq,p(t, s)| ≤ 1

2 × 22r

(∣∣∣∂
2λ(ζq , ηp)

∂t2

∣∣∣ + 2
∣∣∣∂

2λ(ζq , ηp)

∂t∂s

∣∣∣ +
∣∣∣∂

2λ(ζq , ηp)

∂s2

∣∣∣
)
.

Therefore

||E(t, s)|| = sup
(t,s)∈Dq,p

|Eq,p(t, s)|

≤ 1

2 × 22r
sup

(t,s)∈([0,1]×[0,1])

(∣∣∣∂
2λ(t, s)

∂t2

∣∣∣ + 2
∣∣∣∂

2λ(t, s)

∂t∂s

∣∣∣ +
∣∣∣∂

2λ(t, s)

∂s2

∣∣∣
)
.
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As a result

||E(t, s)|| ≤ 1

2 × 22r

(∣∣∣
∣∣∣∂

2λ(t, s)

∂t2

∣∣∣
∣∣∣ + 2

∣∣∣
∣∣∣∂

2λ(t, s)

∂t∂s

∣∣∣
∣∣∣ +

∣∣∣
∣∣∣∂

2λ(t, s)

∂s2

∣∣∣
∣∣∣
)
. (5.10)

Also from Eq. (5.10), it can be derived

||E(t, s)|| = O

(
1

22r

)
.

��
Theorem 5.3 Suppose Y (τ ) and Ỹ (τ ) are the analytical solution and the numerical
solution of Eq. (1.1), respectively. Also let

(a) ||Y (t)|| ≤ ϑ,

(b) ||λ j (τ, s)|| ≤ Hj , j = 1, 2,
(c) H1 + S1 + ϑS2||B(t)|| < 1,

then

||Y (τ ) − Ỹ (τ )|| ≤ ϒ + ϑS1 + ϑS2||B(t)||
1 − (

H1 + S1 + ||B(t)||(H2 + S2)
) ,

wherein

ϒ = 1

2 × 22r
||U ′′(τ )||

S j = 1

2 × 22r

(∣∣∣
∣∣∣∂

2λ j (τ, s)

∂τ 2

∣∣∣
∣∣∣ + 2

∣∣∣
∣∣∣∂

2λ j (τ, s)

∂τ∂s

∣∣∣
∣∣∣ +

∣∣∣
∣∣∣∂

2λ j (τ, s)

∂s2

∣∣∣
∣∣∣
)
, j = 1, 2.

Proof Consider Eq. (1.1) in special case υ = 0. It is clear that

Y (τ ) − Ỹ (τ ) = U (τ ) − Ũ (τ ) +
∫ τ

0

(
λ1(τ, s)Y (s) − λ̃1(τ, s)Ỹ (s)

)
ds

+
∫ τ

0

(
λ2(τ, s)Y (s) − λ̃2(τ, s)Ỹ (s)

)
dB(s),

consequently

||Y − Ỹ || ≤ ||U − Ũ || + τ ||λ1Y − λ̃1Ỹ || + ||B(τ )|| ||λ2Y − λ̃2Ỹ ||. (5.11)

Now, using Theorems (5.1)–(5.2) and assumptions (a) and (b), one can get

||λ j Y − λ̃ j Ỹ || = ||λ j Y − λ j Ỹ + λ j Ỹ − λ̃ j Ỹ ||
= ||λ j (Y − Ỹ ) + λ j (Ỹ − Y ) − λ̃ j (Ỹ − Y ) + λ j Y − λ̃ j Y ||
≤ ||λ j || ||(Y − Ỹ )|| + ||λ j − λ̃ j || ( ||Y − Ỹ || + ||Y || )

≤ (Hj + S j )||Y − Ỹ || + ϑS j , j = 1, 2. (5.12)
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Replacing Eq. (5.12) in Eq. (5.11), one can obtain

||Y (τ ) − Ỹ (τ )|| ≤ ϒ + ϑS1 + ϑS2||B(t)||
1 − (

H1 + S1 + ||B(t)|(H2 + S2)
) . (5.13)

Using assumption (c) in Eq. (5.13), it can be derived as

||Y (τ ) − Ỹ (τ )|| = O

(
1

22r

)
. (5.14)

��

6 Numerical verifications

In this section first, two numerical examples are reported in order to indicate the
effectiveness of the proposed method. It is worth noting that Example 1 has the exact
solution in a particular case, so the main focus is on this example to show the potential
and efficiency of the proposed method. Next, numerical simulations and results of
perturbation on the main problem are reported. In the presented tables the values of
maximum absolute error and RMS-error are computed as

||e||∞ = max
t∈[0,1] |Y (τ ) − YN (τ )|,

RMS-error =
√√√√ 1

N

N∑
j=1

(Y (τ ) − YN (τ ))2,

wherein Y (τ ) and YN (τ ) represent the exact solution and the numerical solution,
respectively. Also, in these tables N indicates the number of the interpolation points
used to approximate the solution function and it is as N = 2r +1 for proposedmethod.
The numerical experiments are performed on a computer Intel(R) Pentium(R) CPU
G2030 @ 3.00GHz 3.00GHz 4.00GB RAM by running some codes written in
Maple 18 software.

6.1 Numerical example

Example 1. Consider the FSI-D equation as

C
0 Dυ

τ Y (τ ) = − τ5eτ

5
+ 6τ3−υ

�(4 − υ)
+
∫ τ

0
eτ sY (s)ds + σ

∫ τ

0
eτ sY (s)dB(s), s, τ ∈ [0, 1], (6.1)

with the initial condition Y (0) = 0. Eq. (6.1) does not have an analytical solution.
However, in the case σ = 0 the function Y (t) = t3 is the analytical solution for
problem (6.1). This example has been used in [20,25].
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Fig. 1 The comparison of analytical solution in case σ = 0 and the numerical solutions for case r = 4, υ =
0.85 and σ = 0, 0.35, 0.70, 1, for Example 1

In order to compare the numerical solution with the exact solution of Eq. (6.1),
suppose σ = 0. In Table 1, the results of this experiment are listed for r = 5, υ =
0.35, 0.65, 0.95. According to Table 1, it is clear that the proposed method has the
considerable accuracy. In Table 2, the new scheme compared with the two different
methods based on radial basis functions in [28]. The results show that the run times for
the proposed method are lower than the presented methods in [28]. Furthermore, in
last column of Table 2, the values of 1

22r
are listed for different values of r . Comparing

this columnwith the column ||e||∞, one can result that ||e||∞ < 1
22r

. So, the numerical
results in this table confirm the presented theoretical in the previous section. Therefore,
the new scheme can be used as the practical and efficient method for solving the
fractional stochastic integro-differential equation. In Table 3 the LCB-S method is
compared with the Bernstein [25] and the Cubic B-spline methods [20]. As a result of
this table, it can be derived that the Bernstein and the Cubic B-spline methods have
only good accuracy near the initial condition Y (0) = 0. In other words, the accuracy
of these methods is greatly reduced by moving away from τ = 0 and approaching
to τ = 1. Unlike these two methods, the proposed method has good accuracy over
the whole interval [0, 1]. In Table 4, the numerical solutions are reported for case
σ = 1 with r = 4 and various values of υ. In Fig. 1, the exact solution (in case
σ = 0) is compared with the numerical solutions for case r = 4, υ = 0.85 and
σ = 0, 0.35, 0.70, 1.

Example 2. Consider FSI-D equation as follows [20,25,28]

C
0 Dυ

τ Y (τ ) = 7

12
τ4 − 5

6
τ3 + 2τ2−υ

�(3 − υ)
+ τ1−υ

�(2 − υ)
+
∫ τ

0
(s + τ)Y (s)ds +

∫ τ

0
sY (s)dB(s),

s, τ ∈ [0, 1], (6.2)

with the initial condition Y (0) = 0. Equation (6.2) does not have any analytical
solution. Therefore, a numerical solution as an efficient approximationwould be useful
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Table 1 Analytical solutions of
Example 1 for σ = 0, r = 5 and
various values of υ

τi υ = 0.35 υ = 0.65 υ = 0.95 exact(σ = 0)

0.0 0.00000 0.00000 0.00000 0.00000

0.1 0.000709 0.00047 0.00041 0.00100

0.2 0.00812 0.00797 0.00709 0.00800

0.3 0.02715 0.02702 0.02617 0.02700

0.4 0.06369 0.06357 0.06275 0.06400

0.5 0.06369 0.06357 0.06275 0.12500

0.6 0.21525 0.21561 0.21481 0.21600

0.7 0.34330 0.34318 0.34237 0.34300

0.8 0.51237 0.51223 0.51139 0.51200

0.9 0.72887 0.72869 0.72779 0.72900

1.0 1.00031 1.00006 0.99907 1.00000

Table 2 Comparison the results of the proposed method with presented methods in [28] for Example 1 in
cases σ = 0, υ = 0.75

Method N RMS-error ||e||∞ CPU time(s) (r ,
1

22r
)

GA RBF [28] 10 7.6250e−2 8.6021e−2 041.24 -

20 7.2965e−3 4.1085e−3 072.68 –

30 1.2593e−4 5.2760e−4 125.45 –

40 8.6523e−4 3.5988e−4 150.78 –

TPS RBF [28] 10 4.6257e − 2 3.7045e − 2 046.75 -

20 4.8967e − 3 5.6048e − 3 078.87 –

30 5.6321e − 4 8.3263e − 4 128.78 –

40 2.3569e − 4 4.3341e − 4 157.31 –

proposed method 5 3.2818e − 2 5.8406e − 2 000.65 (2, 6.2500e − 2)

9 7.1475e − 3 1.4517e − 2 000.76 (3, 1.5625e − 2)

17 1.5487e − 3 2.7413e − 3 001.85 (4, 3.9062e − 3)

33 3.4746e − 4 7.0342e − 4 009.65 (5, 9.7656e − 4)

65 7.9048e − 5 1.4240e − 4 106.72 (6, 2.4414e − 4)

and interesting. Here, the numerical solutions for case r = 3 and various values of υ

together with the numerical solutions of [20,25] are listed in Table 5. Also, in Table 6,
the numerical solutions of proposed method are compared with the presented methods
in [28] at τ = 0.9. Furthermore, in this table run times for the mention methods are
listed. According to the Table 6, it is clear that the computational speed of the proposed
method is higher than the compared methods.

6.2 Perturbation on themain problem

In this part, firstly, the initial condition is prturbed as following form.
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Table 3 Comparison absolute errors of the proposedmethodwith presentedmethods in [20,25] for Example
1 in cases σ = 0, υ = 0.75

τi Bernstein method [25] Cubic B-spline [20] proposed method
n = 10 N = 10 r = 3 r = 4

0.0 5.7393e − 06 1.3724e − 41 0.0000 0.0000

0.1 3.0450e − 05 1.9763e − 08 1.4517e − 02 1.6408e − 03

0.2 3.7718e − 04 1.3097e − 06 5.9860e − 03 2.7413e − 03

0.3 1.4855e − 03 1.5733e − 05 3.8506e − 03 3.5668e − 03

0.4 3.3888e − 03 9.5404e − 05 1.0513e − 02 4.4285e − 04

0.5 4.7520e − 03 3.9813e − 04 1.3340e − 03 9.9904e − 05

0.6 1.2900e − 03 1.3125e − 03 9.9830e − 03 9.4177e − 05

0.7 1.6763e − 02 3.6800e − 03 6.7825e − 04 2.1132e − 04

0.8 6.9431e − 02 91738e − 03 1.7282e − 04 2.0850e − 05

0.9 1.9292e − 01 2.0890e − 02 8.7125e − 03 4.4967e − 04

1.0 Not reported Not reported 3.4921e − 02 5.9473e − 04

Table 4 Numerical solutions of Example 1 for σ = 1, r = 4 and various values of υ

τi υ = 0.1 υ = 0.25 υ = 0.50 υ = 0.75 υ = 0.90

0.0 0.00000 0.00000 0.00000 0.00000 0.00000

0.1 −0.00384 −0.00151 −0.00296 −0.02946 −0.03984

0.2 −0.01821 −0.00673 −0.04381 −0.04131 −0.04589

0.3 0.04375 0.02493 −0.02182 −0.01966 −0.02535

0.4 0.05603 0.06202 0.07437 0.04568 0.03004

0.5 0.06586 0.11607 0.19664 0.13281 0.10680

0.6 0.20348 0.19519 0.23838 0.19759 0.18030

0.7 0.33637 0.30873 0.29948 0.28757 0.28281

0.8 0.41840 0.37093 0.43000 0.44057 0.43616

0.9 0.58229 0.59884 0.66054 0.68105 0.64872

1.0 1.35244 1.15167 1.26888 1.01847 0.93240

Consider the FSI-D equation of Example 1 as

C
0 Dυ

τ Y (τ ) = − τ5eτ

5
+ 6τ3−υ

�(4 − υ)
+
∫ τ

0
eτ sY (s)ds + σ

∫ τ

0
eτ sY (s)dB(s), s, τ ∈ [0, 1],

Y (0) = ε. (6.3)

Some numerical results, for different values of perturbation in the initial condition are
presented in Table 7. This table shows that the new scheme preserves the stability of
the initial value problem, with respect to small perturbations in the initial condition.

Secondly, the function U (t) of the main problem is perturbed as following form.
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Table 5 Numerical solutions of Example 2 for case r = 3 and different values of υ

τi Bernstein method [25] Cubic B-spline [20] proposed method
υ = 0.25 υ = 0.5 υ = 0.25 υ = 0.5 υ = 0.25 υ = 0.5

0.0 0.35736 0.44108 0.13954 0.13574 0.00000 0.00000

0.1 0.44779 0.52717 0.12724 0.12496 0.10795 0.09904

0.2 0.56918 0.64472 0.26169 0.25122 0.23819 0.23833

0.3 0.72154 0.79375 0.40975 0.38139 0.37969 0.38199

0.4 0.90486 0.97424 0.55885 0.54822 0.53859 0.53156

0.5 1.11915 1.18621 0.67747 0.81460 0.71458 0.72597

0.6 1.36441 1.42964 0.76271 1.12205 0.85422 0.91911

0.7 1.64064 1.70455 0.92948 1.72096 1.11064 1.13434

0.8 1.94784 2.01092 1.31664 1.74094 1.25665 1.35202

0.9 2.28600 2.34877 1.93675 1.74917 1.41272 1.59635

Table 6 Comparison the results of the proposed method with presented methods in [28] for Example 2

Method Numerical solution at τ = 0.9 CPU time(s)
N υ = 0.25 υ = 0.5 υ = 0.25 υ = 0.5

GA RBF [28] 10 0.6452 0.8456 36.54 38.71

20 2.2058 1.1548 68.81 69.54

TPS RBF [28] 10 0.6328 0.8542 39.25 40.25

20 2.2385 1.1521 71.38 73.15

proposed method 9 1.4341 1.5110 01.05 01.04

17 1.5348 1.5859 01.90 01.68

33 1.5492 1.6466 09.26 09.15

Table 7 Numerical solutions of Example 1, for σ = 1, r = 4 and υ = 0.4, after perturbing the initial
condition

τi ε = 0.00 ε = 0.01 ε = 0.05 ε = 0.10 ε = 0.20

0.0 0.00000 0.01000 0.05000 0.10000 0.20000

0.1 –0.00414 0.01198 0.06028 0.10581 0.21090

0.2 –0.01372 0.01098 –0.00829 0.07333 0.13899

0.3 0.00325 0.02886 0.00811 0.09090 0.14981

0.4 0.06612 0.07255 0.12962 0.17555 0.27427

0.5 0.15169 0.14043 0.27992 0.28520 0.44387

0.6 0.20206 0.21691 0.26980 0.34105 0.44451

0.7 0.28542 0.22303 0.24691 0.41074 0.50161

0.8 0.40408 0.47298 0.31739 0.55251 0.68552

0.9 .628197 0.64423 0.61392 0.79393 0.94067

1.0 1.34837 0.86176 1.27730 1.19337 1.87645
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Table 8 Numerical solutions of Example 1, for σ = 0.6, r = 5 and υ = 0.25, after perturbing the function

U (τ ) = − τ5eτ
5 + 6τ3−υ

�(4−υ)

τi ε = 0.00 ε = 0.01 ε = 0.05 ε = 0.10 ε = 0.20

0.0 0.00000 0.00000 0.00000 0.00000 0.00000

0.1 –0.00034 0.04339 –0.00488 –0.02273 –0.00670

0.2 0.00849 0.02345 0.01040 0.01705 0.01244

0.3 0.02725 0.04749 0.03034 0.04038 0.03590

0.4 0.06038 –0.00154 0.05610 0.03408 0.06315

0.5 0.12356 0.23236 0.14310 0.19376 0.17134

0.6 0.20623 0.12753 0.20154 0.18839 0.23327

0.7 0.32368 0.33987 0.35055 0.37812 0.40606

0.8 0.47848 0.47849 0.50037 0.55662 0.60518

0.9 0.67925 0.52789 0.69108 0.62306 0.77484

1.0 0.99761 1.04386 1.06075 1.63274 1.12484

Table 9 Numerical solutions of Example 1, for σ = 0.85, r = 4 and υ = 0.60, after perturbing the function
λ2(τ, s) = seτ

τi ε = 0.00 ε = 0.01 ε = 0.05 ε = 0.10 ε = 0.20

0.0 0.00000 0.00000 0.00000 0.00000 0.00000

0.1 –0.02027 0.00393 0.00013 –0.00350 –0.00448

0.2 –0.05849 0.01668 0.00498 -0.00641 0.00928

0.3 –0.03546 0.03493 0.02409 0.01269 0.01059

0.4 0.05920 0.06387 0.06378 0.06134 0.06173

0.5 0.17799 0.11399 0.12494 0.13120 0.13456

0.6 0.21367 0.20903 0.20930 0.21008 0.20788

0.7 0.26974 0.23694 0.32088 0.31265 0.30412

0.8 0.41531 0.48355 0.46340 0.46370 0.45981

0.9 0.68571 0.67971 0.66341 0.65253 0.66512

1.0 1.10678 0.94218 0.95018 0.97472 1.07146

Consider the FSI-D equation of Example 1 as

C
0 Dυ

τ Y (τ ) = (− τ5eτ

5
+ 6τ3−υ

�(4 − υ)
)(1 + ε) +

∫ τ

0
eτ sY (s)ds + σ

∫ τ

0
eτ sY (s)dB(s), s, τ ∈ [0, 1],

Y (0) = 0.

The numerical solutions, for different values of perturbation of the function U (t) are
listed in Table 8.

Finally, the function λ2(τ, s) of the main problem is perturbed as following form.
Consider the FSI-D equation of Example 1 as
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C
0 Dυ

τ Y (τ ) = − τ5eτ

5
+ 6τ3−υ

�(4 − υ)
+
∫ τ

0
eτ sY (s)ds + σ

∫ τ

0
(eτ sY (s))(1 + ε)dB(s), s, τ ∈ [0, 1],

Y (0) = 0.

The numerical results, for different values of perturbation of the function λ2(τ, s) are
reported in Table 9. From Tables 7, 8 and 9, it is clear that a small error in the input
data leads to a small error in the solution of the problem, and this can confirm the
stability of the proposed method.

7 Conclusion

In this study, a numerical scheme for solving the stochastic integro-differential equa-
tion of fractional order was developed. For this purpose, linear cardinal B-spline
functions were applied. Also, the convergence and error analysis of the proposed
method is studied. The reported results indicated that the problem can be solved effec-
tively by the proposed approach.

Acknowledgements The work of first author was supported by the University of Tabriz, Iran under Grant
No. 6898.

References

1. Asgari,M.: Block pulse approximation of fractional Stochastic integro-differential equation. Commun.
Numer. Anal. 2014, 1–7 (2014)

2. Alipour, S.,Mirzaee, F.:An iterative algorithm for solving twodimensional nonlinear stochastic integral
equations: a combined successive approximations method with bilinear spline interpolation. Appl.
Math. Comput. 371, 124947 (2020)

3. Atanackovic, T.M., Stankovic, B.: On a system of differential equations with fractional derivatives
arising in rod theory. J. Phys. A-Math. Gen. 37(4), 1241–1250 (2004)

4. De Boor, C.A.: Practical Guide to Spline. Springer, New York (1978)
5. Cioica, P.A., Dahlke, S.: Spatial Besov regularity for semilinear stochastic partial differential equations

on bounded Lipschitz domains. Int. J. Comput. Math. 89(18), 2443–2459 (2012)
6. Dimov, I., Venelin, T.: Error Analysis of Biased stochastic algorithms for the second kind Fredholm

integral equation. In: Innovative Approaches and Solutions in Advanced Intelligent Systems, pp. 3–16.
Springer, Berlin (2016)

7. Diop, M., Caraballo, T.: Asymptotic stability of neutral stochastic functional integro-dierential equa-
tions with impulses. Electron. Commun. Probab. 20, 1 (2015)

8. Evans, R.M., Katugampola, U.N., Edwards, D.A.: Applications of fractional calculus in solving Abel-
type integral equations: Surface-volume reaction problem. Comput. Math. Appl. 73, 1346 (2017)

9. He, J.H.: Nonlinear oscillation with fractional derivative and its applications. Int. Conf. Vibrat. Eng.
98, 288–291 (1998)

10. He, J.H.: Some applications of nonlinear fractional differential equations and their approximations.
Bull. Sci. Technol. 15(2), 86–90 (1999)

11. Hilfer, R.: Applications of fractional calculus in physics. World Scientific, Singapore (2000)
12. Ichiba, T., Karatzas, I., Prokaj, V., Yan, M.: Stochastic integral equations for Walsh semi martingales.

arXiv:1505.02504 (2015)
13. Jankovic, S., Ilic, D.: One linear analytic approximation for stochastic integro-differential equations.

Acta Mathematica Scientia 308(4), 1073–1085 (2010)

123

http://arxiv.org/abs/1505.02504


Construction of operational matrices based on linear… 175

14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equa-
tions. Elsevier, San Diego (2006)

15. Lakestani,M., Dehghan,M., Irandoust-pakchin, S.: The construction of operationalmatrix of fractional
derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simulat. 17, 1149–1162 (2012)

16. Ma, X., Huang, Ch.: Numerical solution of fractional integro-differential equations by a hybrid collo-
cation method. Appl. Math. Comput. 219, 6750–6760 (2013)

17. Milovanovic, G.V., Udovicic, Z.: Calculation of coefficients of a cardinal B-spline. Appl. Math. Lett.
23, 1346–1350 (2010)

18. Mirzaee, F., Hamzeh, A.: A computational method for solving nonlinear stochastic Volterra integral
equations. J. Comput. Appl. Math. 306, 166–178 (2016)

19. Mirzaee, F., Alipour, S.: An efficient cubicB-spline and bicubicB-spline collocationmethod for numer-
ical solutions of multidimensional nonlinear stochastic quadratic integral equations. Math. Methods
Appl. Sci. 43(1), 384–397 (2019)

20. Mirzaee, F., Alipour, S.: Cubic B-spline approximation for linear stochastic integro-differential equa-
tion of fractional order. J. Comput. Appl. Math. 366, 112440 (2020)

21. Mirzaee, F., Alipour, S.: Quintic B-spline collocation method to solve n-dimensional stochastic Ito-
Volterra integral equations. J. Comput. Appl. Math. 384, 113153 (2021)

22. Mirzaee, F.,Alipour, S., Samadyar,N.:Numerical solution based onhybrid of block-pulse and parabolic
func- tions for solving a system of nonlinear stochastic It-Volterra integral equations of fractional order.
J. Comput. Appl. Math. 349, 157–171 (2019)

23. Mirzaee, F., Samadyar, N.: Application of Bernoulli wavelet method for estimating a solution of linear
stochastic It-Volterra integral equations. Multidiscip. Model. Mater. Struct. 15(3), 575–598 (2019)

24. Mirzaee, F., Samadyar, N.: Application of hat basis functions for solving two-dimensional stochastic
fractional integral equations. Comput. Appl. Math. 37(4), 4899–4916 (2018)

25. Mirzaee, F., Samadyar, N.: Application of orthonormal Bernstein polynomials to construct a efficient
scheme for solving fractional stochastic integro-differential equation. Opt. Int. J. Light Electron. Opt.
132, 262–273 (2017)

26. Mirzaee, F., Samadyar, N.: Implicit meshless method to solve 2D fractional stochastic Tricomi- type
equation defined on irregular domain occurring in fractal transonic flow. Numer. Methods Part. Differ.
Equ. (2020)

27. Mirzaee, F., Samadyar, N.: Euler polynomial solutions of nonlinear stochastic It-Volterra integral
equations. J. Comput. Appl. Math. 330, 574–585 (2018)

28. Mirzaee, F., Samadyar, N.: On the numerical solution of fractional stochastic integro-differential equa-
tions via meshless discrete collocation method based on radial basis functions. Eng. Anal. Bound.
Elem. 100, 246–255 (2019)

29. Mirzaee, F., Samadyar, N.: On the numerical solution of stochastic quadratic integral equations via
operational matrix method. Math. Methods Appl. Sci. 41(12), 4465–4479 (2018)

30. Mohammadi, F.: A wavelet-based computational method for solving stochastic Itô-Volterra integral
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