
Journal of Applied Mathematics and Computing (2021) 67:919–936
https://doi.org/10.1007/s12190-021-01506-z

ORIG INAL RESEARCH

A second order numerical method for singularly perturbed
problemwith non-local boundary condition

Musa Cakir1 · Gabil M. Amiraliyev2

Received: 18 November 2020 / Revised: 20 January 2021 / Accepted: 30 January 2021 /
Published online: 25 February 2021
© Korean Society for Informatics and Computational Applied Mathematics 2021

Abstract
The aim of this paper is to present a monotone numerical method on uniformmesh for
solving singularly perturbed three-point reaction–diffusion boundary value problems.
Firstly, properties of the exact solution are analyzed. Difference schemes are estab-
lished by the method of the integral identities with the appropriate quadrature rules
with remainder terms in integral form. It is then proved that themethod is second-order
uniformly convergent with respect to singular perturbation parameter, in discrete max-
imum norm. Finally, one numerical example is presented to demonstrate the efficiency
of the proposed method.

Keywords Singular perturbation · Exponentially fitted difference scheme ·
Uniformly convergence · Nonlocal condition · Second-order accuracy
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1 Introduction

In this research paper, we treat the following singularly perturbed boundary value
problem with nonlocal boundary condition:

Lu := −εu′′(x) + a(x)u(x) = f (x), 0 < x < l, (1.1)

L0u := −√
εu′ (0) + γ u (0) = A, (1.2)

u (l) − δu (d) = B, 0 < d < l, (1.3)
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where 0 < ε � 1 is a perturbation parameter, A, B, γ > 0, δ and d are given
constants, a(x) ≥ α > 0 and f (x) denote sufficiently smooth real functions of x , so
that a unique solution u (x) exists for all small ε values. This solution has in general
boundary layers at x = 0 and x = l as ε near 0.

Singularly perturbed differential equations are typically characterized by the pres-
ence of a small positive parameter ε multiplying some or all of the highest order terms
in differential equations. Such types of problems arise frequently inmathematicalmod-
els of different areas of physics, chemistry, biology, engineering science, economics
and even sociology. The well-known examples are heat transfer problem with large
Peclet numbers, semiconductor theory, chemical reactor theory, reaction–diffusion
process, theory of plates, optimal control, aerodynamics, seismology, oceanography,
meteorology, geophysics and so on. Solutions of such equations usually possesses thin
boundary or interior layers where the solutions change very rapidly, while away from
the layers the solutions behaves regularly and change slowly. More details about these
problems can be found in [28,34,35,39] and also the literature cited there.

Due to the presence of these boundary layers, the usual numerical treatment of sin-
gularly perturbed problems gives rise to computational difficulties. Standard numerical
methods are not appropriate for practical applications when the perturbation parameter
ε is sufficiently small. Therefore, it is necessary to develop suitable numerical meth-
ods that are uniformly convergent with respect to ε. To solve these problems, there
are generally two types approaches, such as fitted operator methods that are reflect
the nature of the solution in the boundary layers and fitted mesh methods which use
layer-adapted meshes. In resent years, many authors have worked for solving singu-
larly perturbed problems with one or two boundary layers using uniformly convergent
numerical methods [20,22,27,30,31,33,37].

Boundary value problems including nonlocal conditions which connect the values
of the unknown solution at the boundary with values in the interior are known as
nonlocal boundary value problems (so-called multi-point BVP or m-point BVP). The
study of this kind of problems was initiated by Il’in and Miseev in [24,25], motivated
by the work of Bitsadze and Samarskii on nonlocal linear elliptic boundary value
problems [6]. These problems have been used to represent mathematical models of a
large number of phenomena, such as problems of semiconductors in electronics, the
vibrations of a guy wire of a uniform cross-section, heat transfer problems, problems
of hydromechanics, catalytic processes in chemistry and biology, the diffusion-drift
model of semiconducting devices and some other physical phenomena [1,23,36]. The
existence and uniqueness of the solutions of nonlocal boundary value problems have
been studied by many authors [5,26]. Some approaches for the numerical solution
of singularly perturbed nonlocal boundary value problems have been proposed in
[2,7–9,13–15,17,21,29,38]. Uniformly convergent numerical methods of order second
and high for solving different singularly perturbed problems have been studied in
[4,10–12,16,32,40]. In [18,19], an accelerated finite difference method for solving
singularly perturbed problems with integral boundary condition has been considered.
The singularly perturbed nonlocal problem (1.1)–(1.3 ) is different from the singularly
perturbed three-point problem considered in [10]. To the best of our knowledge, no
work has been done for the second-order uniformly convergent numerical methods for
singularly perturbed nonlocal boundary value problems of reaction–diffusion type.
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A second order numerical method for singularly perturbed... 921

Motivated by paper [2], we give a second-order uniformly convergent numerical
method for solving singularly perturbed three-point boundary value problem. The
structure of the article is organized as follows: In the next section we demonstrate
the asymptotic behavior of the exact solution and its first derivative with respect to
ε. In Sect. 3, we describe the finite difference discretization on a uniform mesh. In
Sect. 4, we show that the scheme is ε-uniform convergence in discrete maximum
norm. In Sect. 5, we present one numerical experiment. Finally, this paper ends with
conclusion.

Notation. Throughout the paper we will denote by C a generic positive constant
which is independent of ε and the mesh parameter. For any continuous function
g (x) defined on the corresponding interval, we use the maximum norm ‖g‖∞ =
max
x∈[0,l] |g (x)|.

2 Continuous problem

Here we establish the asymptotic estimates of the problem (1.1)–(1.3) that are needed
in later sections for the analysis appropriate numerical solutions.

Lemma 2.1 Let u(x) be the solution of the problem (1.1)–(1.3) and assume that a, f ∈
C1[0, l]. Moreover,

1 − δu1 (d) 	= 0, (2.1)

where u1 (x) is the solution of the two-point boundary value problem

Lu1 = 0, 0 < x < l,

L0u1 = 0, u1 (l) = 1.

Then, the estimates

‖u‖∞ ≤ C (2.2)

and

∣
∣u′(x)

∣
∣ ≤ C

{

1 + 1

ε

(

e
−

√
αx√
ε + e

−
√

α(l−x)√
ε

)}

, 0 ≤ x ≤ l, (2.3)

hold.

Proof The proof of Lemma 2.1 is similar to that of [2]. ��
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3 Generation of the difference scheme

In what follow, we denote by ωh an uniform mesh on [0, l] :

ωh = {xi = ih, i = 1, 2, . . . , N − 1; h = l/N }, ω̄h = ωh ∪ {x0 = 0, xN = l} .

Assume that N1 = dN
l is an integer. To simplify the notation we set gi = g (xi ) for

any function g (x) while yi denotes an approximation of u (x) at xi . For any mesh
function g (xi ) defined on ω̄h we use

gx̄,i = gi − gi−1

h
, gx,i = gi+1 − gi

h
, g0

x,i
= gx,i + gx̄,i

2
, gx̄x,i = gx,i − gx̄,i

h
.

For (1.1), our discretization will begin with identity

λi h
−1

∫ xi+1

xi−1

Lu(x)ϕi (x)dx = λi h
−1

∫ xi+1

xi−1

f (x) ϕi (x)dx,

1 ≤ i ≤ N − 1 (3.1)

with the basis functions {ϕi (x)}N−1
i=1 having the form

ϕi (x) =

⎧

⎪⎨

⎪⎩

ϕ
(1)
i (x) ≡ sinh(γi (x−xi−1))

sinh(γi h)
, xi−1 < x < xi ,

ϕ
(2)
i (x) ≡ sinh(γi (xi+1−x))

sinh(γi h)
, xi < x < xi+1,

0, x /∈ (xi−1, xi+1),

λi =
[

h−1
∫ xi+1

xi−1

ϕi (x)dx

]−1

= hγi

2 tanh( γi h
2 )

, γi =
√

ai
ε

.

We also note that the functions ϕ
(1)
i (x) and ϕ

(2)
i (x), respectively, are the solutions of

the following problems

−εϕ′′ + aiϕ = 0, xi−1 < x < xi ,

ϕ (xi−1) = 0, ϕ (xi ) = 1,

and

−εϕ′′ + aiϕ = 0, xi < x < xi+1,

ϕ (xi ) = 1, ϕ (xi+1) = 0.

Integration by parts and a little rearrangement show that (3.1) may be rewritten as

ελi h
−1

∫ xi+1

xi−1

ϕ′
i (x)u

′ (x) dx+aiλi h
−1

∫ xi+1

xi−1

ϕi (x)u (x) dx

= f i + Ri , 1 ≤ i ≤ N − 1, (3.2)
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where

Ri = λi h
−1

∫ xi+1

xi−1

[ai − a (x)]ϕi (x)u (x) dx

+λi h
−1

∫ xi+1

xi−1

[ f (x) − fi ]ϕi (x)dx . (3.3)

Applying the formulas (2.1) and (2.2) from [3] to subintervals (xi−1, xi ) and
(xi , xi+1) with the weight functions ϕ

(1)
i (x) and ϕ

(2)
i (x) , we obtain the following

precise relation

ελi h
−1

∫ xi+1

xi−1

ϕ′
i (x)u

′ (x) dx+aiλi h
−1

∫ xi+1

xi−1

ϕi (x)u (x) dx

= −ελi h
−1

{

1 + aiε
∫ xi

xi−1

ϕ
(1)
i (x)(x − xi )dx

}

(ux,i − ux̄,i )

+ aiλi h
−1ui

∫ xi

xi−1

ϕ
(1)
i (x)dx+aiλi h

−1ui

∫ xi+1

xi
ϕ

(2)
i (x)dx

= −εθi ux̄x,i + aiui , (3.4)

with

θi = ai h2

4ε sinh2(
√
ai h

2
√

ε
)
. (3.5)

Thus, from (3.2) and (3.4) we get


ui := −εθi ux̄x,i + aiui = fi + Ri , 1 ≤ i ≤ N − 1. (3.6)

In order to present an approximation for the boundary condition (1.2), we now begin
by identity

χ

∫ x1

0
Lu(x)ϕ0(x)dx = χ

∫ x1

0
f (x) ϕ0(x)dx, (3.7)

where

χ =
{√

ε + a0γ
−1

∫ x1

0
ϕ0(x)dx

}−1

=
{√

ε + a0γ
−1 tanh(

γ0h

2
)

}−1

, γ0 =
√

a0
ε

, ϕ0(x) =
{

sinh(γ0(x1−x))
sinh(γ0h)

, x0 < x < x1,
0, x /∈ (x0, x1).

Note that the basis function ϕ0(x) is the solution of the problem

−εϕ′′ + a0ϕ = 0, x0 < x < x1,
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ϕ (x0) = 1, ϕ (x1) = 0.

Then, using the same method as that in (3.6) for (3.7) we obtain


0u := −√
εθ0ux,0 + γ u0 − √

εχ A = κ1 f0 + κ2 fx,0 − r , (3.8)

where

θ0 = χ

[

1 − ε−1a0

∫ x1

0
xϕ0(x)dx

]

= γ0h

sinh(γ0h) + 2
√
a0γ −1 sinh2

(
γ0h
2

) ,

(3.9)

κ1 = χ

∫ x1

0
ϕ0(x)dx =

tanh
(

γ0h
2

)

√
a0 + a0γ −1 tanh

(
γ0h
2

) , (3.10)

κ2 = χ

∫ x1

0
xϕ0(x)dx

=
[√

ε + a0γ
−1 tanh

(
γ0h

2

)]−1 [√
ε

a0
− h√

a0 sinh(γ0h)

]

, (3.11)

r = χ

∫ x1

0
[a0 − a(x)] u(x)ϕ0(x)dx

+χ

∫ x1

0
f ′′(ξ)

[∫ x1

0
K1(x, ξ)ϕ0(x)dx

]

dξ, (3.12)

K1(x, ξ) = T1(x − ξ) − h−1x(h − ξ),

T1(λ) =
{

1, λ ≥ 0,
0, λ < 0.

(3.13)

Based on (3.6) and (3.8), we propose the following difference scheme for approx-
imating the problem (1.1)–(1.3)


yi := −εθi yx̄ x,i + ai yi = fi , 1 ≤ i ≤ N − 1, (3.14)


0y := −√
εθ0yx,0 + γ y0 − √

εAχ = κ1 f0 + κ2 fx,0, (3.15)

yN − δyN1 = B, (3.16)

where θi , θ0, κ1 and κ2 are given by (3.5), (3.9), (3.10) and (3.11), respectively.
We can write the difference scheme (3.14)–(3.16) of the form

Ai yi−1 − Ci yi + Bi yi+1 = −Fi , i = 1, 2, . . . , N − 1,

where

Ai = εθi , Bi = εθi , Ci = 2εθi + ai h
2.
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Since Ai = εθi > 0, Bi = εθi > 0 and Di = Ci − Ai −Bi = ai h2 ≥ 0, the difference
scheme (3.14)–(3.16) is monotone.

4 Convergence results

For the error zi = yi − ui , 0 ≤ i ≤ N from (3.6), (3.8) and (3.14)–(3.16) we have


zi = −Ri , 1 ≤ i ≤ N − 1, (4.1)


0zi = r , (4.2)

zN − δzN1 = 0, (4.3)

where the truncation errors Ri and r are defined by (3.3) and (3.12), respectively.

Lemma 4.1 Assume that a, f ∈ C2 [0, l] and a′(0) = a′(l). Then the truncation
errors of the difference scheme (3.6) and (3.8) satisfy

|Ri | ≤ Ch2, 1 ≤ i ≤ N − 1, (4.4)

|r | ≤ Ch2. (4.5)

Proof We first prove the inequality (4.4). To this end we split Ri as

Ri = R(1)
i + R(2)

i , (4.6)

with

R(1)
i = λi h

−1
∫ xi+1

xi−1

[a(xi ) − a(x)]ϕi (x)u(x)dx, (4.7)

R(2)
i = λi h

−1
∫ xi+1

xi−1

[ f (x) − f (xi )]ϕi (x)dx . (4.8)

Here we first handle with R(2)
i . Using Taylor expansion for the function f (x) in (4.8),

we get

∣
∣
∣R

(2)
i

∣
∣
∣ ≤ λi h

−1
∣
∣ f ′(xi )

∣
∣

∣
∣
∣
∣

∫ xi+1

xi−1

(x − xi ) ϕi (x)dx

∣
∣
∣
∣

+λi h−1

2

∫ xi+1

xi−1

(x − xi )
2
∣
∣ f ′′(ξi (x))

∣
∣ ϕi (x)dx .

After taking also into account that

∫ xi+1

xi−1

(x − xi )ϕi (x)dx = 0, (4.9)
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926 M. Cakir, G. M. Amiraliyev

the inequality (4.9) reduces to

∣
∣
∣R

(2)
i

∣
∣
∣ ≤ λi h−1

2

∫ xi+1

xi−1

(x − xi )
2
∣
∣ f ′′(ξi (x))

∣
∣ ϕi (x)dx . (4.10)

Therefore, from the inequality (4.10) we obtain

∣
∣
∣R

(2)
i

∣
∣
∣ ≤ h2

2
max[xi−1,xi+1]

∣
∣ f ′′(x)

∣
∣ λi h

−1
∫ xi+1

xi−1

ϕi (x)dx

= h2

2
max[xi−1,xi+1]

∣
∣ f ′′(x)

∣
∣ = O(h2), 1 ≤ i ≤ N − 1. (4.11)

Next we handle with R(1)
i for 1 < i < N − 1. Using the relations

a(x) − a(xi ) = (x − xi )a
′(xi ) + (x − xi )2

2
a′′(ξi ), ξi ∈ (xi , x)

and

u(x) = u(xi ) + (x − xi )u
′(ηi ), ηi ∈ (xi , x)

in (4.7), we get

R(1)
i = −λi h

−1a′(xi )ui
∫ xi+1

xi−1

(x − xi )ϕi (x)dx

−λi h
−1a′(xi )

∫ xi+1

xi−1

(x − xi )
2ϕi (x)u

′(ηi (x) )dx

−λi h−1

2

∫ xi+1

xi−1

(x − xi )
2a′′(ξi (x))ϕi (x)u(x)dx . (4.12)

After taking into account (4.9) in (4.12) we have

∣
∣
∣R

(1)
i

∣
∣
∣ ≤

∣
∣
∣
∣
λi h

−1a′(xi )
∫ xi+1

xi−1

(x − xi )
2ϕi (x)u

′(ηi (x) )dx

∣
∣
∣
∣

+
∣
∣
∣
∣

λi h−1

2

∫ xi+1

xi−1

(x − xi )
2a′′(ξi (x))ϕi (x)u(x)dx

∣
∣
∣
∣
. (4.13)

For the second term in right-side of (4.13) we obtain

∣
∣
∣
∣

λi h−1

2

∫ xi+1

xi−1

(x − xi )
2a′′(ξi (x))ϕi (x)u(x)dx

∣
∣
∣
∣

≤ Cλi h−1

2
max[xi−1,xi+1]

∣
∣a′′(x)

∣
∣

∫ xi+1

xi−1

(x − xi )
2ϕi (x)dx
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A second order numerical method for singularly perturbed... 927

≤ 1

2
C max[xi−1,xi+1]

∣
∣a′′(x)

∣
∣ h2 ≤ C̃h2. (4.14)

For the first expression in right-side of (4.13), after using (2.3) we get

∣
∣
∣
∣
λi h

−1a′ (xi )
∫ xi+1

xi−1

(x − xi )
2ϕi (x)u

′(ηi (x) )dx

∣
∣
∣
∣

≤ Cλi h
−1

∣
∣a′ (xi )

∣
∣

∫ xi+1

xi−1

(x − xi )
2ϕi (x)

{

1 + 1√
ε
(e

−
√

αxi−1√
ε + e

−
√

α(l−xi+1)√
ε )

}

dx

≤ Cλi h
−1

∣
∣a′ (xi )

∣
∣

∫ xi+1

xi−1

(x − xi )
2ϕi (x)dx

+Cλi h−1
∣
∣a′ (xi )

∣
∣

√
ε

∫ xi+1

xi−1

(x − xi )
2ϕi (x)e

−
√

αxi−1√
ε dx

+Cλi h−1
∣
∣a′ (xi )

∣
∣

√
ε

∫ xi+1

xi−1

(x − xi )
2ϕi (x)e

−
√

α(l−xi+1)√
ε dx

≤ C

{

h2 +
∣
∣a′ (xi )

∣
∣ λi h−1

√
ε

∫ xi+1

xi−1

(x − xi )
2ϕi (x)e

−
√

αxi−1√
ε dx

+
∣
∣a′ (xi )

∣
∣ λi h−1

√
ε

∫ xi+1

xi−1

(x − xi )
2ϕi (x)e

−
√

α(l−xi+1)√
ε dx

}

. (4.15)

Let us estimate the second and third expressions inside the brackets in (4.15) sep-
arately.

For the second term on right-side in (4.15) we have

∣
∣
∣
∣
∣

Ca′
iλi h

−1

√
ε

∫ xi+1

xi−1

(x − xi )
2ϕi (x)e

−
√

αxi−1√
ε dx

∣
∣
∣
∣
∣

≤ Cλi h−1

√
ε

∣
∣a′′(ξ̄i )

∣
∣ xi e

−
√

αxi−1√
ε

∫ xi+1

xi−1

(x − xi )
2ϕi (x)dx

≤ Ch2√
ε
xi e

−
√

αxi−1√
ε

≤ Ch2√
α

xi
xi−1

√
αxi−1√

ε
e
−

√
αxi−1√

ε

≤ Ch2√
α

i

i − 1
e
−

√
αxi−1
2
√

ε ≤ Ch2. (4.16)

We also have used the inequality te−t ≤ e− t
2 for t > 0 and the condition a′(0) = 0 in

(4.16). The same estimate, under the condition a′(l) = 0, is obtained for the third term
on right-side in (4.15). Next, substituting the estimates (4.14) and (4.16) in (4.13) we
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928 M. Cakir, G. M. Amiraliyev

obtain
∣
∣
∣R

(1)
i

∣
∣
∣ = O(h2). (4.17)

Using the estimates (4.11) and (4.17) in (4.6), we get

|Ri | = O(h2), for 1 < i < N − 1.

We now prove the inequality (4.4) for i = 1 (It is proved for case i = N − 1 in a
similar way). From (4.6) we rewrite R1 as

R1 = R(1)
1 + R(2)

1

= λ1h
−1

∫ x2

x0
[a(x1) − a(x)]ϕ1(x)u(x)dx

+λ1h
−1

∫ x2

x0
[ f (x) − f (x1)]ϕ1(x)dx . (4.18)

For the second term on right side in (4.18) as before, we can easily obtain

∣
∣
∣R

(2)
1

∣
∣
∣ ≤ λ1h

−1
∫ x2

x0
| f (x) − f (x1| ϕ1(x)dx = O(h2), for f ∈ C2 [0, l] .(4.19)

By using the relations

a(x) − a(x1) = (x − x1)a
′(x1) + (x − x1)2

2
a′′(ξ1(x)), ξ1 ∈ (x1, x)

and

u(x) = u(x0) +
∫ x

x0
u′(ξ)dξ

for the first term on right side in (4.18), we can easily get

R(1)
1 = λ1h

−1
∫ x2

x0
[a(x1) − a(x)]ϕ1(x)u(x)dx

= −a′(x1)λ1h−1
∫ x2

x0
(x − x1)

[∫ x

x0
u′(ξ)dξ

]

ϕ1(x)dx

−λ1h−1

2

∫ x2

x0
(x − x1)

2a′′(ξ1(x))ϕ1(x)u(x)dx . (4.20)

It is obvious that the second term on right side in (4.20)is

λ1h−1

2

∣
∣
∣
∣

∫ x2

x0
(x − x1)

2a′′(ξ1(x))ϕ1(x)u(x)dx

∣
∣
∣
∣
= O(h2). (4.21)
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A second order numerical method for singularly perturbed... 929

Using the condition a′(0) = 0 and the inequality (2.3) for the first term on right side
in (4.20), we obtain

∣
∣
∣
∣
a′(x1)λ1h−1

∫ x2

x0
(x − x1)

[∫ x

x0
u′(ξ)dξ

]

ϕ1(x)dx

∣
∣
∣
∣

≤ ∣
∣a′(x1)

∣
∣ h

∫ x2

x0

∣
∣u′(x)

∣
∣ dx

≤ Cx1h
∣
∣a′′(η1)

∣
∣

∫ x2

x0

[

1 + 1√
ε
(e

−
√

αx√
ε + e

−
√

α(l−x)√
ε )

]

≤ Ch2(h + 1√
ε

∫ x2

x0
e
−

√
αx√
ε dx)

≤ Ch2
[

h + α− 1
2 (1 − e

− 2
√

αh√
ε )

]

= O(h2), η1 ∈ (0, x1) . (4.22)

From (4.21) and (4.22), we have

∣
∣
∣R

(1)
1

∣
∣
∣ = O(h2). (4.23)

Hence, from (4.19) and (4.23) we have

|R1| = O(h2).

This completes the proof of (4.4).
We now estimate the inequality (4.5). We can rewrite (3.12) in the form

r = r1 + r2, (4.24)

where

r1 = χ

∫ x1

0
[a0 − a(x)] u(x)ϕ0(x)dx, (4.25)

r2 = χ

∫ x1

0
f ′′(ξ)

[∫ x1

0
K1(x, ξ)ϕ0(x)dx

]

dξ. (4.26)

We first estimate the relation (4.25). Using the condition a′(0) = 0 and Taylor expan-
sion

a(x) − a(0) = xa′(0) + x2

2
a′′(η), η ∈ (0, x) ,

in (4.25), we obtain

|r1| =
∣
∣
∣
∣
χ

∫ x1

0

x2

2
a′′(η (x))u(x)ϕ0(x)dx

∣
∣
∣
∣
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≤ Ch2

2
max[0,x1]

∣
∣a′′(x)

∣
∣

∫ x1

0
ϕ0(x)dx

= Ch2

2γ0
max[0,x1]

∣
∣a′′(x)

∣
∣ tanh

(
γ0h

2

)

= Ch2

2
√
a0

max[0,x1]
∣
∣a′′(x)

∣
∣ tanh

(
γ0h

2

)

≤ Ch2. (4.27)

We then estimate the relation (4.26). From (4.26) we obtain

|r2| =
∣
∣
∣
∣
χ

∫ x1

0
f ′′(ξ)

[∫ x1

0
K1(x, ξ)ϕ0(x)dx

]

dξ

∣
∣
∣
∣

≤ 2χh2 max[0,x1]
∣
∣ f ′′(x)

∣
∣

∫ x1

0
ϕ0(x)dx

= 2χh2

γ0
max[0,x1]

∣
∣ f ′′(x)

∣
∣ tanh

(
γ0h

2

)

= 2χh2√
a0

max[0,x1]
∣
∣ f ′′(x)

∣
∣ tanh

(
γ0h

2

)

≤ Ch2. (4.28)

Taking into account (4.27) and (4.28) in (4.24), we arrive at (4.5). Thus, the proof of
lemma is completed. ��
Lemma 4.2 Let zi , 0 ≤ i ≤ N be the solution of the problem (4.1)–(4.3) andmoreover

1 − δz(1)N1
	= 0.

Then the following estimate holds

‖z‖∞,ω̄h
≤ C

(

γ −1 |r | + α−1 ‖R‖∞,ωh

)

. (4.29)

Proof The solution of difference problem (4.1)–(4.3) can be expressed as

zi (x) = z(0)i (x) + λz(1)i (x), (4.30)

where the functions z(0)i (x) and z(1)i (0 ≤ i ≤ N ) are the solutions of the following
problems, respectively.

− εθi zx̄ x,i + ai zi = −Ri , 1 ≤ i ≤ N − 1, (4.31)

−√
εθ0zx,0 + γ z0 = r , (4.32)

zN = 0, (4.33)
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Table 1 Point-wise error and rate of convergence for different values of ε and N

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−2 1.0312E−03 2.4983E−04 7.1910E−05 2.2695E−05 6.7951E−06

2.51 2.20 2.04 2.01

2−4 2.8509E−03 9.6729E−04 2.9842E−04 8.9239E−05 2.8574E−05

2.01 2.10 2.08 2.02

2−6 3.1232E−03 1.0253E−03 3.1938E−04 9.8583E−05 3.0289E−05

2.04 2.02 2.00 1.99

2−8 3.1230E−03 1.0251E−03 3.1935E−04 9.8582E−05 3.0286E−05

2.04 2.02 2.00 1.99

2−10 4.5862E−03 1.4930E−03 4.6804E−04 1.3972E−04 4.5373E−05

2.03 2.02 2.00 2.01

2−12 4.5865E−03 1.4932E−03 4.6802E−04 1.3978E−04 4.5376E−05

2.03 2.01 1.99 2.00

2−14 4.5865E−03 1.4932E−03 4.6802E−04 1.3978E−04 4.5376E−05

2.03 2.01 1.99 2.00

2−16 4.5865E−03 1.4932E−03 4.6802E−04 1.3978E−04 4.5376E−05

2.03 2.01 1.99

2−18 4.5865E−03 1.4932E−03 4.6802E−04 1.3978E−04 4.5376E−05

2.03 2.01 1.99 2.00

2−20 4.5865E−03 1.4932E−03 4.6802E−04 1.3978E−04 4.5376E−05

2.03 2.01 1.99 2.00

eN 4.5975E−03 1.6102E−03 4.8562E−04 1.4826E−04 4.3576E−05

pN 2.01 2.01 1.99 1.99

−εθi zx̄ x,i + ai zi = 0, 1 ≤ i ≤ N − 1, (4.34)

−√
εθ0zx,0 + γ z0 = 0, (4.35)

zN = 1, (4.36)

and

λ = δz(0)N1

1 − δz(1)N1

, (1 − δz(1)N1
	= 0).

From (4.30) we have

‖z‖∞,ω̄h
≤

∥
∥
∥z(0)

∥
∥
∥∞,ω̄h

+ |λ|
∥
∥
∥z(1)

∥
∥
∥∞,ω̄h

. (4.37)
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Fig. 1 Approximate solutions for different values ε

For difference problem (4.31)–(4.33) according to the maximum principle, we get

∥
∥
∥z(0)

∥
∥
∥∞,ω̄h

≤ γ −1 |r | + α−1 ‖R‖∞,ωh
. (4.38)

For the estimate of the problem (4.34)–(4.36) we have

∥
∥
∥z(1)

∥
∥
∥∞,ω̄h

≤ 1. (4.39)

Hence, substituting the estimates (4.38), (4.39) and |λ| ≤ Ch2 into (4.37) we arrive
at (4.29). ��

We now can statement the convergence result of this paper.

Theorem 4.1 Let u be the solution of (1.1)–(1.3) and y the solution of (4.3)–(4.5).
Then, under the conditions of Lemmas 4.1 and 4.2, the following ε-uniform error
estimate holds

‖y − u‖∞,ω̄h
≤ Ch2.

Proof The proof of Theorem 4.1 follows from combining Lemmas 4.1 and 4.2. ��
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Fig. 2 Exact solution and approximation solution for different values N and ε = 2−2

5 Numerical results

In this section, we present one numerical example to demonstrate the applicability and
the efficiency of the proposed method.

Example 5.1 Consider the following singularly perturbed nonlocal boundary value
problem.

εu′′(x) − u(x) = cos2(πx) + 2επ2 cos(2πx), 0 < x < 1,

−√
εu′(0) + u(0) = 0, u (1) − 1

2
u(

1

2
) = −1.

The exact solution of the problem is

u(x) = e
2x−1
2
√

ε − e
x−1√

ε

4e
1√
ε − 2e

1
2
√

ε

+ 1

2
e
− x√

ε − cos2(πx).

We define the maximum point-wise error and the computed ε-uniform maximum
point-wise error as follows

eNε = ‖y − u‖∞,ω̄h
, eN = max

ε
eNε .
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Fig. 3 The rates of convergence for different values N and ε = 2−2

where u is the exact solution and y is the numerical solution obtained for various
values of N and ε. We also define the rate of convergence and compute the ε-uniform
rate of convergence by the form

pNε = ln
(

eNε /e2Nε

)

ln 2
, pN = ln

(

eN/e2N
)

ln 2
.

We give the maximum point-wise errors and the rates of convergence obtained for the
values ε = 2−i , i = 2, 4, . . . , 20 and N = 64, 128, 256, 512, 1024 by our method
in Table 1. We observe that ε-uniform experimental rate of convergence is close to 2
for sufficiently large N . The numerical results support the theoretical rate estimation
given by Theorem 4.1. Furthermore, graphics for Example 5.1 are shown in Figs. 1,
2, 3.

Conclusion

In this article, we have presented a second-order ε-uniformly convergent numerical
method for solving singularly perturbed nonlocal boundary value problems. We have
constructed the method on the basis of the method of integral identities with the
use of interpolating quadrature rules with the weight and remainder terms in integral
form. This approach has the advantage that difference schemes can also be effective

123



A second order numerical method for singularly perturbed... 935

in the case where the original problem considered under certain singularities. For
the numerical solution of this problem, we have used finite difference schemes on a
uniform mesh. We have obtained second-order convergent, in the discrete maximum
norm, independently of the singular perturbation parameter ε. The proposed method
is tested on one example and numerical results are shown for various values of ε and
N in Table 1. We can observe that the numerical results seem to be ε-uniform and
the rates of convergence are close to 2 for sufficiently large N , independently of the
singular perturbation parameter ε. Hence, it is proved that the method has accuracy of
second order.
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