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Abstract
Neutrosophic soft sets are a mathematical model put forward to overcome uncertainty
with the contribution of a parameterization tool and neutrosophic logic by considering
of information a falsity membership function, an indeterminacy membership function
and a truth membership function. This set theory which is a very successful math-
ematical model, especially as it handles information in three different aspects, was
first introduced to the literature by Maji (Ann Fuzzy Math Inf 5(1):157–168, 2013)
and later modified by Deli and Broumi (J Intell Fuzzy Syst 28(5):2233–2241, 2015).
In this way, they aimed to use neutrosophic soft sets more effectively for uncertainty
problems encountered in most real life problems. Relations are a method preferred by
researchers to explain the correspondences between objects. In this paper, neutrosophic
soft relationships are discuss and define by referring to the theory of neutrosophic soft
set proposed by Deli and Broumi (Ann Fuzzy Math Inf 9:169–182, 2015). Then, we
present the concepts of composition, inverse of neutrosophic soft relations and func-
tions along with some related properties and theorems. Moreover, the equivalence
classes and equivalence relations of soft relations are given with support from real life
examples and some of their properties are analyzed. Finally, we propose an algorithm
to be used in expressing the correspondence between objects in solving uncertainty
problems by using the soft relationship defined and an example is given to show how
this algorithm can be applied for uncertainty problems.
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1 Introduction

It is very important to express the current state of uncertainty in a problems in the
best way possible and then to be able to solve the problem in the most ideal way. In
this regard, especially in recent years, two mathematical models have come to the fore
in dealing with uncertain data. One of them is the theory of neutrosophic set (briefly
NS) proposed by Smarandache [1] as a generalization of fuzzy set (briefly FS) [2] and
intuitionistic fuzzy set [3]. This set theory is a logic set with three components, the
falsity, indeterminacy and truth memberships, that are completely independent from
each other to express uncertainty clearly. The first data on NSs are available in the
book [4] published in 1998. One of the most important advantages of this set theory
is its ability to process indeterminate data that are not considered by FS theory and
intuitionistic fuzzy set theory.

One of themathematical models frequently used by researchers to solve uncertainty
problems is the soft set (briefly SS) theory brought to the literature byMolodsov [5] as
a general mathematical tool used to handle imprecision, vagueness and uncertainties.
The most important reason why this set theory is frequently used by researchers is
that it eliminates the lack of a parameterization tool that is not available in other set
models. Since the SS theory was introduced, many different mathematical models of
SS have been developed such as vague soft sets [6], soft expert sets [7], interval-valued
vague soft sets [8–10], fuzzy soft sets [11], neutrosophic soft set (briefly NSS) [12–
15], neutrosophic parameterized neutrosophic soft set [16] and soft multi set theory
[17]. Currently, SS continues to attract the attention of researchers, and accordingly,
the field of application of the this theory continues to increase day by day [18–24].

Since these two set theories are quite successful in processing uncertain data, Maji
[12] has combined these theories and introduced a novel mathematical model, which is
called NSS, to the literature. After the NSSs were modified by Deli and Bromi [13] so
that they could be used more practically in uncertainty problems, and their operations
were also redefined and a comparison with Maji’s [12] definition was given. This
mathematical model has been found interesting by many researchers: For example;
Mukherjee and Sarkar [25] solved amedical diagnosis decision-making problem using
NSSs and discussed about the theory. Moreover, Şahin and Küçük [26] studied some
algebraic properties by introducing a novel style of NSS theory. Apart from that,
Hussain and Shabir [27] investigated on algebraic operations of theory. Sumathi and
Arockiarani [28] also studied the NSSs. In addition to these, a lot of research has been
done on the NSS [29–33].

The FS theory, which was put forward by Zadeh [2] to overcome uncertainty before
all these set theories, has been successfully applied to uncertainty problems, especially
in decision-making areas, making this theory a focal point for research. Therefore, the
extensions of FS, intuitionistic FS [3], interval-valued intuitionistic FS [34], NS, single
valued NS [35] and their hybrid models have been applied as mathematical models
recommended to overcome uncertainty.

Because of the observation that objects can be related to each other in real life, fuzzy
relationships were used at first. Using these relationships, a vagueness that expresses
the relation degree of two objects can only be modeled, that is, they are insufficient in
modeling the uncertainty. In order to overcome this situation, Bustince andBurillo [36]
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suggested the concept of intuitionistic fuzzy relations and thenDinda andSamanta [37]
the concept of intuitionistic fuzzy soft relations. However, in these relationships can
only express a certain degree of uncertainty, that is , it does not handle indeterminacy
degree of membership. For this reason, neutrosophic soft relationships have been
brought to the literature by Deli and Broumi [38], using the neutrosophic soft sets
given by Maji [12]. In this way, a great progress has been made in order to express the
relations between objects in the best way. The better we can express the relationships
between objects, the more we can manage decision-making processes in uncertain
environments. That’s why, recently, many researchers have studied generalizations
of fuzzy relationships [39–41], fuzzy soft relationships [42,43] and neutrorophic soft
relationships [44–46].

NSSs given by Maji [12] were modified by Deli and Bromi [13] and it was aimed
to use this set model more functionally in decision making problems. The aim of
this paper is to discuss and introduce the concept of neutrosophic soft relationships
(briefly NSR) based on NSSs modified by Deli and Bromi [38]. The organization of
this paper is as follow: In Sect. 2, we give the basic definitions and results of NS
theory, SS theory and NSS theory that are useful for subsequent discussions. In Sect.
3, we characterize the idea of NSR and present the composition and inverse operations
of these relations with some basic properties. In Sect. 4, various types of NSRs are
defined. In addition, the equivalence classes and partitions of NSSs are analyzed. In
Sect. 5, the concept of neutrosophic soft function is defined and some special types
of this concept are presented together with related theorems. In Sect. 6, we present an
application of NSRs in a decision-making problem. Finally, we conclude the paper in
Sect. 7.

2 Preliminaries

In this section, we recall some basic notions in NS, SS, and NSS.
Throughout this paper, let P be a set of parameters and K , L , M be non-empty

subsets of P . Also, let U be an initial universe, and 2U denotes the power set of U .

Definition 2.1 [1] A NS X on the universe of discourse U is defined as:

X = {〈u, TX (u), IX (u), FX (u)〉 : u ∈ U } (1)

where −0 ≤ TX (u) + IX (u) + FX (u) ≤ 3+ and T , I , F : U →]−0, 1+[ .
Note that the set of all the NSs over U will be denoted by 2N (U ).

Definition 2.2 [5] A pair (�, K ) is called a SS over U , where � is a mapping given
by � : K → 2U . For p ∈ K , �(p) may be considered as the set of p-approximate
elements of the SS (�, K ), i.e.,

(�, K ) = {(p, �(p)) : p ∈ K }. (2)

Firstly, NSS defined by Maji [12] and later this concept has been modified by Deli
and Bromi [13] as given below:
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Definition 2.3 [13] A NSS (̂�, P) over U is a set defined by a set valued function ̂�

representing a mapping ̂� : P → 2N (U ) where ̂� is called approximate function of

the NSS (̂�, P), i.e.,

(̂�, P) =
{(

p, 〈u, T
̂�(p)(u), I

̂�(p)(u), F
̂�(p)(u)〉 : u ∈ U

)

: p ∈ P
}

(3)

where 0 ≤ T
̂�(p)(u) + I

̂�(p)(u) + F
̂�(p)(u) ≤ 3 and T

̂�(p)(u), I
̂�(p)(u), F

̂�(p)(u) ∈
[0, 1] called the truth-membership, indeterminacy-membership, falsity-membership

functions of ̂�(p).

Definition 2.4 [47]

(i) A NSS (̂�, P) over U is said to be null NSS if T
̂�(p)(u) = 0, I

̂�(p)(u) = 1,
F

̂�(p)(u) = 1; ∀p ∈ P , ∀u ∈ U . It is denoted by ∅U .
(ii) A NSS (̂�, P) over U is said to be absolute NSS if T

̂�(p)(u) = 1, I
̂�(p)(u) = 0,

F
̂�(p)(u) = 0; ∀p ∈ P , ∀u ∈ U . It is denoted by 1U .

Clearly, ∅cU = 1U and 1cU = ∅U .
Definition 2.5 [48] Let (̂�, P) be NSS overU . The complement of (̂�, P) is denoted
by (̂�, P)c and is defined by:

(̂�, P)c =
{(

p, 〈u, F
̂�(p)(u), 1 − I

̂�(p)(u), T
̂�(p)(u)〉 : u ∈ U

)

: p ∈ P
}

(4)

Obvious that, ((̂�, P)c)c = (̂�, P).

Definition 2.6 [12] Let (̂�, P) and (̂�, P) be two NSSs over U . (̂�, P) is said to be
neutrosophic soft subset of (̂�, P) if T

̂�(p)(u) ≤ T
̂�(p)(u), I

̂�(p)(u) ≤ I
̂�(p)(u) and

F
̂�(p)(u) ≥ F

̂�(p)(u) for all p ∈ P , u ∈ U . It is denoted by (̂�, P)̂⊆(̂�, P).

(̂�, P) is said to be neutrosophic soft equal to (̂�, P) if (̂�, P)̂⊆(̂�, P) and
(̂�, P)̂⊆(̂�, P). It is denoted by (̂�, P) = (̂�, P)

Definition 2.7 [49] Let (̂�, P) and (̂�, P) be two NSSs over U . Then,

(i) their union is denoted by (̂�, P)̂∪(̂�, P) = (̂�, P) and is defined by:

(̂�, P) =
{(

p, 〈u, T
̂�(p)(u), I

̂�(p)(u), F
̂�(p)(u)〉 : u ∈ U

)

: p ∈ P
}

(5)

where

T
̂�(p)(u) = max

{

T
̂�(p)(u), T

̂�(p)(u)
}

,

I
̂�(p)(u) = max

{

I
̂�(p)(u), I

̂�(p)(u)
}

and

F
̂�(p)(u) = min

{

F
̂�(p)(u), F

̂�(p)(u)
}

.
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(ii) their intersection is denoted by (̂�, P)̂∩(̂�, P) = (̂�, P) and is defined by:

(̂�, P) =
{(

p, 〈u, T
̂�(p)(u), I

̂�(p)(u), F
̂�(p)(u)〉 : u ∈ U

)

: p ∈ P
}

(6)

where

T
̂�(p)(u) = min

{

T
̂�(p)(u), T

̂�(p)(u)
}

,

I
̂�(p)(u) = min

{

I
̂�(p)(u), I

̂�(p)(u)
}

and

F
̂�(p)(u) = max

{

F
̂�(p)(u), F

̂�(p)(u)
}

.

3 Relations on NSSs

In this section, we first define the cartesian product (briefly CP) of two NSSs, then
characterize the idea of NSR and present the composition and inverse operations of
these relations with some basic properties.

Definition 3.1 Let (̂�, P) and (̂�, P) be two NSSs over U , then (̂�, P) × (̂�, P) =
(̂�, P×P) is theCPof (̂�, P) and (̂�, P), where (a, b) ∈ P×P ,̂� : P×P → 2N (U )

and ̂�(a, b) = �(a) × �(b), i.e.,

(̂�, P × P) =
{(

(a, b), 〈u, T
̂�(a,b)(u), I

̂�(a,b)(u), F
̂�(a,b)(u)〉 : u ∈ U

)

: (a, b) ∈ P × P
}

(7)

where T
̂�(a,b)(u), I

̂�(a,b)(u), F
̂�(a,b)(u) are the truth, indeterminacy and falsity mem-

bership functions of (̂�, P × P) such that T
̂�(a,b), Î�(a,b), F̂�(a,b)(u) : U → [0, 1]

and for all u ∈ U and (a, b) ∈ P × P we have:

T
̂�(a,b)(u) = min

{

T
̂�(a)(u), T

̂�(b)(u)
}

,

I
̂�(a,b)(u) = max

{

I
̂�(a)(u), I

̂�(b)(u)
}

and

F
̂�(a,b)(u) = max

{

F
̂�(a)(u), F

̂�(b)(u)
}

.

Example 3.2 Let U = {u1, u2, u3} be an universal set, P = {p1, p2} be a set of
parameters and

(̂�, P) =
{

(p1, 〈u1, 0.45, 0.6, 0.2〉, 〈u2, 0.55, 0.43, 0.76〉, 〈u3, 0.6, 0.2, 0.45〉) ,

(p2, 〈u1, 0.55, 0.3, 0.56〉, 〈u2, 0.75, 0.6, 0.4〉, 〈u3, 0.25, 0.6, 0.57〉)
}

,
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(̂�, P) =
{

(p1, 〈u1, 0.34, 0.7, 0.35〉, 〈u2, 0.76, 0.5, 0.6〉, 〈u3, 0.65, 0.25, 0.7〉) ,

(p2, 〈u1, 0.45, 0.33, 0.6〉, 〈u2, 0.8, 0.65, 0.7〉, 〈u3, 0.2, 0.65, 0.5〉)
}

be two NSSs over U . Then, the CP of (̂�, P) and (̂�, P) is

(̂�, P × P) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

((p1, p1), 〈u1, 0.34, 0.7, 0.35〉, 〈u2, 0.55, 0.5, 0.76〉, 〈u3, 0.6, 0.25, 0.7〉) ,

((p1, p2), 〈u1, 0.45, 0.6, 0.6〉, 〈u2, 0.55, 0.65, 0.76〉, 〈u3, 0.2, 0.65, 0.45〉) ,

((p2, p1), 〈u1, 0.34, 0.7, 0.56〉, 〈u2, 0.75, 0.6, 0.6〉, 〈u3, 0.25, 0.6, 0.7〉) ,

((p2, p2), 〈u1, 0.45, 0.33, 0.6〉, 〈u2, 0.75, 0.65, 0.7〉, 〈u3, 0.2, 0.65, 0.57〉)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Definition 3.3 Let (̂�, P) and (̂�, P) be NSSs over U , then a NSR from (̂�, P) to
(̂�, P) is a neutrosophic soft subset of (̂�, P)×(̂�, P), and is of the form (̂R, K ×L),
where K × L ⊆ P × P and ̂R(a, b) ⊆ (̂�, P) × (̂�, P), ∀(a, b) ∈ K × L , i.e.,

(̂R, K × L)=
{(

(a, b), 〈u, T
̂R(a,b)(u), I

̂R(a,b)(u), F
̂R(a,b)(u)〉 : u ∈ U

)

: (a, b) ∈ K × L ⊆ P × P
}

(8)

where for all u ∈ U and (a, b) ∈ K × L ⊆ P × P ,

T
̂R(a,b)(u) = min

{

T
̂�(a)(u), T

̂�(b)(u)
}

,

I
̂R(a,b)(u) = max

{

I
̂�(a)(u), I

̂�(b)(u)
}

and

F
̂R(a,b)(u) = max

{

F
̂�(a)(u), F

̂�(b)(u)
}

.

If (̂R, K × L) is a NSR from (̂�, P) to (̂�, P), then is called a NSR on (̂�, P).

Definition 3.4 Let ̂R be a NSR from (̂�, P) to (̂�, P). Then,

(i) the domain of ̂R
(

DOM
̂R

)

is defined as the NSS (̂D, K1), where K1 = {a ∈ K :
̂R(a, b) ∈ ̂R, f or some b ∈ L} and ̂D(a1) = �(a1), ∀a1 ∈ K1.

(ii) the range of ̂R
(

RAN
̂R

)

is defined as the NSS (̂RN , L1) where L1 = {b ∈ L :
̂R(a, b) ∈ ̂R, f or some a ∈ K } and̂RN (b1) = �(b1), ∀b1 ∈ L1.

Example 3.5 Consider Example 3.2. Let̂R be aNSR from (̂�, P) to (̂�, P) as follows:

̂R =
{

((p1, p2), 〈u1, 0.45, 0.6, 0.6〉, 〈u2, 0.55, 0.65, 0.76〉, 〈u3, 0.2, 0.65, 0.45〉) ,

((p2, p2), 〈u1, 0.45, 0.33, 0.6〉, 〈u2, 0.75, 0.65, 0.7〉, 〈u3, 0.2, 0.65, 0.57〉)
}

⊆ (̂�, P) × (̂�, P).

Then DOM
̂R = (̂D, K1) where K1 = {p1, p2} and ̂D(a1) = �(a1), ∀a1 ∈ K1, and

RAN
̂R = (̂RN , L1) where L1 = {p2} and̂RN (b1) = �(b1), ∀b1 ∈ L1.
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Definition 3.6 The identity NSR ̂I(̂�,P) on a NSS (̂�, P) is defined aŝ�(a)̂I(̂�,P)
̂�(b)

if and only if a = b.

Example 3.7 In Example 3.2, the relation

(̂R, K × L) =
{

((p1, p1), 〈u1, 0.34, 0.7, 0.35〉, 〈u2, 0.55, 0.5, 0.76〉, 〈u3, 0.6, 0.25, 0.7〉) ,

((p2, p2), 〈u1, 0.45, 0.33, 0.6〉, 〈u2, 0.75, 0.65, 0.7〉, 〈u3, 0.2, 0.65, 0.57〉)
}

is an identity NSR.

Definition 3.8 Let (̂�, P) and (̂�, P) be NSSs overU and (̂R, K × L) be a NSR from
(̂�, P) to (̂�, P). Then the inverse of (̂R, K × L), (̂R−1, L × K ) is a NSR and is
defined as:

̂R−1(b, a) = ̂R(a, b), ∀(a, b) ∈ K × L ⊆ P × P.

Example 3.9 Consider Example 3.5. Then we have,

̂R−1 =
{

((p2, p1), 〈u1, 0.34, 0.7, 0.56〉, 〈u2, 0.75, 0.6, 0.6〉, 〈u3, 0.25, 0.6, 0.7〉) ,

((p2, p2), 〈u1, 0.45, 0.33, 0.6〉, 〈u2, 0.75, 0.65, 0.7〉, 〈u3, 0.2, 0.65, 0.57〉)
}

.

Theorem 3.10 Suppose (̂�, P) and (̂�, P) are NSSs over U, and (̂R1, K × L) and
(̂R2, K × L) are NSRs from (̂�, P) to (̂�, P). Then,

(i) ((̂R1, K × L)−1)−1 = (̂R1, K × L).
(ii) If (̂R1, K × L)̂⊆(̂R2, K × L) then (̂R1, K × L)−1

̂⊆(̂R2, K × L)−1.

Proof For all (a, b) ∈ K × L ⊆ P × P ,

(i) ((̂R1)
−1)−1 = ̂R1(a, b), thus ((̂R1, K × L)−1)−1 = (̂R1, K × L).

(ii) If ̂R1(a, b) ⊆ ̂R2(a, b), then ̂R−1
1 (b, a) ⊆ ̂R−1

2 (b, a), and thus (̂R1, K ×
L)−1

̂⊆(̂R2, K × L)−1. �
Definition 3.11 If (̂�, P), (̂�, P) and (̂�, P) are NSSs over U and (̂R1, K × L) and
(̂R2, L×M) are NSRs from (̂�, P) to (̂�, P) and from (̂�, P) to (̂�, P) respectively,
where K × L ⊆ P × P and L × M ⊆ P × P , then the composition of the NSRs
(̂R1, K × L) and (̂R2, L × M) denoted by ̂R2 ◦ ̂R1 from (̂�, P) to (̂�, P) is defined
as:

(̂R2 ◦ ̂R1, K × M) =
⎧

⎨

⎩

⎛

⎝(a, c), 〈u,

T(̂R2◦̂R1)(a,c)(u),

I(̂R2◦̂R1)(a,c)(u),

F(̂R2◦̂R1)(a,c)(u)

〉 : u ∈ U

⎞

⎠ : (a, c) ∈ K × M ⊆ P × P

⎫

⎬

⎭

(9)

where for all (a, b) ∈ K × L ⊆ P × P and (b, c) ∈ L × M ⊆ P × P ,

T(̂R2◦̂R1)(a,c)(u) = max
{

T
̂R1(a,b)(u), T

̂R2(b,c)
(u)

}
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= max
{

min
{

T
̂�(a)(u), T

̂�(b)(u)
}

,min
{

T
̂�(b)(u), T

̂�(c)(u)
}}

,

I(̂R2◦̂R1)(a,c)(u) = min
{

I
̂R1(a,b)(u), I

̂R2(b,c)
(u)

}

= min
{

max
{

I
̂�(a)(u), I

̂�(b)(u)
}

,max
{

I
̂�(b)(u), I

̂�(c)(u)
}}

,

F(̂R2◦̂R1)(a,c)(u) = min
{

F
̂R1(a,b)(u), F

̂R2(b,c)
(u)

}

= min
{

max
{

F
̂�(a)(u), F

̂�(b)(u)
}

,max
{

F
̂�(b)(u), F

̂�(c)(u)
}}

.

Example 3.12 Let U = {u1, u2, u3} be a set of staffs, P = {p1, p2, p3, p4} be the
set of parameters requested from staffs and K , L, M ∈ P . For i = 1, 2, 3, 4, the
parameters pi stand for “successful”, “hardworking”, “talented” and “experienced”,
respectively.

Suppose that the three experts’ views on the staff with the help of the NSSs (̂�, P),
(̂�, P) and (̂�, P) are defined as:

(̂�, P) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(p1, 〈u1, 0.5, 0.65, 0.23〉, 〈u2, 0.65, 0.443, 0.64〉, 〈u3, 0.45, 0.25, 0.65〉) ,

(p2, 〈u1, 0.7, 0.43, 0.36〉, 〈u2, 0.5, 0.6, 0.3〉, 〈u3, 0.52, 0.48, 0.7〉) ,

(p3, 〈u1, 0.56, 0.46, 0.15〉, 〈u2, 0.6, 0.74, 0.62〉, 〈u3, 0.55, 0.24, 0.57〉) ,

(p4, 〈u1, 0.75, 0.32, 0.64〉, 〈u2, 0.6, 0.67, 0.34〉, 〈u3, 0.25, 0.6, 0.57〉)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(̂�, P) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(p1, 〈u1, 0.2, 0.35, 0.8〉, 〈u2, 0.9, 0.5, 0.6〉, 〈u3, 0.45, 0.25, 0.5〉) ,

(p2, 〈u1, 0.9, 0.5, 0.4〉, 〈u2, 0.5, 0.65, 0.32〉, 〈u3, 0.45, 0.5, 0.7〉) ,

(p3, 〈u1, 0.6, 0.7, 0.25〉, 〈u2, 0.75, 0.34, 0.84〉, 〈u3, 0.6, 0.2, 0.45〉) ,

(p4, 〈u1, 0.7, 0.34, 0.6〉, 〈u2, 0.8, 0.65, 0.45〉, 〈u3, 0.7, 0.64, 0.72〉)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(̂�, P) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(p1, 〈u1, 0.67, 0.65, 0.24〉, 〈u2, 0.7, 0.48, 0.64〉, 〈u3, 0.56, 0.27, 0.58〉) ,

(p2, 〈u1, 0.74, 0.38, 0.76〉, 〈u2, 0.65, 0.7, 0.46〉, 〈u3, 0.28, 0.64, 0.72〉) ,

(p3, 〈u1, 0.65, 0.45, 0.18〉, 〈u2, 0.67, 0.82, 0.92〉, 〈u3, 0.34, 0.25, 0.65〉) ,

(p4, 〈u1, 0.75, 0.35, 0.64〉, 〈u2, 0.85, 0.7, 0.45〉, 〈u3, 0.54, 0.67, 0.83〉)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Accordingly, the relationships and effects between the parameters requested from
staffs can be expressed. For example; if (̂R1, K × L) and (̂R2, L×M) are NSRs from
(̂�, P) to (̂�, P) and from (̂�, P) to (̂�, P) respectively, where K × L ⊆ P × P
and L × M ⊆ P × P for K = {p2, p3}, L = {p1}, M = {p4}, then these NSRs are
defined as:

(̂R1, K × L) =
{

((p2, p1), 〈u1, 0.2, 0.43, 0.8〉, 〈u2, 0.5, 0.6, 0.6〉, 〈u3, 0.45, 0.25, 0.65〉) ,

((p3, p1), 〈u1, 0.2, 0.46, 0.8〉, 〈u2, 0.6, 0.74, 0.62〉, 〈u3, 0.45, 0.25, 0.57〉)
}

,

(̂R2, L × M) = {

((p1, p4), 〈u1, 0.2, 0.35, 0.8〉, 〈u2, 0.85, 0.7, 0.6〉, 〈u3, 0.45, 0.67, 0.83〉) ,
}

.

Here, the NSR (̂R1, K × L) describes the effect of parameters in K on being
successful, where it measures the falsity, indeterminacy and true degrees for a hard-
working or talented staff to be successful. Similarly, the NSR (̂R2, L × M) expresses
the effect of a successful staff on being experienced, where it measures the falsity,
indeterminacy and true degrees for a successful staff to be experienced.

The combination of these two relationships can help us understand the impact
that a hardworking or talented staff can have on being experienced. The composition
between the NSRs (̂R1, K × L) and (̂R2, L × M) is:
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(̂R2 ◦ ̂R1, K × M) =
{

((p2, p4), 〈u1, 0.2, 0.35, 0.8〉, 〈u2, 0.85, 0.6, 0.6〉, 〈u3, 0.45, 0.25, 0.65〉) ,

((p3, p4), 〈u1, 0.2, 0.35, 0.8〉, 〈u2, 0.85, 0.7, 0.6〉, 〈u3, 0.45, 0.25, 0.57〉)
}

T(̂R2◦̂R1)(a,c), I(̂R2◦̂R1)(a,c) and F(̂R2◦̂R1)(a,c) represent respectively, the degrees of
true, indeterminacy and falsity for a hardworking or talented staff to be experienced.
For example, the term 〈u2, 0.85, 0.6, 0.6〉 for the parameter pair (p2, p4) means that
the hardworking of the staff SS has a 0.85 truth degree of in being experienced, 0.6
indeterminacy degree of in being experienced, 0.6 falsity degree of in being experi-
enced.

Theorem 3.13 Let (̂�, P), (̂�, P) and (̂�, P) be NSSs over U and (̂R1, K × L) and
(̂R2, L × M) be NSRs from (̂�, P) to (̂�, P) and from (̂�, P) to (̂�, P) respectively,
where K × L ⊆ P × P and L × M ⊆ P × P. Then (̂R2 ◦ ̂R1, K × M)−1 =
(̂R−1

1 ◦ ̂R−1
2 , M × K ).

Proof If (̂R1, K × L) and (̂R2, L × M) are NSRs from (̂�, P) to (̂�, P) and (̂�, P)

to (̂�, P) respectively, then (̂R2 ◦ ̂R1, K × M)̂⊆(̂�, P) × (̂�, P). Now, for (a, c) ∈
K × M , u ∈ U ,

T(̂R2◦̂R1)−1(c,a)(u) = T(̂R2◦̂R1)(a,c)(u)

= max
{

T
̂R1(a,b)(u), T

̂R2(b,c)
(u)

}

= max
{

T
̂R2(b,c)

(u), T
̂R1(a,b)(u)

}

= max
{

min
{

T
̂�(b)(u), T

̂�(c)(u)
}

,min
{

T
̂�(a)(u), T

̂�(b)(u)
}}

= max
{

min
{

T
̂�(c)(u), T

̂�(b)(u)
}

,min
{

T
̂�(b)(u), T

̂�(a)(u)
}}

= max
{

T
̂R−1

2 (c,b)(u), T
̂R−1

1 (b,a)
(u)

}

= T
(̂R−1

1 ◦̂R−1
2 )(c,a)

(u)

Similar results canbe shown for components I(̂R2◦̂R1)−1(c,a)(u) and F(̂R2◦̂R1)−1(c,a)(u).
This completes the proof. �

4 Partitions on NSSs

In this section, various types of NSRs given in the previous section are defined. In
addition, the equivalence classes and partitions of NSSs are analyzed by giving them
together with related theorems.

Definition 4.1 Let ̂R be a NSR on (̂�, P), then

(i) (̂R, K × L) is reflexive NSR (briefly RNSR) if ̂R(a, a) ∈ (̂R, K × L), ∀a ∈ P ,
(a, a) ∈ K × L ∈ P × P .

(ii) (̂R, K × L) is symmetric NSR (briefly SNSR) if ̂R(a, b) ∈ (̂R, K × L) �⇒
̂R(b, a) ∈ (̂R, K × L), ∀a, b ∈ P (a, b) ∈ K × L ⊆ P × P .
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(iii) (̂R, K × L) is transitive NSR (briefly TNSR) if ̂R(a, b) ∈ (̂R, K × L)

and ̂R(b, c) ∈ (̂R, K × L) �⇒ ̂R(a, c) ∈ (̂R, K × L), ∀a, b, c ∈ P
(a, b), (a, c), (b, c) ∈ K × L ⊆ P × P .

(iv) (̂R, K × L) is a neutrosophic soft equivalence relation (briefly NSER) if it is
RNSR, SNSR and TNSR.

Example 4.2 Reconsider Example 3.2. Suppose a NSR (̂R, K ×L) for the NSS (̂�, P)
given in this example is defined by:

(̂R, K × L) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

((p1, p1), 〈u1, 0.45, 0.6, 0.2〉, 〈u2, 0.55, 0.43, 0.76〉, 〈u3, 0.6, 0.2, 0.45〉) ,

((p1, p2), 〈u1, 0.45, 0.6, 0.56〉, 〈u2, 0.55, 0.6, 0.76〉, 〈u3, 0.25, 0.6, 0.57〉) ,

((p2, p1), 〈u1, 0.45, 0.6, 0.56〉, 〈u2, 0.55, 0.6, 0.76〉, 〈u3, 0.25, 0.6, 0.57〉) ,

((p2, p2), 〈u1, 0.55, 0.3, 0.56〉, 〈u2, 0.75, 0.6, 0.4〉, 〈u3, 0.25, 0.6, 0.57〉)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

This NSR is a NSER.

Definition 4.3 Let (̂�, P) be a NSS. Then the neutrosophic soft equivalence class of
̂�(a) is defined as

[̂�(a)] = {

̂�(b) : ̂�(b)̂R̂�(a),∀a, b ∈ P
}

. (10)

Example 4.4 Consider Example 4.2. Then have [̂�(p1)] = {̂�(p1),̂�(p2)} =
[̂�(p2)].
Lemma 4.5 Let (̂R, K ×L) be an NSER onNSS (̂�, P). For anŷ�(a),̂�(b) ∈ (̂�, P),
̂�(a)̂R̂�(b) if and only if [̂�(a)] = [̂�(b)].
Proof (⇒) Let ̂�(a1) ∈ [̂�(a)]. Then ̂�(a1)̂R̂�(a). Since (̂R, K × L) is an NSER
(i.e., using the transitive property), then ̂�(a1) ∈ [̂�(b)]. Hence [̂�(a)] ⊆ [̂�(b)].
Similarly [̂�(b)] ⊆ [̂�(a)]. Thus, [̂�(a)] = [̂�(b)].

(⇐) Since (̂R, K × L) is an NSER (i.e., using the reflexive property), then
̂�(b)̂R̂�(b). Hence ̂�(b) ∈ [̂�(b)] = [̂�(a)] which gives ̂�(a)̂R̂�(b). �
Definition 4.6 A collection of nonempty neutrosophic soft subsets ρ = {(̂�i , Pi ) :
i ∈ I } of a NSS (̂�, P) is called a NSS partition (briefly NSS-PART) of (̂�, P) such
that (̂�, P) = ̂∪i (̂�i , Pi ) and Pi ∩ Pj = ∅, whenever i �= j .

Example 4.7 Let U = {u1, u2} be an universal set, P = {p1, p2, p3} be a set of
parameters and

(̂�, P) =
⎧

⎨

⎩

(p1, 〈u1, 0.77, 0.65, 0.4〉, 〈u2, 0.6, 0.47, 0.8〉) ,

(p2, 〈u1, 0.8, 0.35, 0.6〉, 〈u2, 0.7, 0.55, 0.62〉) ,

(p3, 〈u1, 0.67, 0.34, 0.76〉, 〈u2, 0.14, 0.34, 0.45〉)

⎫

⎬

⎭

be a NSS over U . Suppose P1 = {p2, p3}, P2 = {p1}, where (̂�1, P1) =
{

̂�1(p2),̂�1(p3)
}

and (̂�2, P2) = {

̂�2(p1)
}

are neutrosophic soft subsets of (̂�, P)

such that ̂�i = ̂� for i = 1, 2. Since P1 ∩ P2 = ∅ and (̂�1, P1)̂∪(̂�2, P2) = (̂�, P),
then

{

(̂�1, P1), (̂�2, P2)
}

is a NSS-PART of (̂�, P).
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Definition 4.8 Elements of the NSS-PART are called a NSS-block of (̂�, P).

Theorem 4.9 Let
{

(̂�i , Pi ) : i ∈ I
}

be a NSS-PART of the NSS (̂�, P). The neutro-
sophic soft relation defined on (̂�, P) as ̂�(a)̂R̂�(b) is an NSER if and only if ̂�(a)

and ̂�(b) are elements of the same block.

Proof (i) It is clear that any element of the NSS (̂�, P) is in the same block itself.
Hence ̂R(a, a) ∈ (̂R, K × L) and (̂R, K × L) is RNSR.

(ii) If̂R(a, b) ∈ (̂R, K×L), then̂�(a) and̂�(b) are in the same block, i.e.,̂R(b, a) ∈
(̂R, K × L) and so it is SNSR.

(iii) If ̂R(a, b) ∈ (̂R, K × L) and ̂R(b, c) ∈ (̂R, K × L), then ̂�(a), ̂�(b) and ̂�(c)
are in the same block, i.e., ̂R(a, c) ∈ (̂R, K × L) and so it is TNSR. �

Remark 4.10 TheNSR given in Theorem 4.9 is called aNSER determined by theNSS-
PARTρ. For example, theNSERdetermined by the partitionρ = {

(̂�1, P1), (̂�2, P2)
}

in Example 4.7 is as follows:

̂R = {

̂�(p1) × ̂�(p1),̂�(p2) × ̂�(p2),̂�(p3) × ̂�(p3),̂�(p2) × ̂�(p3),̂�(p3) × ̂�(p2)
}

Theorem 4.11 Corresponding to every NSER defined on a NSS (̂�, P) there exists a
NSS-PART on (̂�, P) and this NSS-PART precisely consists of the neutrosophic soft
equivalence classes of (̂R, K × L).

Proof Let [̂�(a)] be neutrosophic soft equivalence class with respect to a NSR
(̂R, K × L) on (̂�, P). Here, we can denote [̂�(a)] as (̂�, Pa) for Pa =
{

b ∈ P : ̂R(b, a) ∈ (̂R, K × L)
}

. Thus,wehave to show that the collection
{

(̂�, Pa) :
a ∈ P} is a NSS-PART ρ of (̂�, P). For this we must show from Definition 4.6 that
the following two conditions are satisfied:

(i) (̂�, P) = ̂∪a∈P (̂�, Pa),
(ii) Pa ∩ Pb = ∅ for a �= b.

Since ̂R is an NSER (i.e., using the reflexise property), ̂R(a, a) ∈ (̂R, K × L),
∀a ∈ P , i.e., condition (i) is implemented.

Let p ∈ Pa ∩ Pb for the second part. Since ̂�(p) ∈ (̂�, Pa) and ̂�(p) ∈ (̂�, Pb),
then ̂R(p, a) ∈ (̂R, K × L) and ̂R(p, b) ∈ (̂R, K × L). Then, using the transitive
property of ̂R, we have ̂R(a, b) ∈ (̂R, K × L). Moreover, using Lemma 4.5 we
have [̂�(a)] = [̂�(b)]. However, since Pa = Pb is obtained from here, then this is a
contradiction, i.e. Pa �= Pb, hence Pa ∩ Pb = ∅. �
Remark 4.12 TheNSS-PART inTheorem4.11wherewe construct all the neutrosophic
soft equivalence classes of (̂R, K × L) is called the quotient NSS of (̂�, P) and is
denoted by (̂�, P) \ (̂R, K × L).
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5 Neutrosophic soft functions

In this section, the concept of neutrosophic soft function (briefly NSF) is defined and
some special types of this concept are presented together with related theorems.

Definition 5.1 Let (̂�, P) and (̂�, P) be two nonempty NSS. Then a NSR f from
(̂�, P) and (̂�, P) is called a NSF if every element in the domain has a unique element
in the range. We write f : (̂�, P) → (̂�, P). If ̂�(a)f̂�(b) then f(̂�(a)) = ̂�(b),
∀a, b ∈ P .

Example 5.2 Consider Example 3.2. Then, the NSR f forms a neutrosophic soft func-
tion from (̂�, P) to (̂�, P) as follows:

f =
{

((p1, p1), 〈u1, 0.34, 0.7, 0.35〉, 〈u2, 0.55, 0.5, 0.76〉, 〈u3, 0.6, 0.25, 0.7〉) ,

((p2, p1), 〈u1, 0.34, 0.7, 0.56〉, 〈u2, 0.75, 0.6, 0.6〉, 〈u3, 0.25, 0.6, 0.7〉)
}

.

Definition 5.3 Let f : (̂�, P) → (̂�, P) be a NSF. Then,

(i) f is injective NSF (briefly INSF) if̂�(a1) �= ̂�(a2) implying f(̂�(a1)) �= f(̂�(a2))
for ̂�(a1),̂�(a2) ∈ (̂�, P).

(ii) f is surjective NSF (briefly SNSF) if f((̂�, P)) = (̂�, P).
(iii) f is bijective NSF (briefly BNSF) if it is both INSF and SNSF.
(iv) f is a constant NSF (briefly CNSF) if all elements in DOMf have the same image.
(v) f is an identity NSF (briefly IDNSF) if the NSF ̂If on a NSS (̂�, P) is defined by

̂If : (̂�, P) → (̂�, P) as ̂If(̂�(a)) = ̂�(a) for every ̂�(a) in (̂�, P).

Definition 5.4 Let f : (̂�, P) → (̂�, P) and g : (̂�, P) → (̂�, P) be two NSFs.
Then g ◦ f : (̂�, P) → (̂�, P) is also a NSF defined by (g ◦ f)(̂�(a)) = g(f(̂�(a))).

Definition 5.5 Let f : (̂�, P) → (̂�, P) be a BNSF. Then the inverse NSR f−1 :
(̂�, P) → (̂�, P) is called the inverse NSF.

Theorem 5.6 If f : (̂�, P) → (̂�, P) is BNSF then f−1 : (̂�, P) → (̂�, P) is also a
BNSF.

Proof Let ̂�(b1) �= ̂�(b2) for ̂�(b1), ̂�(b2) ∈ (̂�, P). In this case, this we should

prove f−1(̂�(b1)) �= f−1
̂�(b2). Let f−1(̂�(b1)) = ̂�(a1) and f−1(̂�(b2)) = ̂�(a2),

i.e., ̂�(b1) = f(̂�(a1)) and ̂�(b2) = f(̂�(a2)). Since f is BNSF, f(̂�(a1)) �= f(̂�(a2))
implies ̂�(a1) �= ̂�(a2). Thus f−1 is BNSF.

Let ̂�(a) is an element of (̂�, P). Since f is SNSF, there exists a unique element
̂�(b) in (̂�, P) such that f(̂�(a)) = ̂�(b) implies ̂�(a) = f−1(̂�(b)) for ̂�(a) in
(̂�, P). Thus f−1 is SNSF. Hence, f−1 is BNSF. �
Theorem 5.7 Let f : (̂�, P) → (̂�, P), g : (̂�, P) → (̂�, P) be two BNSFs. Then,

(i) g ◦ f : (̂�, P) → (̂�, P) is a BNSF.

(ii) (g ◦ f)−1 = f−1 ◦ g−1.
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Proof (i) Let ̂�(a1) �= ̂�(a2), i.e., ̂�(a1),̂�(a2) be two distinct elements of (̂�, P).
In this case, this we should prove (g ◦ f)(̂�(a1)) �= (g ◦ f)(̂�(a2)). Since f and g
are BNSFs, then we have f(̂�(a1)) �= f(̂�(a2)) and g

(

f(̂�(a1))
) �= g

(

f(̂�(a2))
)

.
Hence (g ◦ f is BNSF.
Let̂�(c) is an element of (̂�, P). Since g is SNSF, then there existŝ�(b) in (̂�, P)

such that g(̂�(b)) = ̂�(c). Moreover; since f is SNSF, then there exists ̂�(a) in
(̂�, P) such that f(̂�(a)) = ̂�(b). Finally; since (g ◦ f)(̂�(a)) = ̂�(c) for every
̂�(c) in (̂�, P), then g ◦ f is SNSF. Hence, g ◦ f is BNSF.

(ii) We have from Theorem 3.13 that (̂R2 ◦ ̂R1)
−1 = ̂R−1

1 ◦ ̂R−1
2 . Thus, since f, g and

g ◦ f are BNSFs, then (g ◦ f)−1 = f−1 ◦ g−1. �

6 Decisionmaking

In this section, we present an application of NSRs in a decision-making problem.
Some of it is quoted from in [12,50–52].

The uncertainty problem we are dealing with is as bellow:
Suppose some individuals want to choose the house that suits them best. Let

U = {u1, u2, u3, u4, u5, u6} be a set of existing houses, P = {p1, p2, p3} be the
set containing all the parameters that individuals want from the house they will live
in according to their own preferences. For i = 1, 2, 3, the parameters pi stand for
“comfortable”, “cheap” and “surrounded by green”, respectively.

Suppose two real estate agents evaluate existing houses based on selected parame-
ters with the help of NSSs (̂�, P) and (̂�, P) are defined as:

(̂�, P) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

p1,
〈u1, 0.5, 0.45, 0.42〉, 〈u2, 0.6, 0.4, 0.62〉, 〈u3, 0.5, 0.32, 0.5〉,

〈u4, 0.7, 0.3, 0.5〉, 〈u5, 0.8, 0.35, 0.6〉, 〈u6, 0.6, 0.15, 0.1〉

)

,

(

p2,
〈u1, 0.56, 0.3, 0.4〉, 〈u2, 0.9, 0.5, 0.6〉, 〈u3, 0.64, 0.25, 0.53〉,

〈u4, 0.58, 0.64, 0.24〉, 〈u5, 0.82, 0.35, 0.64〉, 〈u6, 0.68, 0.25, 0.52〉

)

,

(

p3,
〈u1, 0.74, 0.63, 0.25〉, 〈u2, 0.56, 0.35, 0.64〉, 〈u3, 0.69, 0.27, 0.54〉,
〈u4, 0.57, 0.65, 0.28〉, 〈u5, 0.58, 0.39, 0.62〉, 〈u6, 0.87, 0.24, 0.52〉

)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

(̂�, P) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

p1,
〈u1, 0.8, 0.65, 0.23〉, 〈u2, 0.95, 0.3, 0.63〉, 〈u3, 0.64, 0.25, 0.56〉,
〈u4, 0.57, 0.65, 0.2〉, 〈u5, 0.56, 0.39, 0.63〉, 〈u6, 0.96, 0.27, 0.65〉

)

,

(

p2,
〈u1, 0.65, 0.67, 0.28〉, 〈u2, 0.59, 0.48, 0.46〉, 〈u3, 0.67, 0.25, 0.75〉,
〈u4, 0.57, 0.68, 0.25〉, 〈u5, 0.15, 0.83, 0.26〉, 〈u6, 0.92, 0.25, 0.63〉

)

,

(

p3,
〈u1, 0.88, 0.65, 0.22〉, 〈u2, 0.57, 0.34, 0.66〉, 〈u3, 0.65, 0.28, 0.52〉,
〈u4, 0.59, 0.64, 0.25〉, 〈u2, 0.15, 0.63, 0.64〉, 〈u3, 0.63, 0.25, 0.12〉

)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

By applying the algorithm below, we can choose the house where the relationship
between the parameters given in the problem is the best. (In other words, the harmony
between parameters is desired to be the best.)

Step 1 Input the NSSs (̂�, P) and (̂�, P) over U .
Step 2 Construct a NSR (̂R, K × L) as requested for K × L ⊆ P × P .
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Table 1 Comparison table U (p1, p2) (p1, p3) (p2, p3)

u1 0.75 0.73 0.81

u2 0.45 0.31 0.41

u3 0.07 0.3 0.4

u4 0.75 0.73 0.97

u5 0.38 0.14 0.14

u6 0.26 0.73 0.36

Table 2 Comparison table
(p1, p2) (p1, p3) (p2, p3)

u1, u4 u1, u4, u6 u4
0.75 0.73 0.97

Step 3 Calculate the score of the relationship between parameters according to ̂R
for each object using the formula:

T
̂R(a,b)(u) + I

̂R(a,b)(u) − F
̂R(a,b)(u), ∀u ∈ U , (a, b) ∈ K × L ⊆ P × P.

Step 4 Create a comparison table for the calculations in Step 3.
Step 5 Determine the highest values for each column in the created table.
Step 6 Create the score table showing the objects with the highest values corre-

sponding to each pair of parameters (Tables 1 and 2).
Step 7 Calculate the score �u for each object by taking the sum of these values.
Step 8 Find uk , for which �uk = maxu∈U {�u}.

Remark 6.1 If there is more than one value uk , any of these objects can be selected.

Now let’s express a NSR from (̂�, P) to (̂�, P) by using the existing NSSs in the
uncertainty problem as follows:

̂R =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

(p1, p2),
〈u1, 0.5, 0.67, 0.42〉, 〈u2, 0.59, 0.48, 0.62〉, 〈u3, 0.5, 0.32, 0.75〉,
〈u4, 0.57, 0.68, 0.5〉, 〈u5, 0.15, 0.83, 0.6〉, 〈u6, 0.64, 0.25, 0.63〉

)

,
(

(p1, p3),
〈u1, 0.5, 0.65, 0.42〉, 〈u2, 0.57, 0.4, 0.66〉, 〈u3, 0.5, 0.32, 0.52〉,
〈u4, 0.59, 0.64, 0.5〉, 〈u5, 0.15, 0.63, 0.64〉, 〈u6, 0.6, 0.25, 0.12〉

)

,
(

(p2, p3),
〈u1, 0.56, 0.65, 0.4〉, 〈u2, 0.57, 0.5, 0.66〉, 〈u3, 0.65, 0.28, 0.53〉,

〈u4, 0.58, 0.64, 0.25〉, 〈u5, 0.15, 0.63, 0.64〉, 〈u6, 0.63, 0.25, 0.52〉
)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

By calculating as expressed in the algorithm, the comparison table and score table
were constructed as follows:

The score �u of each object by sum of these values are:

�u1 = 1.48, �u2 = 0, �u3 = 0, �u4 = 2.45, �u5 = 0, �u6 = 0.73.

Finally, the highest value can be chosen by �u4 = maxu∈U {�u}. Thus, we deter-
mined that u4 is the most suitable object selected depending on the relationships in the
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parameter pairs considered in the NSR ̂R. In other words, the object u4 can provide
the relationship between the parameters in the selected relationship better than the
other objects.

Noted that the parameter pairs given in the NSR ̂R and the relationship values
between them may mean that the selected object may change.

7 Conclusion

In this paper, the concept of neutrosophic soft relation, which can be discussed as a
generalization of intuitionistic fuzzy soft relation, fuzzy soft relation, is discussed and
defined for neutrosophic soft sets modified by Deli and Bromi [13]. Since these rela-
tionships are given for neutrosophic soft sets that can express as a falsity membership
function, an indeterminacy membership function and a truth membership function
of the information, these develops relationships based on hybrid sets that have been
established based on fuzzy sets, intuitionistic fuzzy sets and soft sets. In addition,
the contribution of a parameterization tool to successfully express the uncertainty
problems encountered in most real life is another important feature of the given rela-
tionships. The concepts of composition and inverse of neutrosophic soft relations and
functions were also presented along with some related properties and theorems.More-
over, the ideas of equivalence, symmetric, reflexive and transitive neutrosophic soft
relations were given and analyzed in detail along with associated properties. Finally,
an algorithm based on soft relationships was proposed for uncertainty problems and
it was shown how it can be applied over a problem.

Thanks to the neutrosophic soft sets, which offer a very successful approach in
expressing uncertainty situations, the relationships defined in this paper can be recon-
sidered by generalizing the neutrosophic soft sets over many mathematical models
such as soft expert set [7], refined neutrosophic set [53], intuitionistic neutrosophic
soft set [54], interval-valued neutrosophic soft set [14], bipolar neutrosophic soft set
[55], (plithogenic) hypersoft set [56,57], single(multi)-valued neutrosophic hypersoft
set [58]. The structure of the neutrosophic soft relation enables it to describe the
relations between inconsistent and indeterminate data. For this reason, neutrosophic
soft relation can be applied to express inconsistent and indeterminate data that can
be encountered in many fields such as engineering, physics, medical diagnosis more
easily.
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