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Abstract
We construct a class of ZpZp[v]-additive cyclic codes, where p is a prime number
and v2 = v. We determine the asymptotic properties of the relative minimum distance
and rate of this class of codes. We prove that, for any positive real number 0 < δ < 1
such that the p-ary entropy at k+l

2 δ is less than 1
2 , the relative minimum distance of

the random code is convergent to δ and the rate of the random code is convergent to
1

k+l , where p, k, l are pairwise coprime positive integers.

Keywords ZpZp[v]-additive cyclic codes · Relative minimum distance · Rate ·
Asymptotically good codes

Mathematics Subject Classification 94B05 · 94B65

1 Introduction

Additive codes are important error-correcting codes in coding theory. In 1998, Del-
sarte firstly gave the definition of additive codes in [9]. Afterwards, many coding
scientists paid their attentions on additive codes. Recently,Z2Z4-additive cyclic codes
were studied impressed [1,6–8] including generator matrix, minimum generating sets,
codes construction and so on. From then on, there are many papers on additive codes.
Aydogdu et al. studied properties of Z2Z2[u]-additive cyclic codes and ZprZps -
additive cyclic codes in [3,4], respectively. Diao et al. studied ZpZp[v]-additive
cyclic codes in [10]. Many good linear codes and quantum codes were constructed by
ZpZp[v]-additive cyclic codes.
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The asymptotic property is an important index of good codes. A class of codes
is said to be asymptotically good if there exist a sequence of codes C1, C2, C3, . . .
with length ni , when ni → ∞, both the relative minimum distance and the rate of
Ci are positively bounded from below. Assmus et al. had already studied the problem
of the asymptotic property of cyclic codes in [2]. Afterwards, Kasami proved that
quasi-cyclic codes of index 2 are asymptotically good in [15]. Bazzi et al. proved that
random binary quasi-abelian codes of index 2 and random binary dihedral group codes
are asymptotically good [5]. Martínez-Pérez et al. proved that self-dual doubly even 2-
quasi-cyclic transitive codes are asymptotically good [16]. Fan and Liu proved that the
quasi-cyclic codes of fractional index between 1 and 2 are asymptotically good in [12].
Mi et al. proved that quasi-cyclic codes of fractional index are also asymptotically
good [17]. In [14], we proved that Z4-double cyclic codes are asymptotically good.

In recent years, the asymptotic property of additive cyclic codes has been studied
more widely. In [18], Shi et al. proved the existence of asymptotically good additive
cyclic codes. Fan and Liu proved that Z2Z4-additive cyclic codes are asymptotically
good [11]. Following [11], Yao et al. proved that ZpZps -additive cyclic codes and
ZprZps -additive cyclic codes with 1 ≤ r < s are asymptotically good in [19,20],
respectively. Note that all of the rings mentioned above are finite chain rings. To
the best of our knowledge, there is no any study on asymptotic property of additive
cyclic codes over the finite non-chain ring Zp × (Zp + vZp) with v2 = v. Moreover,
the well known results on asymptotic property of additive cyclic codes are with the
same component length. So in this paper, we will study the asymptotic property of
ZpZp[v]-additive cyclic codes with the different component length.

The rest of this paper is organized as follows. In Sect. 2, we firstly give some
results on ZpZp[v]-additive cyclic codes. In Sect. 3, we construct a class of ZpZp[v]-
additive cyclic codes. In Sect. 4, by the probabilisticmethod and theChinese remainder
theorem, we prove that constructed ZpZp[v]-additive cyclic codes are asymptotically
good.

2 ZpZp[v]-additive cyclic codes
Let Zp be the prime field of p elements, where p is a prime. Let

Zp[v] = Zp + vZp = {va + (1 − v)b|a, b ∈ Zp},

where v2 = v. Clearly, Zp is a subring of ring Zp[v]. For any element d ∈ Zp[v], it
can be expressed as d = va + (1 − v)b, where a, b ∈ Zp. Define a map

π : Zp[v] −→ Zp

d = va + (1 − v)b �−→ a.

Obviously, π is a ring homomorphism.
Define Z

α
p to be α-tuples over Zp and Zp[v]β to be β-tuples over Zp[v], where

α and β are positive integers. Let ς = (c, c′) ∈ Z
α
p × Zp[v]β be a vector, where
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ZpZp[v]-additive cyclic codes are asymptotically good 873

c = (c0, c1, . . . , cα−1) ∈ Z
α
p and c′ = (c′

0, c
′
1, . . . , c

′
β−1) ∈ Zp[v]β . For any d =

va + (1 − v)b ∈ Zp[v], define a Zp[v]-scalar multiplication on Z
α
p × Zp[v]β as

dς = (π(d)c0, π(d)c1, . . . , π(d)cα−1, dc
′
0, dc

′
1, . . . , dc

′
β−1)

= (ac0, ac1, . . . , acα−1, dc
′
0, dc

′
1, . . . , dc

′
β−1).

One can verify that, under the aboveZp[v]-scalar multiplication and the usual addition
of vectors, the Zα

p × Zp[v]β forms a Zp[v]-module.

Definition 1 A non-empty subset C of Zα
p ×Zp[v]β is called a ZpZp[v]-additive code

of length n = α + β if C is a Zp[v]-submodule of Zα
p × Zp[v]β .

Definition 2 The Zp[v]-submodule C of Zα
p × Zp[v]β is called a ZpZp[v]-additive

cyclic code of length n = α + β if for any codeword

ς = (c0, c1, . . . , cα−1, c
′
0, c

′
1, . . . , c

′
β−1) ∈ C,

Then (cα−1, c0, . . . , cα−2, c′
β−1, c

′
0, . . . , c

′
β−2) is also in C.

Define a generalized Gray map

Φ : Z
α
p × Zp[v]β −→ Z

α+2β
p

ς = (c, c′) �−→ (c, φ(c′)),

where φ is a Gray map defined by

φ : Zp[v] −→ Z
2
p

d = va + (1 − v)b �−→ (a + b, a − b).

Obviously, if C is a ZpZp[v]-additive code of length n = α + β, then the generalized
Gray image Φ(C) is a linear code of length α + 2β over Zp.

Let ς = (c, c′) = (c0, c1, . . . , cα−1, c′
0, c

′
1, . . . , c

′
β−1) ∈ Z

α
p × Zp[v]β . The Gray

weight of ς is defined as wtG(ς) = wtH (Φ(ς)), where wtH denotes the Hamming
weight. Further, for any ς1, ς2 ∈ Z

α
p × Zp[v]β , the Gray distance between ς1 and ς2

is defined as dG(ς1, ς2) = wtG(ς1 − ς2). Moreover, if C is a ZpZp[v]-additive code,
then the minimum Gray weight and the minimum Gray distance of C are defined to be
wtG(C) = min{wtG(ς)|ς ∈ C, ς �= 0} and dG(C) = min{wtG(x− y)|, x, y ∈ C, x �=
y}, respectively. Note that since ZpZp[v]-additive code C is a Zp[v]-submodule, then
dG(C) = wtG(C).

LetRα,β = Zp[x]/〈xα − 1〉×Zp[v][x]/〈xβ − 1〉. Define the following one-to-one
correspondence

Ψ : Z
α
p × Zp[v]β −→ Rα,β

ς = (c0, c1, . . . , cα−1, c
′
0, c

′
1, . . . , c

′
β−1) �−→ ς(x) = (c(x), c′(x)),
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where c(x) = c0 + c1x + · · · + cα−1xα−1 and c′(x) = c′
0 + c′

1x + · · · + c′
β−1x

β−1.
Let d(x) = d0 + d1x + · · · + dt xt ∈ Zp[v][x] and ς(x) = (c(x), c′(x)) ∈ Rα,β .

Define the following Zp[v][x]-scalar multiplication

d(x) ∗ ς(x) = d(x) ∗ (c(x), c′(x)) = (π(d(x))c(x), d(x)c′(x)), (1)

where π(d(x)) = π(d0) + π(d1)x + · · · + π(dt )xt . Under the above Zp[v][x]-scalar
multiplication and the usual addition of polynomials, Rα,β forms a Zp[v][x]-module.

Theorem 1 The code C is a ZpZp[v]-additive cyclic code if and only if Ψ (C) is a
Zp[v][x]-submodule of Rα,β .

Proof For any codeword ς = (c0, c1, . . . , cα−1, c′
0, c

′
1, . . . , c

′
β−1) ∈ C ⊆ Z

α
p ×

Zp[v]β , it can be viewed as a polynomial ς(x) = (c(x), c′(x)) ∈ Ψ (C) ⊆ Rα,β ,
where c(x) = c0 + c1x + · · · + cα−1xα−1 and c′(x) = c′

0 + c′
1x + · · · + c′

β−1x
β−1.

From the Eq. (1), we have

x ∗ ς(x) = (cα−1 + c0x + · · · + cα−2x
α−2, c′

β−1 + c′
0x + · · · + c′

β−2x
β−2) ∈ Ψ (C),

which implies that (cα−1, c0, . . . , cα−2, c′
β−1, c

′
0, . . . , c

′
β−2) ∈ C. Thus, C is a

ZpZp[v]-additive cyclic code.
Conversely, if C is a ZpZp[v]-additive cyclic code, then by Definition 1, C is a

Zp[v]-submodule of Zα
p × Zp[v]β . Thus, by the definition of Ψ , Ψ (C) ⊆ Rα,β is a

Zp[v][x]-submodule of Rα,β . �
In the following, we identify ZpZp[v]-additive cyclic codes of length n = α + β

with Zp[v][x]-submodules of Rα,β .

3 A class of ZpZp[v]-additive cyclic codes
In this section, we will construct a new class of ZpZp[v]-additive cyclic codes. We
always assume that α = km and β = lm, where m is a positive integer such that
gcd(m, p) = 1 and p, k, l are pairwise coprime positive integers.

Define

Rkm = Zp[x]/〈xkm − 1〉, Rlm = Zp[x]/〈xlm − 1〉, R
′
lm = Zp[v][x]/〈xlm − 1〉.

By the Chinese remainder theorem, it is well known that

Zp[v] = vZp[v] ⊕ (1 − v)Zp[v] = vZp ⊕ (1 − v)Zp. (2)

Therefore, we have vZp[v] = vZp ⊂ Zp[v]. Let

vR′
lm =

{
c′(x) =

lm−1∑
i=0

c′
i x

i ∈ R
′
lm | c′

i = vai , ai ∈ Zp

}
,
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ZpZp[v]-additive cyclic codes are asymptotically good 875

which is a Zp[v][x]-submodule of R′
lm . Define the following map

η : Rlm = Zp[x]/〈xlm − 1〉 → vR′
lm

lm−1∑
i=0

ai x
i �→

lm−1∑
i=0

vai x
i ,

where ai ∈ Zp. Clearly, η is a Zp[x]-module isomorphism.
Let Rkm × Rlm = Zp[x]/〈xkm − 1〉 × Zp[x]/〈xlm − 1〉. The elements of Rkm ×

Rlm can be uniquely expressed as (a(x), b(x)), where a(x) = ∑km−1
i=0 ai xi , b(x) =∑lm−1

j=0 b j x j ∈ Zp[x]. For any f (x) ∈ Zp[x] and any (a(x), b(x)) ∈ Rkm × Rlm ,
define the scalar multiplication on Rkm × Rlm as

f (x)
(
a(x), b(x)

) = (
f (x)a(x)(mod xkm − 1), f (x)b(x)(mod xlm − 1)

)
,

which is abbreviated as f (x)
(
a(x), b(x)

) = (
f (x)a(x), f (x)b(x)

)
. The Rkm ×

Rlm forms an Rklm-module under the above scalar multiplication, where Rklm =
Zp[x]/〈xklm − 1〉. Since η is a Zp[x]-module isomorphism from Rlm to vR′

lm , then
Rkm × vR′

lm forms an Rklm-module.
For any (a(x), b(x)) ∈ Rkm × Rlm , let

Ca,b = {
( f (x)a(x), v f (x)b(x)) ∈ Rkm × vR′

lm | f (x) ∈ Rklm
}
.

Then Ca,b can be viewed as an Rklm-submodule of Rkm × vR′
lm generated by

(a(x), vb(x)). In other words, Ca,b is a ZpZp[v]-additive cyclic code in Rkm × vR′
lm

generated by (a(x), vb(x)).
Let Ca,b be a ZpZp[v]-additive cyclic code generated by F(x), where F(x) =

(a(x), vb(x)) ∈ Rkm × vR′
lm and a(x) ∈ Rkm, b(x) ∈ Rlm are monic polynomi-

als. By the Zp[x]-module isomorphism η, Ca,b can also be viewed as a Zp-linear
space. Let g1(x) = gcd(a(x), xkm − 1), g2(x) = gcd(b(x), xlm − 1) and h(x) =
lcm

{
xkm−1
g1(x)

, xlm−1
g2(x)

}
with degh(x) = h. Then, as a Zp-linear space, the dimension of

Ca,b is h.
For any positive integerm with gcd(m, p) = 1, by the Chinese remainder theorem,

Rm = Zp[x]/〈xm − 1〉 = Zp[x]/〈x − 1〉 ⊕ Zp[x]/〈xm−1 + xm−2 + · · · + x + 1〉.
Note that vR′

m = vZp[v][x]/〈xm − 1〉 = vRm . Define

Jkm =
〈
xkm − 1

xm − 1
(x − 1)

〉
Rkm

, Jlm =
〈
xlm − 1

xm − 1
(x − 1)

〉
Rlm

,

Jklm =
〈
xklm − 1

xm − 1
(x − 1)

〉
Rklm

, Jm = 〈x − 1〉Rm .

If (a(x), b(x)) ∈ Jkm × Jlm , i.e. (a(x), vb(x)) ∈ Jkm × vJ′
lm , where vJ′

lm =〈
v

(
xlm−1
xm−1 (x − 1)

)〉
R′

lm
, then the ZpZp[v]-additive cyclic code Ca,b can be reformu-
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876 X. Hou, J. Gao

lated as

Ca,b = {
( f (x)a(x), v f (x)b(x)) ∈ Rkm × vR′

lm | f (x) ∈ Jklm
}
.

Example 1 Let p = 3, m = 2, k = 5 and l = 2. Define

R10 = Z3[x]/〈x10 − 1〉, J10 =
〈
x10 − 1

x2 − 1
(x − 1)

〉
R10

,

R4 = Z3[x]/〈x4 − 1〉, J4 =
〈
x4 − 1

x2 − 1
(x − 1)

〉
R4

,

R20 = Z3[x]/〈x20 − 1〉, J20 =
〈
x20 − 1

x2 − 1
(x − 1)

〉
R20

.

Let Ca,b = {
( f (x)a(x), v f (x)b(x)) ∈ R10 × vR′

4| f (x) ∈ J20
}

be a Z3Z3[v]-
additive cyclic code generated by (a(x), vb(x)) ∈ J10 × vJ′

4, where a(x) =
x9+2x8+x7+2x6+x5+2x4+x3+2x2+x+2 ∈ J10, b(x) = x3+2x2+x+2 ∈ J4.

Let g1(x) = gcd(a(x), x10 − 1) and g2(x) = gcd(b(x), x4 − 1). Clearly,
g1(x) = x9+2x8+x7+2x6+x5+2x4+x3+2x2+x+2 and g2(x) = x3+2x2+x+2.

Since h(x) = lcm
{
x10−1
g1(x)

, x4−1
g2(x)

}
= x11 + 2x10 + 2x9 + x8 + 2x7 + x6 + 2x5 + x4 +

2x3 + x2 + x + 2, then the dimension of Ca,b is 11. Further, the generator matrix of
Ca,b is

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 2 1 2 1 2 1 2 1 2v v 2v v

1 2 1 2 1 2 1 2 1 2 v 2v v 2v
2 1 2 1 2 1 2 1 2 1 2v v 2v v

1 2 1 2 1 2 1 2 1 2 v 2v v 2v
2 1 2 1 2 1 2 1 2 1 2v v 2v v

1 2 1 2 1 2 1 2 1 2 v 2v v 2v
2 1 2 1 2 1 2 1 2 1 2v v 2v v

1 2 1 2 1 2 1 2 1 2 v 2v v 2v
2 1 2 1 2 1 2 1 2 1 2v v 2v v

1 2 1 2 1 2 1 2 1 2 v 2v v 2v
2 1 2 1 2 1 2 1 2 1 2v v 2v v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

11×14

.

4 Asymptotically good ZpZp[v]-additive cyclic codes
In this section, we will consider the asymptotic property of ZpZp[v]-additive cyclic
codes, i.e. study the asymptotic property of the rate and the relative minimum distance
of Ca,b. The rate and the relative minimum distance of Ca,b is defined by R(Ca,b) =
dim(Ca,b)

n and Δ(Ca,b) = dG (Ca,b)

n , respectively, where n is the length of Ca,b and
dim(Ca,b) is the dimension of Ca,b. So we need to study the asymptotic property
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ZpZp[v]-additive cyclic codes are asymptotically good 877

of probabilities Pr(Δ(Ca,b) > δ) and Pr(dim(Ca,b) = m − 1). In Sect. 3, we have
constructed a new class of ZpZp[v]-additive cyclic codes

Ca,b = {( f (x)a(x), v f (x)b(x)) ∈ Rkm × vR′
lm | f (x) ∈ Jklm}.

However, it is not easy to study this class of codes directly. It is well known that the
asymptotic property of codes

Ca′,b′ = {( f (x)a′(x), v f (x)b′(x)) ∈ Rm × vR′
m | f (x) ∈ Jm}

can be determined easily. Therefore, we will consider whether we can find a relation-
ship between these two class of codes.

Clearly, we can view the sets Jm × vJ′
m and Jkm × vJ′

lm as a probability space
of Rm × vR′

m and Rkm × vR′
lm respectively, whose samples are afforded with equal

probability. Moreover, Ca,b is a random code over the probability space Jkm × vJ′
lm ,

the R(Ca,b) and �(Ca,b) are random variables over the probability space. Similarly,
Ca′,b′ is a random code over the probability space Jm×vJ′

m , the R(Ca′,b′) and�(Ca′,b′)
are random variables over the probability space.

Define a map

Ω : Jm × vJ′
m → Jkm × vJ′

lm,(
a′(x), vb′(x)

) �→
(
a′(x) x

km − 1

xm − 1
, vb′(x) x

lm − 1

xm − 1

)
. (3)

Clearly, Ω is an Rklm-isomorphism. For simplicity, we write (a(x), vb(x)) =
Ω(a′(x), vb′(x)) and Ca,b = Ω(Ca′,b′). For our purpose, we need two concepts:
p-ary entropy and Bernoulli variable.

For 0 < x < 1, let h p(x) = x logp(p − 1) − x logpx − (1 − x)logp(1 − x), then
the function h p(x) is called a p-ary entropy. In addition, let δ be a real number such
that 0 < δ < 1 and h p(δ) < 1

2 .
For any f (x) ∈ Jm , (a′(x), vb′(x)) ∈ Jm × vJ′

m , define a Bernoulli variable Y f

over the probability space Jm × vJ′
m

Y f =
{
1, 1 ≤ wtG( f (x)a′(x), v f (x)b′(x)) ≤ 2mδ,

0, otherwise.
(4)

Since f (x) ∈ Jm , then the set { f (x)a′(x) ∈ Rm |a′(x) ∈ Jm} can be viewed as an
ideal ofRm generated by f (x). Let I f = 〈 f (x)〉Rm ⊆ Jm and d f = dimI f . Moreover,
the set {v f (x)b′(x) ∈ vR′

m |b′(x) ∈ Jm} can be viewed as an ideal of R′
m generated

by v f (x). Let I′ f = 〈v f (x)〉R′
m ⊆ vJ′

m . Clearly, as a Zp-linear space, dimI
′
f = d f .

In the following, we firstly consider the asymptotic property of Ca′,b′ .

Lemma 1 Let (a′(x), b′(x)) ∈ Rm × Rm and

Ca′,b′ = {
( f (x)a′(x), v f (x)b′(x)) ∈ Rm × vR′

m
}
.
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878 X. Hou, J. Gao

Let

ga′,b′(x) = gcd(a′(x), b′(x), xm − 1) and ha′,b′(x) = xm − 1

ga′,b′(x)
.

Define 〈ga′,b′(x)〉Rm as the ideal of Rm generated by ga′,b′(x). Then dimCa′,b′ =
degha′,b′(x). Moreover, there is an Rm-module isomorphism 〈ga′,b′(x)〉Rm

∼= Ca′,b′ ,
which maps c(x) ∈ 〈ga′,b′(x)〉Rm to (c(x)a′(x), vc(x)b′(x)) ∈ Ca′,b′ .

Proof Define a map

ρ : Rm → Rm × vR′
m

f (x) �→ ( f (x)a′(x), v f (x)b′(x)).

Obviously, themap ρ is anRm-module homomorphism, and the image im(ρ) = Ca′,b′ .
In the following, we consider the kernel ker(ρ). For f (x) ∈ Rm , f (x) ∈ ker(ρ) if
and only if in Zp[x] we have f (x)a′(x) ≡ 0 (mod xm − 1) and in vZp[v][x] we have
v f (x)b′(x) ≡ 0 (mod xm −1). Since vZp[v][x] = vZp[x], so we can turn the second
half of the sentence to be in vZp[x] we have v f (x)b′(x) ≡ 0 (mod xm − 1), i.e. in
Zp[x] we have f (x)b′(x) ≡ 0 (mod xm −1). It means that f (x) ∈ ker(ρ) if and only
if in Zp[x] we have {

f (x)a′(x) ≡ 0 (mod xm − 1),

f (x)b′(x) ≡ 0 (mod xm − 1).

Therefore, f (x)gcd(a′(x), b′(x)) ≡ 0 (mod xm − 1), which implies that f (x) ≡
0

(
mod xm−1

gcd(a′(x),b′(x),xm−1)

)
. Thus, ker(ρ) = 〈ha′,b′(x)〉Rm . Since gcd(m, p) = 1,

then xm − 1 has no multiple roots in any extension of Zp. Therefore, we can obtain

Rm = 〈ga′,b′(x)〉Rm

⊕
〈ha′,b′(x)〉Rm .

Thus, the above Rm-module homomorphism ρ induces an Rm-module isomorphism

ρ̄ : 〈ga′,b′(x)〉Rm → Ca′,b′

c(x) �→ (c(x)a′(x), vc(x)b′(x)),

which implies that

dimCa′,b′ = dim〈ga′,b′(x)〉Rm = m − degga′,b′(x) = degha′,b′(x).

�
Lemma 2 [11] Let Ca′,b′ = {( f (x)a′(x), v f (x)b′(x)) ∈ Rm × vR′

m | f (x) ∈ Jm},
where (a′(x), b′(x)) ∈ Jm × Jm. Then dim(Ca′,b′) ≤ m − 1, and dim(Ca′,b′) = m − 1
if and only if there is no irreducible factor q(x) of xm−1

x−1 in Zp[x] such that q(x)|a′(x)
and q(x)|b′(x).
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ZpZp[v]-additive cyclic codes are asymptotically good 879

Lemma 3 [11] Let qk(x) be the lowest degree polynomial in the irreducible factors
of xm−1

x−1 = 1 + x + · · · + xm−1 in Zp[x]. Let km = deg(qk(x)) and d be an integer
with km ≤ d ≤ m − 1. For any non-zero ideal I of Rm, if I satisfies I ⊆ Jm, then

dimI ≥ km and the number of ideals contained in Jm of dimension d is at most m
d
km .

By Lemma 2.6 in [5], there exist odd positive integers m1,m2,m3, . . . such that

gcd(mi , p) = 1, mi → ∞, limi→∞
logpmi

kmi

= 0, (5)

where kmi is defined as in Lemma 3. For each mi and (a′(x), b′(x)) ∈ Jmi × Jmi , let

C(i)
a′,b′ = {( f (x)a′(x), v f (x)b′(x)) ∈ Rmi × vR′

mi | f (x) ∈ Jmi } (6)

be a random ZpZp[v]-additive cyclic code of length 2mi

Proposition 1 Let m1,m2, . . . be positive integers satisfying Eq. (5) and C(i)
a′,b′ be given

as in Eq. (6). Then

limi→∞Pr
(
dim(C(i)

a′,b′) = mi − 1
)

= 1.

Proof Let xmi −1
x−1 = qi1(x)qi2(x) · · · qir (x) be an irreducible decomposition in Zp[x].

By Chinese remainder theorem,

Jmi = 〈x − 1〉Rmi
∼= Zp[x]/〈qi1(x)〉 × Zp[x]/〈qi2(x)〉 × · · · × Zp[x]/〈qir (x)〉,

which is given by

μ
(i j)
mi : Jmi → Zp[x]/〈qi j (x)〉
f (x) �→ f (x) (mod qi j (x)),

where j = 1, 2, . . . , r . Therefore, for any f (x) ∈ Jmi , there is a unique(
μ(i1)
mi

( f (x)), . . . , μ(ir)
mi

( f (x))
)

∈ Zp[x]/〈qi1(x)〉 × · · · × Zp[x]/〈qir (x)〉.

Let (a′(x), vb′(x)) ∈ Jmi × vJ′
mi , where a′(x), b′(x) ∈ Jmi . From Lemma 2,

dim
(
C(i)
a′,b′

)
= mi − 1 if and only if for any j = 1, 2, . . . , r , there is no irreducible

factor qi j (x) of xmi −1
x−1 such that qi j (x)|a′(x) and qi j (x)|b′(x), which implies that

dim
(
C(i)
a′,b′

)
= mi − 1 if and only if

(
μ

(i j)
mi (a′(x)), μ(i j)

mi (b′(x))
)

�= (0, 0).
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Let deg(qi j (x)) = di j . Then |Zp[x]/〈qi j (x)〉| = pdi j . Therefore the probability of(
μ

(i j)
mi (a′(x)), μ(i j)

mi (b′(x))
)

�= (0, 0) is p2di j−1

p2di j
= 1 − p−2di j . Thus,

Pr
(
dim

(
C(i)
a′,b′

)
= mi − 1

)
=

r∏
j=1

(1 − p−2di j ).

Let kmi be defined as in Lemma 3. Then, for any j = 1, 2, . . . , r , di j ≥ kmi and
r ≤ mi−1

kmi
≤ mi

kmi
. Therefore,

Pr
(
dim

(
C(i)
a′,b′

)
= mi − 1

)
=

r∏
j=1

(1 − p−2di j ) ≥
(
1 − p−2kmi

) mi
kmi

=
(
1 − p−2kmi

)p2kmi
mi

kmi p
2kmi

.

Thus,

limi→∞Pr
(
dim

(
C(i)
a′,b′

)
= mi − 1

)
≥ limi→∞

(
1 − p−2kmi

)p2kmi
mi

kmi p
2kmi = 1.

�
Lemma 4 Let I f × I f ⊆ Rm × Rm and (I f × I f )

≤2mδ = {( f1(x), f2(x)) ∈ I f ×
I f |wtH ( f1(x), f2(x)) ≤ 2mδ}. Then

∣∣∣(I f × I f )
≤2mδ

∣∣∣ ≤ p2d f h p(δ).

Proof Since |Rm × Rm | = p2m and |I f × I f | = p2d f , then the fraction of 2mδ over
the length is 2mδ

2m = δ. Moreover, since 0 < δ < 1, then, by Remark 3.2 and Corollary
3.5 in [13], the result follows directly. �
Lemma 5 E(Y f ) ≤ p−2d f +2d f h p(δ).

Proof In vJ′
m ⊂ vR′

m , we have an ideal

I
′
f = 〈v f (x)〉R′

m = {v f (x)b(x) ∈ vR′
m |b(x) ∈ Jm} ⊆ vJ′

m .

For I f × I
′
f ⊆ Rm × vR′

m , let (I f × I
′
f )

≤2mδ = {( f1(x), v f2(x)) ∈ I f ×
I
′
f |wtG( f1(x), v f2(x)) ≤ 2mδ}. Since Y f is a 0-1 variable, then the expectation

of Y f is only the probability of Y f = 1. So we have

E(Y f ) = Pr(Y f = 1) = |(I f × I
′
f )

≤2mδ| − 1

I f × I′ f
. (7)
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For f1(x), f2(x) ∈ Rm , by Gray map φ, we have that

wtG(v f2(x)) = wtH (φ(v f2(x))) = wtH ( f2(x), f2(x)) = 2wtH ( f2(x)).

Therefore, by the generalized Gray map Φ, we have

wtG( f1(x), v f2(x)) = wtH ( f1(x)) + wtH (φ(v f2(x)))

= wtH ( f1(x)) + 2wtH ( f2(x))

≥ wtH ( f1(x), f2(x)).

Thus,

∣∣∣(I f × I
′
f )

≤2mδ
∣∣∣ ≤

∣∣∣(I f × I f )
≤2mδ

∣∣∣ . (8)

Moreover, we know that dimI
′
f = dimI f = d f . Therefore, by Lemma 4, Eqs. (7)

and (8), we have

E(Y f ) = |(I f × I
′
f )

≤2mδ| − 1

|I f × I′ f | ≤ |(I f × I f )
≤2mδ|

|I f × I f | ≤ p2d f h p(δ)

p2d f
= p−2d f +2d f h p(δ).

�

Lemma 6 [11] Let δ be a real number such that 0 < δ < 1 and h p(δ) < 1
2 . Then

Pr(Δ(Ca′,b′) ≤ δ) ≤
m−1∑
j=km

p
−2 j

(
1
2−h p(δ)− logpm

2km

)
.

Proposition 2 Let 0 < δ < 1 and h p(δ) < 1
2 . Then

limi→∞Pr
(
Δ

(
C(i)
a′,b′

)
≥ δ

)
= 1.

Proof Clearly, 1
2 − h p(δ) > 0. Since mi → ∞, limi→∞

logpmi

kmi
= 0, then

limi→∞
logpmi

2kmi
= 0, which implies that there are a positive real number ε and an

integer N such that when i > N ,

1

2
− h p(δ) − logpmi

2kmi

≥ ε.
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By Lemma 6,

limi→∞Pr
(
Δ

(
C(i)
a′,b′

)
≤ δ

)
≤ limi→∞

mi−1∑
j=km

p
−2 j

(
1
2−h p(δ)− logpmi

2kmi

)

≤ limi→∞
mi−1∑
j=kmi

p−2 jε

≤ limi→∞
mi−1∑
j=kmi

p−2kmi ε

≤ limi→∞mi p
−2kmi ε

= limi→∞ p
−2kmi

(
ε− logpmi

2kmi

)
= 0.

Thus, limi→∞Pr
(
Δ

(
C(i)
a′,b′

)
> δ

)
= 1. �

In the following, we will consider the asymptotic property of C(i)
a,b.

By the Eq. (3), we have

wtG(a(x), vb(x)) = wtG(a(x)) + wtG(vb(x)) = kwtG(a′(x)) + lwtG(vb′(x))
≥ wtG(a′(x), vb′(x)),

i.e.

wtG(Ca,b) ≥ wtG(Ca′,b′).

By thedefinitionof the relativeminimumdistanceofCa,b andCa′,b′ ,wehave�(Ca,b) =
dG (Ca,b)

(k+l)m = wtG (Ca,b)

(k+l)m and �(Ca′,b′) = dG (Ca′,b′ )
2m = wtG (Ca′,b′ )

2m . Since wtG(Ca,b) ≥
wtG(Ca′,b′), then (k + l)m�(Ca,b) ≥ 2m�(Ca′,b′), which implies that �(Ca,b) ≥
2

k+l�(Ca′,b′). Further, by Lemma 1 in [17], we have

Pr
(
Δ(Ca,b

)
> δ) ≥ Pr

(
Δ(Ca′,b′) >

k + l

2
δ

)
.

Thus, by Propositions 1 and 2, we obtain the asymptotic property of Ca,b as follows.

Corollary 1 Let Ci = {( f (x)a(x), v f (x)b(x)) ∈ Rkmi × vR′
lmi | f (x) ∈ Jklmi } and

m1,m2, . . . satisfy gcd(mi , p) = 1 and when mi → ∞, limi→∞
logpmi

kmi
= 0, where

kmi is defined as in Lemma 3. Then we have
(a) limi→∞Pr(dim(Ci ) = mi − 1) = 1;
(b) if h p(

k+l
2 δ) < 1

2 , then limi→∞Pr(Δ(Ci ) > δ) = 1.
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Proof (a) From the definition of map Ω , we know Ω(C(i)
a′,b′) = C(i)

a,b and Ω is an

isomorphism, so dim
(
C(i)
a,b

)
= dim

(
Ω

(
C(i)
a′,b′

))
= dim

(
C(i)
a′,b′

)
. Therefore, by

Proposition 1, we have

limi→∞Pr
(
dim

(
C(i)
a,b

)
= mi − 1

)
= 1.

(b) From Proposition 2, we know that if h p
( k+l

2 δ
)

< 1
2 , then we have

limi→∞Pr

(
Δ

(
C(i)
a′,b′

)
>

k + l

2
δ

)
= 1.

Moreover, since Pr
(
Δ(Ca,b

)
> δ) ≥ Pr

(
Δ(Ca′,b′) > k+l

2 δ
)
, then

limi→∞Pr
(
Δ

(
C(i)
a,b

)
> δ

)
≥ limi→∞Pr

(
Δ(Ca′,b′) >

k + l

2
δ

)
= 1.

�
According to Corollary 1, we get the main result in this paper as follows.

Theorem 2 Let δ be a real number such that 0 < δ < 1 and h p(
k+l
2 δ) < 1

2 . Then, for
i = 1, 2, . . ., when mi → ∞, there exist a series of ZpZp[v]-additive cyclic codes Ci
of block length (kmi , lmi ) such that

(a) limi→∞R(Ci ) = 1
k+l ;

(b) Δ(Ci ) > δ.

Proof (a) By the definition of the rate of Ci , we have R(Ci ) = dim(Ci )
kmi+lmi

. From
Corollary 1, there exists a positive integer N such that, when i > N , we have
dim(Ci ) = mi − 1. Thus,

limi→∞R(Ci ) = limi→∞
dim(Ci )

kmi + lmi
= limi→∞

mi − 1

kmi + lmi
= 1

k + l
.

(b) FromCorollary 1, if h p
( k+l

2 δ
)

< 1
2 then limi→∞Pr(Δ(Ci ) > δ) = 1. Therefore

there exists a positive integer N such that, when i > N , we have Δ(Ci ) > δ. Thus,
after deleting the first N codes and renumbering the remaining codes, we get the result.

�
From Theorem 2, we can conclude that ZpZp[v]-additive cyclic codes are asymp-

totically good.

5 Conclusion

In this paper, we firstly constructed a class of ZpZp[v]-additive cyclic codes with
different component length. Then, based on the probabilistic method and the Chinese
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remainder theorem, we proved that these codes are asymptotically good. In the future,
researching on the asymptotic property of some other classes of linear codes over finite
non-chain rings may be an interesting open problem.
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