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Abstract
The present study aims to introduce new methods to achieve optimal matching in
fuzzy graphs and classify the fuzzy sizes of the edges and vertices of a matching
called “matching number”. Matching numbers in a fuzzy graph are not only a direct
tool in improving existing matching optimization algorithms, but also can be used to
build optimization algorithms based on the vertices of a matching. Thus, introduce the
properties of matching numbers which are useful in constructing and solving edge-
fuzzy and vertex-fuzzy maximization problems.

Keywords Matching · Matching numbers · Edge-fuzzy number · Vertex-fuzzy
number · Fuzzy prior · Strong-vertex matching

1 Introduction

Conflict between co-workers in a workplace is a part of employees’ daily work lives.
From a problem-oriented perspective, any conflict situation is a problemwhich should
be addressed. Therefore, the first step of conflict resolution is to understand that
the current situation does not correspond to the ideal situation. The second stage
of problem-solving is related to the production of alternative solutions by available
information. Finally, the decision made about each of the alternative solutions and
its implementation is considered as the end of the process. March and Simon [14]
considered conflict as a failure of standard decision-making mechanisms, where an
individual or group has difficulty in choosing the optimal reciprocal alternative. The
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problems of task assignment is a part of the organizational conflict, and the disruptive
nature of the conflict can be resolved by selecting and introducing an algorithm which
employs fair standards and procedure. Matching theory in crisp graphs can provide
impartially solutions to such problems [10,18,30]. The clash of goals, ideas, attitudes,
and behaviors produces different types of conflict situations. The evaluation of these
parameters is not accurate for employees in the workplace with the criteria of crisp
graphs. Therefore, the graph displaying the value of such relationships is a fuzzy graph.
Further, deciding on the positions of employees in the workplace which, can result in
the least amount of work conflict between individuals is consistent with the valuation
of uncertain criteria. New patterns in decision-making theory are modeled with fuzzy
graph infrastructures [27,28]. Thus, we propose amodel for resolving conflict problem
in the workplace and deciding on the most appropriate partner in the present study.

Kaufmann first introduced the concept of fuzzy graphs to express uncertainty in
networks [13]. However the definition of a fuzzy graph was officially introduced
by Rosenfeld [23]. Additional discussions on fuzzy graph theory were provided by
Mordeson et al. [16]. Applied and new developments of fuzzy graph theory were
reported [3,7,8,15,25,26]. Although the adjacency of vertices is important in graph
models, separate edges with special properties are considered in some cases. Match-
ing is considered as one of the main topics studied in graph theory and computer
science. Today, some scholars consider the definition of independent domination by
Sumosandaram [31], who first introduced matching in fuzzy graphs [29]. Actually,
an independent domination is a matching like in crisp graphs with effective edges. A
domination may not include many nonadjacent edges. Innovative and new work was
done on domination, independent of the concept of matching [4,24]. Ramakrishnan
and Vaidyanathan [22] introduced matching for fuzzy graphs by using the concept
of fractional matching. The definition of matching in a fuzzy graph, based on the
fractional matching, uses the inherent functions attributed to the edges, and compares
the above sum with the value of each vertex (instead of comparing with 1). Thus, in
this paper, in addition to maintaining the concept of matching in a crisp graph, we
present a definition which can highlight the diversity of matching by looking at the
characteristics of edges and vertices fuzzy values. Consequently, classical problems
are reconstructed in optimizing matching from edge and vertex value perspectives,
and the methods are introduced for these optimization.

2 Preliminaries

In this section, we introduce some preliminary definitions and results which are used
in this paper. Let G∗ = (V , E) is a simple crisp graph (no loops and duplicate edges).
Let’s have a brief overview of the concepts related to matching in crisp graphs. A
matching M in a graph G∗ is a set of pairwise nonadjacent edges. An M-alternating
path or cycle in G∗ is a path or cycle whose edges are alternately in M and E \ M . In
an M-alternating path if neither its origin nor its terminus is covered by M the path
is called an M-augmenting path. The two ends of each edge of M are matched under
M , and each vertex incident with an edge of M are covered by M . A perfect matching
is the one which covers every vertex of the graph G∗ and a maximum matching is the
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Matching numbers in fuzzy graphs 3

one which covers as many vertices as possible. The number of edges in a maximum
matching of a graph G∗ is called matching number of G∗ and is denoted by α′(G∗).
A matching M in a graph G∗ is a maximum matching if and only if G∗ contains no
M-augmenting path (Berge’s Theorem). See [2,5,6] for more information.

Let V be a set. A fuzzy relation μ on V is a fuzzy subset of E = V × V . From
now on, for all u, v ∈ V , we use uv instate of (u, v) ∈ E = V × V . A fuzzy graph
G = (V , σ, μ) is a triple consisting of a nonempty set V , a fuzzy subset σ and a fuzzy
relation μ on V such that for all u, v ∈ V , μ(uv) ≤ σ(u) ∧ σ(v) [16,23].

We often refer to values of these two functions as degrees of membership and can
talk about the support of these fuzzy subsets. In other words, σ ∗ = {v ∈ V |σ(v) > 0}
and μ∗ = {uv ∈ E |μ(uv) > 0}.
Definition 2.1 [20,21]. Let G = (V , σ, μ) be a fuzzy graph. Then,

(i) The degree of a vertex u ∈ V is defined as ( f d)(u) = ∑
v∈V
v �=u

μ(uv).

(ii) The degree of an edge uv ∈ E is defined as ( f d)(uv) = ∑
x∈V μ(ux) +∑

x∈V μ(xv) − 2μ(uv).

A path P in a fuzzy graph G = (σ, μ) is a sequence of distinct vertices
u0, u1, . . . , un (except possibly u0 and un) such that μ(ui−1ui ) > 0 for any
i = 1, . . . , n. The strength of P is defined to be ∧n

i=1μ(ui−1ui ). In other words,
the strength of a path is defined to be the weight of the weakest edge. We denote the
strength of a path P by s(P). The strength of connectedness between two vertices u
and v is defined as the maximum of the strengths of all paths between u and v and is
denoted by μ∞(u, v) or CONNG(u, v). The strongest path joining any two vertices
u and v has strength μ∞(u, v) [16].

Definition 2.2 [16]. Let G = (V , σ, μ) be a fuzzy graph. Then, a fuzzy graph H =
(V , τ, ν) is called a partial subgraph of G if τ ⊆ σ and ν ⊆ μ. Similarly, the fuzzy
graph H = (P, τ, ν) is called a subgraph of G induced by P , if P ⊆ V , τ(x) = σ(x)
for all x ∈ P , and ν(xy) = μ(xy) for all x, y ∈ P . We write 〈P〉 to denote the
subgraph induced by P .

Note From now on, G = (V , σ, μ) or G is a fuzzy graph; otherwise, it is state.

3 Matching in fuzzy graphs

In this section, we introduce the notation of matching which can preserve its main
concepts and properties in crisp graphs and are considered as the characteristics of
fuzzy graphs, namely, the degrees of membership for the vertices and edges. First,
with a simple change, there is a definition similar to what is for crisp graphs. In this
definition, the edges (the fuzzy value of the edges) are considered. Then, the vertices
are highlighted and the topic continues with a focus on the edges and vertices values,
along with a background of the number of edges (the classical concept).

Definition 3.1 A subgraph of G such as M = (W , σM , μM ) is called a matching in
G if only one v ∈ W can be found for all u ∈ W such that u �= v and μM (uv) > 0.
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4 M. Khalili et al.

(a) G = (σ, μ) (b) M = (Vs(M), μM , σM )

Fig. 1 A fuzzy graph and a sample matching

If M is a matching in G, we denote vertices set and edges set of M by Vs(M) and
Es(M), respectively. A matching M in G is a covering matching if V = Vs(M).

Example 3.2 Figure 1 shows a fuzzy graph G and a sample matching of G.

Vs(M) = {v1, v2, v4, v5}, Es(M) = {e4, e6}.

We denote the collection of all matchings in G by M (G). Since we can assume
μ(e) = 1 in a crisp graph G∗ = (V , E) for all e ∈ E , we have:

Corollary 3.3 Every matching in G∗ = (V , E) induces a matching in G.

Because we consider the vertices in our definitions, we consider a matching as a
set of triples in the form

〈
. . . , vi e jvk, . . .

〉
wherever we need to mention the edges

and vertices specifically. Thus, the matching M in Example 3.2 can be represented as
〈v1e6v5, v2e4v4〉.
Proposition 3.4 If M is a matching on G, then μ∞(u, v) = μ(uv) for all u, v ∈
Vs(M).

Proof Let u, v ∈ Vs(M). If there is a path P to join u to v, this path is a single edge
uv and s(P) = μ(uv). Otherwise, s(P) = μ(uv) = 0. Thus, μ∞(u, v) = μ(uv) in
any case. �
Theorem 3.5 If M = (Vs(M), σM , μM ) is a matching of G, ( f d)(u) = ( f d)(v) =
μ(uv) and ( f d)(uv) = 0 for any uv ∈ μ∗

M.

Proof Since for all v ∈ Vs(M), only one u ∈ Vs(M) is available such that μ(uv) > 0,
we get

( f d)(u) =
∑

x∈Vs (M)
x �=u

μ(ux) =
∑

x=v

μ(ux) = μ(uv).

and

( f d)(uv) =
∑

x∈Vs (M)

μ(ux) +
∑

x∈Vs (M)

μ(xv) − 2μ(uv)

=
∑

x=v

μ(ux) +
∑

x=u

μ(xv) − 2μ(uv)
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Matching numbers in fuzzy graphs 5

= μ(uv) + μ(uv) − 2μ(uv)

= 0. �
Based on graph theory, increasing the number of edges is considered as a matching

problem [6]. In fuzzy graphs, depending on its applications, we are interested in
knowing when the fuzzy values of the entire edges and vertices of the matching
are maximum or minimum. For example, in a job assignment problem, increasing
the fuzzy value of a job allocation results in higher costs (maximizing the value of
matching edges) if rating the amount of income per person in the target job is the fuzzy
value of the edges, while allocating jobs with the lowest fuzzy value reduces costs
(minimizing the value of matching edges). Therefore, a job allocation can be tailored
to the financial strength of the organization, as well as in the status of importance of
the needs of business in order to attract the highest possible value for the bidders. An
optimal job allocation based on the value of fuzzy graph vertices is that, professional
occupations are assigned to individuals with a better capability (matching vertex value
maximization) in a matching. Further, in a situation in which some professions do
not require professional expertise, people with less work experience can take those
jobs (minimizing the value of matching vertices). Now, we describe the definitions,
concepts, and theorems for the matching numbers.

Definition 3.6 Let M be a matching on G. Then,

(i) The matching edge-fuzzy number of M is defined by:

λE (M) =
∑

e∈Es (M)

μ(e).

(ii) The matching vertex-fuzzy number of M is defined as follows.

λV (M) =
∑

v∈Vs (M)

σ (v).

(iii) The matching crisp number of M is defined as follows.

λC (M) = |Es(M)|.

We refer to λE (M), λV (M), and λC (M) as matching fuzzy principal numbers
(MFPNs) of M .

Example 3.7 The MFPNs for matching M in Example 3.2, are as follows:

λE (M) = 0.8 , λV (M) = 2.7 , λC (M) = 2.
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6 M. Khalili et al.

Definition 3.8 Let M be a matching on G. Then, we have:

(i) The matching maximum edge-fuzzy number of G is defined by:

λmax
E = Max{λE (M) : M ∈ M (G)}.

(ii) The matching maximum vertex-fuzzy number of G is defined by:

λmax
V = Max{λV (M) : M ∈ M (G)}.

(iii) The matching maximum crisp number of G is defined by:

λmax
C = Max{λC (M) : M ∈ M (G)}.

We refer to these numbers as MMEF, MMVF, and MMC numbers, respectively.
In a crisp graph, several matchings with MMC number can be obtained, the impor-

tance of which are the same. However, in the fuzzy sense, we differentiate between
these matchings in terms of fuzzy value. For example, the graph has the greatest num-
ber of edges in the optimal state of a matching in crisp graph, the matching of which
is not unique. However, we seek to optimize the values of a matching in the context
of fuzzy sense. In this case, two matchings having the same MMC number, cannot be
considered as the same.

Example 3.9 In Fig. 2 we show a fuzzy graph and all of its matchings with MMC
number. By considering the matching principal numbers, we will get a fuzzy ranking
for these matchings. All of the matching principal numbers ofG = (μ, σ ) are listed in
Table 1. Then, by routine calculation, we have λmax

C = 2, λmax
E = 1 and λmax

V = 2.7.

Based on the Example 3.9, only one of the matchings (M1) has the MMEF number.
In addition, if a matching has the MMEF number, its crisp number is not necessarily
the maximum.

Example 3.10 Figure 3 shows a fuzzy graph, in which a matching withMMEF number
has only one edge, while the MMC number of this graph is 2. Table 2 indicates all
the matching principal numbers. As shown, λmax

C = 2, λmax
E = 0.7 and λmax

V = 2.6
(Table 2).

Table 1 Matching principal
numbers of G = (μ, σ )

i λC (Mi ) λE (Mi ) λV (Mi )

1 2 1.0 2.7

2 2 0.9 2.2

3 2 0.8 2.6

4 2 0.8 2.5

5 2 0.7 2.5

6 2 0.7 2.4

7 2 0.7 2.2
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Matching numbers in fuzzy graphs 7

(a) G∗ = (V, E) (b) G = (μ, σ) (c) M1

(d) M2 (e) M3 (f) M4

(g) M5 (h) M6 (i)M7

Fig. 2 A fuzzy graph and all its matching with MMC number

(a) G = (μ, σ) (b) M1 (c) M2 (d) M3

Fig. 3 A fuzzy graph and its matchings with MMEF number and MMC number

Table 2 Matching principal
numbers

i λC (Mi ) λE (Mi ) λV (Mi )

1 1 0.7 1.6

2 2 0.6 2.6

3 2 0.5 2.6

Proposition 3.11 Let M be a matching on G. Then, for all M ∈ M (G), λE (M) <

λV (M).

Proof Suppose M ∈ M (G). Since G is a fuzzy graph, μ(uv) ≤ σ(u) ∧ σ(v) for all
e = uv ∈ M . Then, we have:
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8 M. Khalili et al.

λE (M) =
∑

uv∈M
μ(uv) ≤

∑

u,v∈Vs (M)

{σ(u) ∧ σ(v)} <
∑

v∈Vs (M)

σ (v) = λV (M).

�
Definition 3.12 Let M be a matching of G. A fuzzy M-augmenting path in G is an
M-alternating path including distinct vertices v0, v1, . . . , vm, vm+1. Thus we have:

(i) μ(vi−1vi ) > 0, i = 1, . . . ,m + 1,
(ii) {v1, . . . , vm} ⊆ Vs(M),
(iii) None of v0 and vm+1 are in Vs(M).

Corollary 3.13 If P is a fuzzy M-augmenting path in G, it is M-augmenting path in
G∗.

Let M be a matching of G, P be a fuzzy M-augmenting path and ⊕ indicates the
symmetric difference. Since M⊕ P is a collection of nonadjacent edges andμ(e) > 0
for all e ∈ M∩ P , we conclude that M⊕ P is a matching. Now, we compare matching
numbers of M ⊕ P and M .

Theorem 3.14 Let M be a matching of G. λV (M ⊕ P) > λV (M) if P is a fuzzy
M-augmenting path.

Proof Letm ∈ N and P be the sequenceof vertices in the formofv0, v1, . . . , vm, vm+1.
Then, by Definition 3.12, we have:

Vs(M ⊕ P) = Vs(M)
⋃

{v0, vm+1}.

So, by Definition 3.8, we have:

λV (M ⊕ P) =
∑

v∈Vs (M⊕P)

σ (v)

=
∑

v∈Vs (M)

σ (v) + σ(v0) + σ(v1) = λV (M) + σ(v0) + σ(v1).

�
In the following example, we show that in Theorem 3.14, there is no increase in

matching edge-fuzzy number.

Example 3.15 In Fig. 4, we see the matching M = 〈v4e5v3〉 and the fuzzy M-
augmenting path P = v1v4v3v5. By constructing the matching M ⊕ P =
〈v1e3v4, v3e4v5〉, λE (M ⊕ P) < λE (M). Comparison of M and M⊕ P principal
numbers is given in Table 3.

Since there is no dependence between the MMC and MMEF number, there is a
relatively strong dependence between the MMC and MMVF number. Theorem 3.16
is the first step in introducing such a relationship and we continue to explain more
affiliations.
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Matching numbers in fuzzy graphs 9

(a) (b) (c)

Fig. 4 A matching M , its augmenting path P and expansion of M to M ⊕ P

Table 3 Comparing the
principal numbers of M and
M ⊕ P

MFPNs M M ⊕ P

λE 0.5 0.3

λV 1.4 2.4

λC 1 2

Theorem 3.16 If M is a matching with MMVF number, M accepts MMC number.

Proof Let M be a matching with MMVF number. Then, it is sufficient to show that M
is a matching which has the maximum number of edges. Since M is a matching in G∗,
if there is at least one M-augmenting path P , then the symmetric difference M ⊕ P
increases the matching vertex-fuzzy number by Theorem 3.14. Thus the maximal
condition of MMVF number of M holds. Hence, there is no M-augmenting path, and
M has the maximum number of edges by Berge’s Theorem. �

Since a fuzzy covering matching contains all vertices of a fuzzy graph, each fuzzy
covering matching admits MMVF number, and the following corollary is obtained.

Corollary 3.17 If M is a fuzzy covering matching, then M accepts the MMVF number.

By Theorem 3.16, every matching with MMVF number has MMC number. How-
ever, sufficient condition can be found. To this aim, we need a definition. For a fuzzy
graph G = (μ, σ ) we assume that each vertex has distinct labels from 1 to |V |. The
label assigned to vertex v is denoted by l(v).

Definition 3.18 (i) For arbitrary two vertices v1, v2 ∈ V , we say v1 is fuzzy prior to
v2 and is denoted by v1 ≺ v2 if and only if σ(v1) < σ(v2) or σ(v1) = σ(v2) and
l(v1) < l(v2).

(ii) Let M1 and M2 be two matchings of G such that |Vs(M1)| = |Vs(M2)|. Then,
M1 is called a fuzzy prior to M2 and denoted by M1 ≺ M2 if and only if
λV (M1) < λV (M2).

(iii) In the set {Mi |1 ≤ i ≤ k}, including all matchings in G with MMC number,
a matching such as ML is called a fuzzy strong-vertex matching, if Mi ≺ ML ,
i = 1, . . . , k.

Accordance to Definition 3.18(ii) and (iii), each pair of subgraphs can be compared
for more general term, and thus the fuzzy strong-vertex subgraph is identified.
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Proposition 3.19 If ML is a fuzzy strong-vertexmatching onG, thenλV (ML) = λmax
V .

Proof If M∗ is a matching that λV (M∗) = λmax
V , then λV (ML) ≤ λV (M∗). Hence, by

Theorem 3.16, M∗ admits the MMC number and λV (M∗) ≤ λV (ML) by definition
of fuzzy strong-vertex matching. �

To complete the preparations for finding the matchings with maximum principal
numbers, we are going to redesign the Mendelsohn–Dulmage Theorem [17] for fuzzy
graphs. First, we construct pseudo-fuzzy restrictions of bipartite fuzzy graphs. Assume
that G = (μ, σ ) is a fuzzy bipartite graph, the set of vertices is considered to be
V = S ∪ T . We consider the pseudo-fuzzy restriction GS = (μ, σS). Thus we have:

E(GS) = E(G), V (GS) = V (G) = V and σS(v) =
{

σ(v) v ∈ S

l(v) v ∈ T
.

Similarly, we consider the pseudo-fuzzy restriction GT = (μ, σT ) as follows.

E(GT ) = E(G), V (GT ) = V (G) = V and σT (v) =
{

σ(v) v ∈ T

l(v) v ∈ S
.

We use this in the methods for finding a matching with maximum principal numbers.
Now, we can present a remake of Mendelsohn–Dulmage Theorem.

Theorem 3.20 Given two matchings MS and MT , respectively, in the pseudo-fuzzy
restrictions GS and GT of a bipartite fuzzy graph G = (μ, σ ) with V = (S ∪ T )

as vertices set. There is a new matching M∗ ⊆ MS ∪ MT , which matches all of the
vertices covered by MS and MT .

Proof The details of the proof, are completely compatible with the proof of
Mendelsohn–Dulmage’s Theorem. �

4 Matchingmaximum principal number problems

In this section matching maximum principal number problems are discussed. Before
focusing on general states, it is easy to find the matching maximum principal number
for paths and cycles. In fact, we can obtain a matching by alternating selection the
edges for paths and cycles. Among two situations the matching with a larger number
(λE or λV ) makes the maximum principal number. Regarding the general cases of
fuzzy graphs, we consider the problems of finding the matching maximum principal
numbers as follows:

(i) Matching Maximum Edge-Fuzzy Number Problem (MME-FN)
(ii) Matching Maximum Vertex-Fuzzy Number Problem (MMV-FN)

In this section, we provide methods for solving any of the above issues. In all of the
methods, amatching is foundwithmaximumprincipal number.Matchingmethods and
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Matching numbers in fuzzy graphs 11

their correctness for general graphs are considerably more complicated than bipartite
graphs. The main question raised is whether this complexity is inevitable or not? By
comparing the proposed methods for the bipartite graph and those for general graphs,
the answer is “yes” [33]. First, we introduce the method of finding the maximum
matching principal number in a bipartite fuzzy graph. In all of the discussions in this
section, it is assumed that the fuzzy graphs are connected. Obviously, methods are
valid in each component of unconnected fuzzy graph. Before describing the methods,
we introduce a notation which is used here. The largest fuzzy value of the edges in
G, is denoted by Mmax (G). For a vertex u, we denote the largest fuzzy value of the
edges connected to the vertex u byMmax (u)G . In other words, we have:

Mmax (G) = max
e∈E μ(e) and Mmax (u)G = max

e=uv
μ(e).

Similarly, the largest fuzzy value of the vertices is denoted bySmax (G). Regarding
a vertex u, the largest fuzzy value of its adjacent vertices is denoted by Smax (u)G .
Thus, we have:

Smax (G) = max
v∈V σ(v) and Smax (u)G = max

e=uv
σ (v).

4.1 MME-FN problem in a bipartite fuzzy graph

Let G = (V , σ, μ) be a bipartite fuzzy graph and V = S ∪ T . For any v ∈ V ,
there is just one adjacent edge of v which is involved in matching construction. We
define x : E → {0, 1} called an incidence vector, which indicates the existence or
nonexistence of an edge in the matching. Thus

∑
e=uv∈E x(e) = 1 in a matching for

all v ∈ V . The MME-FN problem in a bipartite fuzzy graph can be expressed as the
following integer linear program.

Maximize: z =
∑

e∈E
μ(e)x(e)

Subject to:
∑

e=uv∈E
x(e) = 1, ∀v ∈ V .

x(e) ∈ {0, 1},∀e ∈ E .

Example 4.1 For the fuzzygraph shown inFig. 5a,we canwrite the linear programming
problem as follows.

Maximize:

0.3x(e1) + 0.4x(e2) + 0.6x(e3) + 0.4x(e4) + 0.3x(e5)

+ 0.4x(e6) + 0.2x(e7) + 0.7x(e8) + 0.4x(e9)
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12 M. Khalili et al.

Table 4 The optimal answer of
simplex method Steps 7

Optimal value 1.7

Solution x(ei ) = 0 for i �= 2, 3, 8

x(e2) = x(e3) = x(e8) = 1

Fig. 5 A bipartite fuzzy graph, and its matching with MMEF number

Subject to:

x(e1) + x(e2) = 1

x(e1) + x(e3) + x(e6) = 1

x(e3) + x(e4) + x(e5) = 1

x(e2) + x(e4) + x(e7) = 1

x(e6) + x(e7) + x(e8) + x(e9) = 1

x(e5) + x(e8) = 1

x(ei ) ∈ {0, 1}, 1 ≤ i ≤ 9.

This linear programming problem can be solved using the simplex method. The
optimal answer to this problem triggered during the seven steps of the simplexmethod,
is shown in Table 4. Then, the matching M , is obtained based on Fig. 5b, where,
λE (M) = λmax

E = 1.7.

4.2 MME-FN problem in an arbitrary fuzzy graph

In this section, we introduce a method for obtaining a matching with MMEF number
in an arbitrary fuzzy graph. This method was originated from the Wattenhofer and
Wattenhofer [34] method for weighted graphs. In this method, is obtained all the
subgraphs of a fuzzy graph G = (μ, σ ), which are paths or cycle. Then, the maximal
matching is extracted in these subgraphs. Finally, the condition of Berge’s Theorem
is examined for new matchings, in which λE is the largest.
Description of the method Suppose M∗ is the matching with MMEF number, which
is obtained from this method. The steps are as follows.
Step 1 (Default M∗) Consider M∗ = ∅ and G1 = G by default.
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Matching numbers in fuzzy graphs 13

Step 2 (Making subgraph H j of G j ): The edge e = uv is called the elected edge
for H j , if σ(u) ≥ 1

2Mmax (u)G j and σ(v) ≥ 1
2Mmax (v)G j . All of the elected edges

make subgraph H j of G j . It is worth noting that the subgraph H1 of G1 is made first.
Step 3 (Making paths and cycles in H j ) Weak subgraphs of H j (paths and cycles) are
made with the process of deletion and selection (we call these subgraphs P j

k ).

Selection process Each vertex selects an adjacent edge randomly. For each vertex
u, we show the selected edge as sele and the other adjacent edges of the vertex u
are named as imposed, and is represented by imp.
Deletion process For each vertex, imposed edge randomly selected and the other
edges are removed, except the selected edge.
Making P j

i The result of selection and deletion process is a union of paths and
cycles (deg(v) ≤ 2).Depending on the number ofmodes (kmodes) for the selected
and imposed edges, the resulted subgraph is named P j

i .

Do Step 4 to 6 for all 1 ≤ i ≤ k.
Step 4 (Making matchings in each P j

i ) Extract all paths from each P j
i , which is done

in common ways of finding paths in a graph. Make the matching with MMEF number
for each path and cycle (there are two ways to choose the edges alternately). Call each
of this matching Mi j

l , where l changes depending on the number of paths. Make all
possible unions of these matching. Denote the strongest union, which is a matching,
as M∗

i j .
Step 5 (First expansion of M∗) Check outM∗∪M∗

i j . The first union of this kind, which
is a matching, is the first expansion of M∗, which is set as new M∗ (M∗ ←↩ M∗∪M∗

i ).
Step 6 (Second expansion of M∗) Make M∗ ⊕ P for each possible fuzzy M∗-
augmenting path P and calculate λE (M∗⊕P). If this value increases (λE (M∗⊕P) ≥
λE (M∗)), then consider M∗ ←↩ M∗ ⊕ P . Otherwise repeat this step until there is no
augmenting path increasing λE number.
Step 7 (Making Gi+1) We consider G j+1 = G j � H j as a subgraph of G. Thus, we
have:

{
E(G j � H j ) = E(G j ) − E(H j ),

V (G j � H j ) = V (G j ).

Step 8 (Stop condition) If G j+1 = ∅ stop, otherwise go to step 2.

Example 4.2 Assume that G is a fuzzy graph, we obtain a matching with MMEF
number for this graph (Fig. 6).

4.3 MMV-FN problem in a bipartite fuzzy graph

Similar to weighted graphs, the complexity of a MMV-FN Problem is very close to
the crisp graphs. Here we present the method for finding the matching with MMVF
number in a fuzzy bipartite graph (Fig. 6).

Some studies that examined the vertex matching in weighted graphs by assuming
that the weight of an edge is equal to the sum of the vertices weights and have linked
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(a)

(d) (e) (f)

(i)(h)(g)

(c)(b)

Fig. 6 A fuzzy graph and its matching with MMEF number

the maximum vertex problem to the maximum edge problem. Based on the MMV-
FN problem is considerably simpler than the MME-FN state and is very close to the
general graph. In Theorems 3.16, 3.19 and Corollary 3.17, we provided preliminary
steps for this fact. The vertex maximization of matchings in the weighted graphs was
studied by Spencer andMayer [32]. In addition,Mulmuley, UmeshVazirani, andVijay
Vazirani proposed vertex matching maximization of weighted graphs [19]. Now based
on the above-mentioned issues for weighted graphs, we discuss the problem for fuzzy
graphs.
Description of the method Assume G = (μ, σ ) is a bipartite fuzzy graph whose
vertices are considered to be V = S ∪ T .
Step 1 (Fuzzy vertex ordering)Arrange the vertices of S and T sets in accordance with
the fuzzy vertex ordering.
Step 2 (Making pseudo-fuzzy restricts)Make GS = (μ, σS) and GT = (μ, σT ).
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(j) (k) (l)

(m) (n) (o)

Fig. 6 continued

Step 3 (Making matching in pseudo-fuzzy restricts) Let u be the vertex in GS that
σ(u) = Smax (GS). First, consider M1

S = uv to be a single-edged matching, which is
obtained with an edge connected to u, and v is the strongest adjacent of u.
Step 4 (Expansion of Mi

S) Consider P
i the strong-vertex fuzzy Mi

S-augmenting path
(Definition 3.18). Start from P1, as the strong-vertex fuzzy M1

S-augmenting path,
and construct Mi+1

S = Mi
S ⊕ Pi as a new matching. Obviously, according to the

Theorem 3.14, λV (Mi+1
S ) ≥ λV (Mi

S). In other words, Mi+1
S � Mi

S . Continue this
process until there are augmenting paths.
Step 5 (Choosing strong-vertex matching in pseudo-fuzzy restrict): Select the strong-
vertex matching from the Mi

S matchings, shown as M∗
S . Thus, such a matching as the

last matching is made in the previous step.
Step 6 (Checking Point) If σ(v) = Smax (GT ) (vertex v in step 3), stop (M∗ = M∗

S ).
Otherwise, go to the next step.
Step 7 (Making strong-vertex matching in GT ): Repeat steps 3 to 6 for GT and call
the strong-vertex matching of GT to M∗

T .
Step 8 (Making strong-vertex matching in G): Given the various states occurring for
the M∗

S and M∗
T matchings (in accordance with the conditions of Theorem 3.20),

construct such a matching which is a subset of M∗
S ∪ M∗

T and covers all the vertices in
M∗

S and M∗
T (call it M∗). Such a matching, due to its construction process, is stronger

than all matchings made in this way. Therefore, by Theorem 3.19, λV (M∗) = λmax
V .
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 The strongest vertex in S is connected to the strongest vertex in T

Example 4.3 We consider the bipartite graph as in Example 4.1 (Fig. 5), and get the
matching with MMVF number. Note that in this fuzzy graph the strongest vertex in S
is connected to the strongest vertex in T . Thus, the method stops in step 6 (Fig. 7).

Example 4.4 As shown in Fig. 8, we consider a bipartite fuzzy graph that the strongest
vertex in S is not connected to the strongest vertex in T . Therefore, the execution of
the method in step 6 will not stop. Here, we construct two matchings in pseudo-fuzzy
restricts subgraphs (GS and GT ).

4.4 MMV-FN problem in an arbitrary fuzzy graph

For an arbitrary fuzzy graph, the structure of the augmenting paths should be con-
sidered. We distinguish between the first and last vertex of such paths. The first and
last vertex of an augmenting path are the corresponding vertices of each other, and
this pairing is uniquely determined in our method. The fundamental idea to make a
matching withMMVF number is to find an augmenting path and develop thematching
via the difference of the augmenting path and the current matching. In this section,
we refer to a simple method for obtaining a matching with MMVF number in an
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(a) (b)

(c)

(e) (f)

(g) (h)

(d)

Fig. 8 The strongest vertex in S is not connected to the strongest vertex in T

arbitrary fuzzy graph. The process is very similar to non-fuzzy graphs and we use the
expansion of augmenting paths. By considering the vertex fuzzy value involved in the
augmenting paths, we maximize the matching value.
Description of the method Assume that G = (V , σ, μ) is a fuzzy graph:
Step 1 (Vertices fuzzy ordering) Arrange all vertices of G in accordance with the
vertices fuzzy ordering. Consider the strongest vertex V 1

M .
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Step 2 (Making basic matching) Consider the first vertex which is connected to V 1
M

and weaker than it. Call it V 1
M−1. Let a separate edge, except V

1
MV 1

M−1, connected to
V 1
M−1, the first matching (M1). If such an edge is not found, start with V 1

MV 1
M−1.

Step 3 (Finding augmenting paths) Obtain all possible fuzzy M1-augmenting paths
starting from V 1

M (PV 1
M

= {P1
1 , P1

2 , P1
3 , · · · }).

Step 4 (Making newmatching)Choose the strong-vertexM1-augmenting path (P1
strog),

and select M1 ⊕ P1
strog as the new matching.

Step 5 (Expanding matching) Continue the matching development process by finding
the possible augmenting paths, until there is no any augmenting path.
Step 6 (Reduction of vertices set)Draw V 1

M from the vertices fuzzy ordering and repeat
the steps (1) to (5) for the other vertices until all vertices of the graph are removed
from the order.
Step 7 (Choosing maximum vertex-matching) The strong vertex matching after com-
pleting the process is a matching with MMVF number.

It is worth noting that M j ⊕ P j
strog should be made for all of the paths (step 3) if

we find strong-vertex augmenting paths (P j
i ), having the same fuzzy value. In each

stage of implementing the method, if we get matching covering all graph vertices, it
is the matching with MMVF number by Corollary 3.17. In the following example, we
find a matching with MMVF number for an arbitrary fuzzy graph.

Example 4.5 Let G be a fuzzy graph as in Example 4.2. We want to find a matching
with MMVF number. This process is displayed in Fig. 9.

5 The best co-workers’ problem (BCP)

Conflict is an inevitable fact for any organization. Leaders should understand and apply
various conflict management techniques and conflict resolution styles in order to form
strong relationships with subordinates [11]. Hyde et al. [12] examined the relationship
between conflict management in the workplace and self-reported measures of stress,
poor general health, exhaustion and sickness absence due to overstrain or fatigue.
Many attempts have been made to design stable algorithms based on the concept of
matching [1,9]. In this section, we present a proposed model based on matching in
fuzzy graphs to reduce workplace conflict.

Consider a companywith 7 employees (hi ), in which employees are given two types
of grades (name these grades μ and σ ) based on their backgrounds and capabilities.
One grade is based on individual abilities (σ(hi )), and another grade is based on the
level of interaction of two employees having a joint work history μ(hi , h j ) (Fig. 10).
Suppose that the company intends to make the placement of individuals in order to
increase the efficiency of work so that each person can co-operate with the one having
the highest degree of interaction in the workplace. Figure 11a displays the individual
and interaction privileges of the employees in this company.

Choosing the best partner for each individual, that achieves maximum efficiency, is
a matching with the highest edge-fuzzy value. By implementing the method presented
in Sect. 4.2, we arrive at a matching with MMEF number as shown in Fig. 11b.
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(a) (b)

(d) (e) (f)

(g) (h) (i)

(c)

Fig. 9 A fuzzy graph and its matching with MMVF number

Fig. 10 Employee rating
functions

In general graph theory, Berge’s Theorem suggests a natural approach to finding a
maximum matching in a graph. We start with some matchings M and search for an
M-augmenting path. If such a path P is found, we replace M by M⊕ P . We repeat the
procedure until no augmenting path can be found with respect to the current matching.
This final matching is then a maximum matching (APS method) [6]. This method is
used for finding the maximummatching, as displayed in Fig. 12.We start APSmethod
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(a) (b)

Fig. 11 A BCP fuzzy graph and its solution

(a) (b)

Fig. 12 Two implementations of the APS method from the same starting point

with the strongest edge (as a matching) leading to two matchings. As shown, none of
them are the matching with MMEF number.

6 Conclusions

Matching in a fuzzy graph implies its meaning for crisp graphs. Matching numbers,
result in classifying the concept of matching in fuzzy graphs in addition to being tools
for stabilizing methods of achieving optimal matching. Structuring the introduced
methods in solving optimization problems based on vertex or edge numbers leads
to a unique answer, unlike classical methods in crisp graphs giving multiple optimal
solutions depending on the starting point, although approximation is considered in the
implementation method. In this paper, after introducing, classifying, and customized
readings of optimization problems (maximization state) in fuzzy graphs, the results,
theorems, and properties of the numbers related to the matching were explaind. A
decision-making model which can reduce conflict in the workplace was presented by
achieving a maximum consistency between employees. More work can be done in this
regard by considering the construction conditions of the optimization problems in the
minimization state. Finally it is important to examine and generalize the concept of
matching to other types of specific fuzzy graphs which results in related application
problems such as a multi-parameter decision-making.
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