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Abstract
Given a graph G and an integer k ≥ 2. A spanning subgraph F of a graph G is said
to be a P≥k-factor of G if each component of F is a path of order at least k. A graph
G is called a P≥k-factor uniform graph if for any two distinct edges e1 and e2 of
G, G admits a P≥k-factor including e1 and excluding e2. More recently, Zhou and
Sun (Discret Math 343:111715, 2020) gave binding number conditions for a graph to
be P≥2-factor and P≥3-factor uniform graphs, respectively. In this paper, we present
toughness and isolated toughness conditions for a graph to be a P≥3-factor uniform
graph, respectively.

Keywords Graph · Path factor · P≥3-factor uniform graph · Toughness · Isolated
toughness

Mathematics Subject Classification 05C38 · 05C75

1 Introduction

Throughout this paper we consider only simple connected graphs. For a graph G =
(V , E)with vertex set V = V (G) and edge set E = E(G), the degree of a vertex v in
G, denoted by dG(v), is the number of edges incident with v. The open neighborhood
of a vertex v, denoted by NG(v), is the set of vertices adjacent to v in G. For a subset
S ⊆ V (G), we use NG(S) to denote

⋃

v∈S
NG(v). If dG(v) = 0 for some vertex v in G,

then v is said to be an isolated vertex in G. If dG(v) = 1 for some vertex v in G, then
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v is said to be a leaf in G. Let I SO(G) be the set of isolated vertices of G, and let
i(G) = |I SO(G)|. For S ⊆ V (G), let G[S] be the subgraph of G induced by S, and
write G − S = G[V (G) \ S]. For an edge subset E0 of G, let G − E0 be the subgraph
of G obtained by deleting all edges in E0. The number of connected components of
G is denoted by ω(G).

We first introduce three parameters for a graph, namely, the binding number, the
toughness and the isolated toughness. Let G be a graph. The binding number of G is
defined as

bind(G) = min
{ |NG(X)|

|X | : ∅ �= X ⊆ V (G), NG(X) �= V (G)
}
.

The toughness of G is defined by Chvátal in [4] as

t(G) = min
{ |X |

ω(G − X)
: X ⊆ V (G), ω(G − X) ≥ 2

}
,

if G is not complete; otherwise, t(G) = +∞.
The isolated toughness of G is defined by Yang et al. in [7] as

I (G) = min
{ |X |
i(G − X)

: X ⊆ V (G), i(G − X) ≥ 2
}
,

if G is not complete; otherwise, I (G) = +∞.
An H-factor is a spanning subgraph of a graph, whose connected components are

isomorphic to graphs from the setH. A path-factor is a spanning subgraph F ofG such
that each component of F is a path of order at least two. This conceptwas introduced by
Akiyama andKano [2]. A P≥k-factormeans a path factor inwhich each component has
order at least k (k ≥ 2). To characterize those graphs having a P≥3-factor, Kaneko [5]
introduced the concept of a sun. If H − v has a perfect matching for each v ∈ V (H),
then H is called a factor-critical graph. Let H be a factor-critical graph with vertex set
V (H) = {v1, v2, · · · , vn}. By adding new vertices {u1, u2, · · · , un} together with
new edges {vi ui |1 ≤ i ≤ n} to H , we obtain a new graph, which is called a sun.
According to Kaneko, K1 and K2 are also suns. Usually, K1 and K2 are called a small
sun and the others are called big suns (with order at least 6). If a component of G − X
is isomorphic to a sun, it is called a sun component of G − X . Let Sun(G − X) be the
set of sun components of G − X and sun(G − X) be the number of sun components
of G − X .

Akiyama et al. [1] provided a criterion for a graph having a P≥2-factor, which reads
as follows.

Theorem 1.1 ([1]) A graph G admits a P≥2-factor if and only if i(G − X) ≤ 2|X | for
any X ⊆ V (G).

Kaneko [5] presented a criterion for a graph having a P≥3-factor, which is stated
as follows.
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Toughness and isolated toughness conditions for… 811

Theorem 1.2 ([5]) A graph G admits a P≥3-factor if and only if sun(G − X) ≤ 2|X |
for any X ⊆ V (G).

Later, Kano et al. [6] gave a simple proof to Theorem 1.2. Kaneko [5] showed that
a regular graph with degree greater than or equal to two has a P≥3-factor. Bazgan et
al. [3] proved that for a graph G, if t(G) ≥ 1, then G contains a P≥3-factor.

Later, Zhang and Zhou [8] defined a graph G to be a P≥k-factor covered graph
if G admits a P≥k-factor containing e for any e ∈ E(G). Furthermore, they gave a
characterization for a graph to be a P≥2-factor covered graph and P≥3-factor covered
graph, respectively. Their results are stated as follows.

Theorem 1.3 ([10]) Let G be a connected graph. Then G is a P≥2-factor covered
graph if and only if

i(G − X) ≤ 2|X | − ε1(X)

for any X ⊆ V (G), where ε1(X) is defined as follows:

ε1(X) =

⎧
⎪⎪⎨

⎪⎪⎩

2, if X is not an independent set;
1, if X is a nonempty independent set

and G − X admits a nontrivial component;
0, otherwise.

Theorem 1.4 ([10]) Let G be a connected graph. Then G is a P≥3-factor covered
graph if and only if

sun(G − X) ≤ 2|X | − ε2(X)

for any X ⊆ V (G), where ε2(X) is defined as follows:

ε2(X) =

⎧
⎪⎪⎨

⎪⎪⎩

2, if X �= ∅ and X is not an independent set;
1, if X �= ∅ and X is a nonempty independent set

and G − X admits a non-sum component;
0, otherwise.

Zhou et al. [9] showed that if t(G) > 2
3 holds for a graph G, then G is a P≥3-factor

covered graph. This result improved the result of Bazgan et al. [3].
More recently, Zhou and Sun [10] defined a graph G to be a P≥k-factor uniform

graph if for any two distinct edges e1 and e2 of G, G admits a P≥k-factor including e1
and excluding e2. In the same paper, they gave binding number conditions for a graph
to be P≥2-factor and P≥3-factor uniform graphs, respectively. Their results are stated
as follows.

Theorem 1.5 ([10]) Let G be a 2-edge-connected graph. If bind(G) > 4
3 , then G is a

P≥2-factor uniform graph.

Theorem 1.6 ([10]) Let G be a 2-edge-connected graph. If bind(G) > 9
4 , then G is a

P≥3-factor uniform graph.
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812 H. Hua

Fig. 1 The graph G with t(G) = 1 (left); The edge e1 is an edge to be excluded from G and e2 is an edge

not containing in any P≥3-factor of G
′ = G − e1 (right)

In this paper, we present toughness and isolated toughness conditions for a graph
to be a P≥3-factor uniform graph, respectively. Our results are as follows.

Theorem 1.7 Let G be a 2-edge-connected graph. If t(G) > 1, then G is a P≥3-factor
uniform graph.

Theorem 1.8 Let G be a 2-edge-connected graph. If I (G) > 2, then G is a P≥3-factor
uniform graph.

We postpone the proofs of Theorems 1.7 and 1.8 to the subsequent two sections.

2 The proof of Theorem 1.7

Remark 2.1 Wesay that the condition that t(G) > 1 inTheorem1.7 can not be replaced
by t(G) ≥ 1. To see this, we let G be the graph as shown in Fig. 1. Clearly, t(G) = 1.
Set X = {x, y} and G

′ = G − e1. Then ε2(X) = 2 and sun(G
′ − X) = 3 > 2 =

2|X | − 2 = 2|X | − ε2(X). By Theorem 1.4, G
′
is not a P≥3-factor covered graph.

So, G is not a P≥3-factor uniform graph. In fact, the edge e2 is not included into any
P≥3-factor of G

′
.

The proof of Theorem 1.7

Proof If G is a complete graph, then G is evidently a P≥3-factor uniform graph. So,
we may assume that G is not a complete graph. Since G is a 2-edge-connected graph,
we have |V (G)| ≥ 4.

We proceed by contradiction. Suppose that there exists an edge e = uv in G such
that G

′ = G − e is not a P≥3-factor covered graph. By Theorem 1.4, there exists a
vertex subset X of V (G

′
) such that

sun(G
′ − X) ≥ 2|X | − ε2(X) + 1. (1)

We distinguish between the following three cases.

Case 1. |X | = 0.
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Toughness and isolated toughness conditions for… 813

In this case, we have ε2(X) = 0. By (1), we have sun(G
′ − X) ≥ 1. Since G

′
is

connected, we have sun(G
′ − X) ≤ ω(G

′ − X) = ω(G
′
) = 1. So, sun(G

′ − X) = 1.
By our assumption that |V (G

′
)| = |V (G)| ≥ 4 and the definition of sun, it is

easy to see that G
′
is a big sun with at least six vertices. Also, G

′
has |V (G)|

2 (≥ 3)
leaves. So, G has at least one leaf. It is a contradiction to our assumption that G is a
2-edge-connected graph.

Case 2. |X | = 1.
In this case, we have ε2(X) ≤ 1. By (1), we have

sun(G
′ − X) ≥ 2|X | = 2. (2)

Since ω(G
′ − X) ≤ ω(G − X) + 1 and ω(G

′ − X) ≥ sun(G
′ − X), by (2) and the

definition of toughness, we have

1 < t(G) ≤ |X |
ω(G − X)

≤ |X |
ω(G ′ − X) − 1

≤ |X |
sun(G ′ − X) − 1

≤ |X |
2|X | − 1

= 1,

a contradiction.

Case 3. |X | ≥ 2.
In this case, we have ε2(X) ≤ 2. Also, by (1), we have

sun(G
′ − X) ≥ 2|X | − 1. (3)

Since ω(G − X) ≥ ω(G
′ − X) − 1 and ω(G

′ − X) ≥ sun(G
′ − X), by (3) and

the definition of toughness, we have

1 < t(G) ≤ |X |
ω(G − X)

≤ |X |
ω(G ′ − X) − 1

≤ |X |
sun(G ′ − X) − 1

≤ |X |
2(|X | − 1)

,

which gives |X | < 2, a contradiction.
This completes the proof. 
�
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Fig. 2 The graph G with I (G) = 2 (left); The edge e1 is an edge to be excluded from G and e2 is an edge

not containing in any P≥3-factor of G
′ = G − e1 (right)

3 The proof of Theorem 1.8

Remark 3.1 We say that the condition that I (G) > 2 in Theorem 1.8 can not be
replaced by I (G) ≥ 2. To see this, we let G be the graph as shown in Fig. 2. Clearly,
I (G) = 2. Set X = {x, y} and G

′ = G − e1. Then ε2(X) = 2 and sun(G
′ − X) =

3 > 2 = 2|X |−ε2(X). By Theorem 1.4,G
′
is not a P≥3-factor covered graph. So,G is

not a P≥3-factor uniform graph. In fact, the edge e2 is not contained in any P≥3-factor
of G

′
.

The proof of Theorem 1.8

Proof SinceG is a 2-edge-connected graph, we have |V (G)| ≥ 3. IfG is the complete
graph, then G is obviously a P≥3-factor uniform graph. Now, we suppose that G is
not the complete graph. So, |V (G)| ≥ 4.

We proceed by contradiction. Suppose that there exists an edge e = uv in G such
that G

′ = G − e is not a P≥3-factor covered graph. By Theorem 1.4, there exists a
vertex subset X of V (G

′
) such that

sun(G
′ − X) ≥ 2|X | − ε2(X) + 1. (4)

We suppose that there exist a K ′
1s, b K ′

2s, and c big sun components L1, . . . , Lc

with |V (Li )| ≥ 6 in G
′ − X for each i = 1, . . . , c. By the definition of sun, we have

sun(G
′ − X) = a + b + c. (5)

We consider the following three cases.

Case 1. |X | = 0.
In this case, we have ε2(X) = 0. By (4), we have sun(G

′ − X) ≥ 1. Since G is
2-edge-connected, G

′ − X = G
′
is connected, and then sun(G

′ − X) ≤ ω(G
′ − X) =

ω(G
′
) = 1. So, sun(G

′ − X) = 1.
By the fact that |V (G

′
)| = |V (G)| ≥ 4 and the definition of sun, we conclude that

G
′
is a big sun. Thus, |V (G

′
)| = |V (G)| ≥ 6. Denote by N the factor-critical subgraph

ofG
′
. According to the definition of factor-critical subgraph, we have |V (N )| ≥ 3. So,
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Toughness and isolated toughness conditions for… 815

G
′
has |V (N )| leaves. Note thatG ′ = G−e. Now,G must have at least |V (N )|−2 (≥

1) leaf. It is a contradiction to the fact G is a 2-edge-connected graph.

Case 2. |X | = 1.
In this case, we have ε2(X) ≤ 1. So, by (4), we have

sun(G
′ − X) ≥ 2|X |. (6)

First, we assume that c ≥ 1. We consider any one big sun component, say L1, in
G

′
and let N1 be its factor-critical subgraph. Set Z = V (N1), by the definition of big

sun and factor-critical subgraph, we have |Z | ≥ 3. Then, L1 has at least three leaves
in G

′ − X . So, we can always choose one vertex, say w, in Z such that G − (X ∪{w})
has an isolated vertex, no matter whether u and v belong to L1 or not. This means that

i
(
G − (X ∪ {w})

)
≥ 1.

By the definition of isolated toughness, we have

2 < I (G) ≤ |X ∪ {w}|
i
(
G − (X ∪ {w})

)

= 2,

a contradiction.
Second,we assume that c = 0.Wefirst assume thata �= 0. In this case,we claim that

u ∈ I SO(G
′ − X) or v ∈ I SO(G

′ − X). To see this, we first show that X �= {u} and
X �= {v}. Suppose, to the contrary, that X = {u}. Then v /∈ I OS(G

′ − X). Otherwise,
dG(v) = 1, a contradiction to the fact that G is a 2-edge-connected graph. Also, for
any other vertex w ∈ V (G) \ {u, v}, w /∈ I OS(G

′ − X). Otherwise, dG(w) = 1,
a contradiction. So, u ∈ V (G) \ X and v ∈ V (G) \ X . Now, let z be a vertex in
V (G)\{u, v} such that X = {z}. Then, for any one vertexw in V (G)\{u, v, z},w can
not be an isolated vertex inG

′−X , for otherwise, dG(w) = 1, a contradiction to the fact
thatG is a 2-edge-connected. Since a ≥ 1, wemust have |{u, v}∩ I OS(G

′ −X)| ≥ 1.
Assume that v ∈ I OS(G

′ − X). Then dG(v) = 2.
Let S = X ∪ {u}. Then v is an isolated vertex in G − S and |S| = 2. So,

2 < I (G) ≤ |S|
i(G − S)

= 2,

a contradiction.
Now, we assume that a = 0 and c = 0. Then, by (5) and (6), we have b =

sun(G
′ − X) ≥ 2|X | = 2. Let W be the vertex set composed of all 2b end-vertices

of b K
′
2s, and let T = V (G

′
) \ (X ∪ W ). Then we have

• X = {u} and v ∈ W ∪ T (or X = {v} and u ∈ W ∪ T ), or
• u ∈ W and v ∈ W , or
• u ∈ W and v ∈ T (or v ∈ W and u ∈ T ), or
• u ∈ T and v ∈ T .
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First, we assume that X = {u} and v ∈ W ∪ T (or X = {v} and u ∈ W ∪ T ). If
X = {u} and v ∈ W , there is an independent edge vx in G

′ − X . So, x is an isolated
vertex in G − {u, v}. Then

2 < I (G) ≤ |{u, v}|
i(G − {u, v})

= 2,

a contradiction. If X = {u} and v ∈ T , there is an independent edge yz in G
′ − X .

So, z is an isolated vertex in G − {u, y}. Then

2 < I (G) ≤ |{u, y}|
i(G − {u, y})

= 2,

a contradiction.
Second, we assume that u ∈ W and v ∈ W .
Since b ≥ 2, we let us and vt be two K

′
2s in W of G

′
. Let S = X ∪ {u, v}. Then s

and t are isolated vertices in G − S. Moreover, |S| = 3. Hence,

2 < I (G) ≤ |S|
i(G − S)

= 3

2
,

a contradiction.
Third, we assume that u ∈ W and v ∈ T (or v ∈ W and u ∈ T ).
Note that v ∈ T . Since b ≥ 2, there must exist a K2 edge, say xy, in G

′ − X such
that x �= u and y �= u. Let S = X ∪ {x}. Then |S| = 2 and G − S has an isolated
vertex y. Therefore,

2 < I (G) ≤ |S|
i(G − S)

= 2,

a contradiction.
Finally, we assume that u ∈ T and v ∈ T .
Let xy be any one K2 edge in G

′ − X . Set S = X ∪ {x}. Then |S| = 2 and G − S
has an isolated vertex y. Therefore,

2 < I (G) ≤ |S|
i(G − S)

= 2,

a contradiction.

Case 3. |X | ≥ 2.
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Toughness and isolated toughness conditions for… 817

In this case, we have ε2(X) ≤ 2. Hence, by (4), we have

sun(G
′ − X) ≥ 2|X | − 1. (7)

We consider the following two subcases.

Subcase 3.1. |X | ≤ a + b.
Note that i(G−X) ≤ i(G

′ −X) ≤ i(G−X)+2.We further consider the following
three subcases.

Subcase 3.1.1. i(G
′ − X) = i(G − X).

In this subcase, we have u /∈ ISO(G
′ − X) and v /∈ I SO(G

′ − X). Otherwise,
i(G

′ − X) > i(G − X), a contradiction.
LetW be the vertex subset composed of all 2b end-vertices of b independent edges

in G
′ − X . We choose the vertex subset Y by the following procedure.

If u ∈ W and v ∈ W , then u and v belong to two distinct K
′
2s in G

′ − X , and
we let Y be a b-element vertex subset by choosing one vertex from each of b K

′
2s

such that u ∈ Y or v ∈ Y ; if one vertex of u and v, say u, is an element in W , and
v ∈ V (G) \ (X ∪ I SO(G

′ − X) ∪ W ), then we let Y be a b-element vertex subset by
choosing one vertex from each of b K

′
2s such that u ∈ Y ; Otherwise, we let Y be a

b-element vertex subset obtained by taking one vertex from each of b K
′
2s.

Thus, G − (X ∪ Y ) has a + b isolated vertices, that is, i(G − (X ∪ Y )) = a + b.
Since |X ∪ Y | = |X | + b, by the definition of isolated toughness, we have

2 < I (G) ≤ |X ∪ Y |
i
(
G − (X ∪ Y )

)

= |X | + b

a + b

≤ a + 2b

a + b
,

resulting in a < 0, which is impossible.

Subcase 3.1.2. i(G
′ − X) = i(G − X) + 1.

In this subcase, we have u ∈ ISO(G
′ −X) and v /∈ I SO(G

′ −X), or u /∈ I SO(G
′ −

X) and v ∈ I SO(G
′ − X). Suppose without loss of generality that u ∈ I SO(G

′ − X)

and v /∈ I SO(G
′ − X). Then, v /∈ X , for otherwise, i(G

′ − X) = i(G − X), a
contradiction to our assumption.

LetW be the same vertex subset defined as in Subcase 3.1.1. If v ∈ W , we let Y be
a b-element vertex subset obtained by taking one vertex from each of b K

′
2s such that

v ∈ Y . Then u is also an isolated vertex inG−(X ∪Y ). Thus, i(G−(X ∪Y )) = a+b
and |X ∪ Y | = |X | + b. Similar to Subcase 3.1.1, we obtain a contradiction.

If v ∈ V (G
′
) \ (X ∪ W ∪ I SO(G

′ − X)), then we choose Y to be a b-element
vertex subset obtained by taking one vertex from each of b K

′
2s. By our choice of Y ,

u is still an isolated vertex in G − (X ∪Y ∪{v}). Thus, i(G − (X ∪Y ∪{v})) ≥ a+b.
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818 H. Hua

Also, we have |X ∪ Y ∪ {v}| = |X | + b + 1. Therefore, we obtain

2 < I (G) ≤ |X ∪ Y ∪ {v}|
i
(
G − (X ∪ Y ∪ {v})

)

≤ |X | + b + 1

a + b

≤ a + 2b + 1

a + b
,

yielding that a < 1, which is a contradiction to our assumption that u ∈ I OS(G
′ −X).

Subcase 3.1.3. i(G
′ − X) = i(G − X) + 2.

In this subcase, we must have {u, v} ⊆ I SO(G
′ − X). So, a = i(G

′ − X) ≥ 2.
First, we assume that a ≥ 3. Let Y be a b-element vertex subset obtained by taking

one vertex from each of b K
′
2s. Then v is also an isolated vertex in G − (X ∪Y ∪{u}).

Therefore, G − (X ∪ Y ∪ {u}) has a + b − 1 isolated vertices. Then

2 < I (G) ≤ |X ∪ Y ∪ {u}|
i
(
G − (X ∪ Y ∪ {u})

)

= |X | + b + 1

a + b − 1

≤ a + 2b + 1

a + b − 1
,

resulting in a < 3, which is a contradiction to our assumption.
Now, we assume that a = 2.
First, we suppose that c = 0. Since b+ 2 = a + b+ c = sun(G

′ − X) ≥ 2|X | − 1
by (5) and (7), we have b ≥ 2|X | − 3. Let Y be the b-element vertex subset obtained
by taking one vertex from each of b K

′
2s. It is easy to see that neither u nor v is an

isolated vertex in G − (X ∪ Y ). So,

2 < I (G) ≤ |X ∪ Y |
i
(
G − (X ∪ Y )

)

= |X | + b

a + b − 2

= |X | + b

b
,

resulting inb < |X |. Thus,we have |X | > 2|X |−3, that is, |X | < 3.Byour assumption
that |X | ≥ 2, we have |X | = 2. So, b = 1. Let w be one end-vertex of the unique K2
in G

′ − X . Note that a = 2, b = 1, c = 0 and |X | = 2. Then G − (X ∪ {u, w}) has
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Toughness and isolated toughness conditions for… 819

two isolated vertices, and thus

2 < I (G) ≤ |X ∪ {u, w}|
i
(
G − (X ∪ {u, w})

)

= 2,

a contradiction.
Second, we suppose that c ≥ 1. For each i = 1, . . . , c, we let Ni be the factor-

critical subgraph of big sun component Li . According to the definition of big sun
and factor-critical subgraph, for each i = 1, . . . , c, we have |V (Ni )| ≥ 3. For each
i = 1, . . . , c, we let Zi = V (Ni ). So, for each i = 1, . . . , c, Li − Zi ∼= |V (Ni )|K1.
Let Z = Z1 ∪ Z2 ∪ · · · ∪ Zc. Let Y be the b-element vertex subset obtained by taking
one vertex from each of b K

′
2s. Since a = 2, both u and v are not isolated vertices in

G − (X ∪ Y ∪ Z), then G − (X ∪ Y ∪ Z) has b + ∑c
i=1 |V (Ni )| isolated vertices.

Hence,

2 < I (G) ≤ |X ∪ Y ∪ Z |
i
(
G − (X ∪ Y ∪ Z)

)

= |X | + b + ∑c
i=1 |V (Ni )|

b + ∑c
i=1 |V (Ni )| ,

from which it follows that

|X | > b +
c∑

i=1

|V (Ni )| ≥ b + 3c.

So, 2 + b + c = a + b + c = sun(G
′ − X) ≥ 2|X | − 1 > 2b + 6c − 1, that is,

b + 5c < 3, a contradiction to our assumption that c ≥ 1.

Subcase 3.2. |X | > a + b.
In this case, we have a + b ≤ |X | − 1. Since a + b + c ≥ 2|X | − 1, we must have

|c| ≥ |X |.
For each i = 1, . . . , c, we let Ni be the factor-critical subgraph of Li . According to

the definition of factor-critical subgraph, we have |V (Ni )| ≥ 3 for each i = 1, . . . , c.
For each i = 1, . . . , c, we let Zi = V (Ni ). So, for each i = 1, . . . , c, Li − Zi ∼=
|V (Ni )|K1. Let Z = Z1∪ Z2∪· · ·∪ Zc. Also, we let Y be the b-element vertex subset
obtained by taking one vertex from each of b K

′
2s.

By above analysis, we have

i
(
G

′ − (X ∪ Y ∪ Z)
)

= a + b +
c∑

i=1

|V (Ni )|. (8)
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Also, we have

|X ∪ Y ∪ Z | = |X | + b +
c∑

i=1

|V (Ni )|. (9)

Since

i
(
G − (X ∪ Y ∪ Z)

)
≥ i

(
G

′ − (X ∪ Y ∪ Z)
)

− 2,

by (8), (9) and the definition of isolated toughness, we have

2 < I (G) ≤ |X ∪ Y ∪ Z |
i
(
G − (X ∪ Y ∪ Z)

)

≤ |X ∪ Y ∪ Z |
i
(
G ′ − (X ∪ Y ∪ Z)

)
− 2

=
|X | + b +

c∑

i=1
|V (Ni )|

a + b +
c∑

i=1
|V (Ni )| − 2

. (10)

By (10) and |V (Ni )| ≥ 3 for each i = 1, . . . , c, we arrive at

|X | > 2a + b +
c∑

i=1

|V (Ni )| − 4 ≥ 2a + b + 3c − 4. (11)

By (5) and (7), we have a + b + c = sun(G
′ − X) ≥ 2|X | − 1. This, in joint with

(11), gives a + b + c > 4a + 2b + 6c − 9, that is, 3a + b + 5c < 9.
But, by our assumption that |c| ≥ |X | and |X | ≥ 2, we have 10 ≤ 5|X | ≤ 5c ≤

3a + b + 5c < 9, a contradiction.
This completes the proof. 
�
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