ORIGINAL RESEARCH ORIGINAL RESEARCH

Toughness and isolated toughness conditions for *^P***≥3-factor uniform graphs**

Hongbo Hua[1](http://orcid.org/0000-0001-7152-466X)

Received: 4 August 2020 / Revised: 8 November 2020 / Accepted: 9 November 2020 / Published online: 19 November 2020 © Korean Society for Informatics and Computational Applied Mathematics 2020

Abstract

Given a graph *G* and an integer $k \geq 2$. A spanning subgraph *F* of a graph *G* is said to be a $P_{\geq k}$ -factor of *G* if each component of *F* is a path of order at least *k*. A graph *G* is called a $P_{\geq k}$ -factor uniform graph if for any two distinct edges e_1 and e_2 of *G*, *G* admits a $P_{\geq k}$ -factor including e_1 and excluding e_2 . More recently, Zhou and Sun (Discret Math 343:111715, 2020) gave binding number conditions for a graph to be $P_{\geq 2}$ -factor and $P_{\geq 3}$ -factor uniform graphs, respectively. In this paper, we present toughness and isolated toughness conditions for a graph to be a *P*≥3-factor uniform graph, respectively.

Keywords Graph · Path factor · $P_{>3}$ -factor uniform graph · Toughness · Isolated toughness

Mathematics Subject Classification 05C38 · 05C75

1 Introduction

Throughout this paper we consider only simple connected graphs. For a graph $G =$ (V, E) with vertex set $V = V(G)$ and edge set $E = E(G)$, the *degree* of a vertex v in *G*, denoted by $d_G(v)$, is the number of edges incident with v. The *open neighborhood* of a vertex v, denoted by $N_G(v)$, is the set of vertices adjacent to v in G. For a subset *S* ⊆ *V*(*G*), we use *N_G*(*S*) to denote $\bigcup_{\alpha} N_G(v)$. If $d_G(v) = 0$ for some vertex *v* in *G*, v∈*S* then v is said to be an *isolated vertex* in *G*. If $d_G(v) = 1$ for some vertex v in *G*, then

This research was supported by National Natural Science Foundation of China under Grant Nos. 11971011, 11571135 and sponsored by Qing Lan Project of Jiangsu Province, P.R. China.

B Hongbo Hua hongbo_hua@163.com

¹ Faculty of Mathematics and Physics, Huaiyin Institute of Technology, 223003 Huai'an, People's Republic of China

v is said to be a *leaf* in *G*. Let $ISO(G)$ be the set of isolated vertices of *G*, and let $i(G) = |ISO(G)|$. For $S \subseteq V(G)$, let $G[S]$ be the subgraph of *G* induced by *S*, and write $G - S = G[V(G) \setminus S]$. For an edge subset E_0 of G , let $G - E_0$ be the subgraph of *G* obtained by deleting all edges in *E*0. The number of connected components of *G* is denoted by $\omega(G)$.

We first introduce three parameters for a graph, namely, the binding number, the toughness and the isolated toughness. Let *G* be a graph. The *binding number* of *G* is defined as

$$
bind(G) = min \left\{ \frac{|N_G(X)|}{|X|} : \emptyset \neq X \subseteq V(G), N_G(X) \neq V(G) \right\}.
$$

The *toughness* of *G* is defined by Chvátal in [\[4\]](#page-12-0) as

$$
t(G) = \min\Big\{\frac{|X|}{\omega(G-X)} : X \subseteq V(G), \omega(G-X) \ge 2\Big\},\
$$

if *G* is not complete; otherwise, $t(G) = +\infty$.

The *isolated toughness* of *G* is defined by Yang et al. in [\[7\]](#page-12-1) as

$$
I(G) = \min\left\{\frac{|X|}{i(G-X)} : X \subseteq V(G), i(G-X) \ge 2\right\},\
$$

if *G* is not complete; otherwise, $I(G) = +\infty$.

An *H*-factor is a spanning subgraph of a graph, whose connected components are isomorphic to graphs from the set *H*. A *path-factor* is a spanning subgraph *F* of *G* such that each component of *F* is a path of order at least two. This concept was introduced by Akiyama and Kano [\[2](#page-11-0)]. A $P_{\geq k}$ -factor means a path factor in which each component has order at least k ($k \ge 2$). To characterize those graphs having a $P_{\ge 3}$ -factor, Kaneko [\[5\]](#page-12-2) introduced the concept of a sun. If $H - v$ has a perfect matching for each $v \in V(H)$, then *H* is called a *factor-critical graph*. Let *H* be a factor-critical graph with vertex set $V(H) = \{v_1, v_2, \cdots, v_n\}$. By adding new vertices $\{u_1, u_2, \cdots, u_n\}$ together with new edges $\{v_iu_i|1 \leq i \leq n\}$ to *H*, we obtain a new graph, which is called a *sun*. According to Kaneko, K_1 and K_2 are also suns. Usually, K_1 and K_2 are called a small sun and the others are called big suns (with order at least 6). If a component of $G - X$ is isomorphic to a sun, it is called a *sun component* of $G - X$. Let $Sun(G - X)$ be the set of sun components of $G - X$ and $\mathfrak{su}(G - X)$ be the number of sun components of $G - X$.

Akiyama et al. [\[1\]](#page-11-1) provided a criterion for a graph having a $P_{\geq 2}$ -factor, which reads as follows.

Theorem 1.1 ([\[1](#page-11-1)]) *A graph G admits a P*≥2*-factor if and only if i*($G - X$) ≤ 2|*X*| *for any* X ⊆ $V(G)$ *.*

Kaneko [\[5](#page-12-2)] presented a criterion for a graph having a $P_{>3}$ -factor, which is stated as follows.

Theorem 1.2 ([\[5](#page-12-2)]) *A graph G admits a P*>3*-factor if and only if sun*($G - X$) $\le 2|X|$ *for any* $X \subseteq V(G)$ *.*

Later, Kano et al. [\[6](#page-12-3)] gave a simple proof to Theorem [1.2.](#page-1-0) Kaneko [\[5\]](#page-12-2) showed that a regular graph with degree greater than or equal to two has a *P*≥3-factor. Bazgan et al. [\[3](#page-12-4)] proved that for a graph *G*, if $t(G) \geq 1$, then *G* contains a *P*>3-factor.

Later, Zhang and Zhou [\[8\]](#page-12-5) defined a graph *G* to be a *P*≥*^k* -*factor covered graph* if *G* admits a $P_{\geq k}$ -factor containing *e* for any $e \in E(G)$. Furthermore, they gave a characterization for a graph to be a $P_{\geq 2}$ -factor covered graph and $P_{\geq 3}$ -factor covered graph, respectively. Their results are stated as follows.

Theorem 1.3 ([\[10](#page-12-6)]) *Let G be a connected graph. Then G is a P* \geq 2*-factor covered graph if and only if*

$$
i(G - X) \le 2|X| - \varepsilon_1(X)
$$

for any $X \subseteq V(G)$ *, where* $\varepsilon_1(X)$ *is defined as follows:*

 $\varepsilon_1(X) =$ $\sqrt{2}$ \int $\overline{\mathsf{I}}$ 2, *if X is not an independent set;* 1, *if X is a nonempty independent set and G* − *X admits a nontrivial component;* 0, *otherwise.*

Theorem 1.4 ([\[10](#page-12-6)]) *Let G be a connected graph. Then G is a P*≥3*-factor covered graph if and only if*

$$
sun(G - X) \le 2|X| - \varepsilon_2(X)
$$

for any $X \subseteq V(G)$ *, where* $\varepsilon_2(X)$ *is defined as follows:*

$$
\varepsilon_2(X) = \begin{cases}\n2, & \text{if } X \neq \emptyset \text{ and } X \text{ is not an independent set;} \\
1, & \text{if } X \neq \emptyset \text{ and } X \text{ is a nonempty independent set;} \\
0, & \text{and } G - X \text{ admits a non-sum component;} \\
\text{otherwise.} & \text{otherwise.}\n\end{cases}
$$

Zhou et al. [\[9\]](#page-12-7) showed that if $t(G) > \frac{2}{3}$ holds for a graph *G*, then *G* is a $P_{\geq 3}$ -factor covered graph. This result improved the result of Bazgan et al. [\[3\]](#page-12-4).

More recently, Zhou and Sun [\[10\]](#page-12-6) defined a graph *G* to be a *P*≥*^k -factor uniform graph* if for any two distinct edges e_1 and e_2 of *G*, *G* admits a $P_{\geq k}$ -factor including e_1 and excluding e_2 . In the same paper, they gave binding number conditions for a graph to be $P_{\geq 2}$ -factor and $P_{\geq 3}$ -factor uniform graphs, respectively. Their results are stated as follows.

Theorem 1.5 ([\[10](#page-12-6)]) Let G be a 2-edge-connected graph. If $bind(G) > \frac{4}{3}$, then G is a *P*≥2*-factor uniform graph.*

Theorem 1.6 ([\[10](#page-12-6)]) Let G be a 2-edge-connected graph. If $bind(G) > \frac{9}{4}$, then G is a *P*≥3*-factor uniform graph.*

Fig. 1 The graph *G* with $t(G) = 1$ (left); The edge e_1 is an edge to be excluded from *G* and e_2 is an edge not containing in any $P_{\geq 3}$ -factor of $G' = G - e_1$ (right)

In this paper, we present toughness and isolated toughness conditions for a graph to be a *P*≥3-factor uniform graph, respectively. Our results are as follows.

Theorem 1.7 *Let G be a 2-edge-connected graph. If t*(G) > 1, *then G is a P*>3*-factor uniform graph.*

Theorem 1.8 *Let G be a 2-edge-connected graph. If* $I(G) > 2$ *, then G is a P*>3*-factor uniform graph.*

We postpone the proofs of Theorems [1.7](#page-3-0) and [1.8](#page-3-1) to the subsequent two sections.

2 The proof of Theorem [1.7](#page-3-0)

Remark 2.1 We say that the condition that $t(G) > 1$ in Theorem [1.7](#page-3-0) can not be replaced by $t(G) > 1$. To see this, we let *G* be the graph as shown in Fig. [1.](#page-3-2) Clearly, $t(G) = 1$. Set $X = \{x, y\}$ and $G' = G - e_1$. Then $\varepsilon_2(X) = 2$ and $\sin(G' - X) = 3 > 2$ $2|X| - 2 = 2|X| - \varepsilon_2(X)$. By Theorem [1.4,](#page-2-0) *G*['] is not a *P*₂₃-factor covered graph. So, *G* is not a $P_{\geq 3}$ -factor uniform graph. In fact, the edge e_2 is not included into any $P_{\geq 3}$ -factor of *G*^{\prime}.

The proof of Theorem [1.7](#page-3-0)

Proof If *G* is a complete graph, then *G* is evidently a *P*>3-factor uniform graph. So, we may assume that *G* is not a complete graph. Since *G* is a 2-edge-connected graph, we have $|V(G)| > 4$.

We proceed by contradiction. Suppose that there exists an edge $e = uv$ in G such that $G' = G - e$ is not a $P_{\geq 3}$ -factor covered graph. By Theorem [1.4,](#page-2-0) there exists a vertex subset *X* of $V(G')$ such that

$$
sun(G^{'} - X) \ge 2|X| - \varepsilon_2(X) + 1.
$$
 (1)

We distinguish between the following three cases.

Case 1. $|X| = 0$.

 \mathcal{L} Springer

In this case, we have $\varepsilon_2(X) = 0$. By [\(1\)](#page-3-3), we have $\sin(G' - X) \ge 1$. Since *G*['] is connected, we have $\text{sun}(G' - X) \le \omega(G' - X) = \omega(G') = 1$. So, $\text{sun}(G' - X) = 1$.

By our assumption that $|V(G')| = |V(G)| \geq 4$ and the definition of sun, it is easy to see that *G*^{\prime} is a big sun with at least six vertices. Also, *G*^{\prime} has $\frac{|V(G)|}{2}$ (\geq 3) leaves. So, *G* has at least one leaf. It is a contradiction to our assumption that *G* is a 2-edge-connected graph.

Case 2. $|X| = 1$.

In this case, we have $\varepsilon_2(X) \leq 1$. By [\(1\)](#page-3-3), we have

$$
sun(G^{'} - X) \ge 2|X| = 2.
$$
 (2)

Since $\omega(G'-X) \leq \omega(G-X) + 1$ and $\omega(G'-X) \geq \text{sun}(G'-X)$, by [\(2\)](#page-4-0) and the definition of toughness, we have

$$
1 < t(G) \le \frac{|X|}{\omega(G - X)}
$$

\n
$$
\le \frac{|X|}{\omega(G' - X) - 1}
$$

\n
$$
\le \frac{|X|}{\sin(G' - X) - 1}
$$

\n
$$
\le \frac{|X|}{2|X| - 1}
$$

\n
$$
= 1,
$$

a contradiction.

Case 3. $|X| \ge 2$.

In this case, we have $\varepsilon_2(X) \leq 2$. Also, by [\(1\)](#page-3-3), we have

$$
sun(G^{'} - X) \ge 2|X| - 1.
$$
 (3)

Since $\omega(G - X) \ge \omega(G' - X) - 1$ and $\omega(G' - X) \ge \text{sun}(G' - X)$, by [\(3\)](#page-4-1) and the definition of toughness, we have

$$
1 < t(G) \le \frac{|X|}{\omega(G - X)}
$$
\n
$$
\le \frac{|X|}{\omega(G' - X) - 1}
$$
\n
$$
\le \frac{|X|}{\sup(G' - X) - 1}
$$
\n
$$
\le \frac{|X|}{2(|X| - 1)},
$$

which gives $|X| < 2$, a contradiction.

This completes the proof.

 \Box

Fig. 2 The graph *G* with $I(G) = 2$ (left); The edge e_1 is an edge to be excluded from *G* and e_2 is an edge not containing in any $P_{\geq 3}$ -factor of $G' = G - e_1$ (right)

3 The proof of Theorem [1.8](#page-3-1)

Remark 3.1 We say that the condition that $I(G) > 2$ in Theorem [1.8](#page-3-1) can not be replaced by $I(G) \geq 2$. To see this, we let *G* be the graph as shown in Fig. [2.](#page-5-0) Clearly, $I(G) = 2$. Set $X = \{x, y\}$ and $G' = G - e_1$. Then $\varepsilon_2(X) = 2$ and $\sin(G' - X) =$ $3 > 2 = 2|X| - \varepsilon_2(X)$. By Theorem [1.4,](#page-2-0) *G*['] is not a *P*_{≥3}-factor covered graph. So, *G* is not a $P_{>3}$ -factor uniform graph. In fact, the edge e_2 is not contained in any $P_{>3}$ -factor of $G_'$.

The proof of Theorem [1.8](#page-3-1)

Proof Since *G* is a 2-edge-connected graph, we have $|V(G)| \geq 3$. If *G* is the complete graph, then G is obviously a $P_{>3}$ -factor uniform graph. Now, we suppose that G is not the complete graph. So, $|V(G)| > 4$.

We proceed by contradiction. Suppose that there exists an edge $e = uv$ in G such that $G' = G - e$ is not a $P_{\geq 3}$ -factor covered graph. By Theorem [1.4,](#page-2-0) there exists a vertex subset *X* of $V(G')$ such that

$$
sun(G^{'} - X) \ge 2|X| - \varepsilon_2(X) + 1.
$$
\n(4)

We suppose that there exist *a* K_1 's, *b* K_2 's, and *c* big sun components L_1, \ldots, L_c with $|V(L_i)| \ge 6$ in $G' - X$ for each $i = 1, \ldots, c$. By the definition of sun, we have

$$
sun(G' - X) = a + b + c. \tag{5}
$$

We consider the following three cases.

Case 1. $|X| = 0$.

In this case, we have $\varepsilon_2(X) = 0$. By [\(4\)](#page-5-1), we have $\sin(G' - X) \ge 1$. Since *G* is 2-edge-connected, $G' - X = G'$ is connected, and then $sun(G' - X) \leq \omega(G' - X) =$ $\omega(G') = 1$. So, $sun(G' - X) = 1$.

By the fact that $|V(G')| = |V(G)| \ge 4$ and the definition of sun, we conclude that G' is a big sun. Thus, $|V(G')| = |V(G)| \ge 6$. Denote by *N* the factor-critical subgraph of *G*^{\prime}. According to the definition of factor-critical subgraph, we have $|V(N)| \geq 3$. So, *G*^{\prime} has $|V(N)|$ leaves. Note that *G*^{\prime} = *G* − *e*. Now, *G* must have at least $|V(N)| - 2$ (≥ 1) leaf. It is a contradiction to the fact *G* is a 2-edge-connected graph.

Case 2. $|X| = 1$.

In this case, we have $\varepsilon_2(X) \leq 1$. So, by [\(4\)](#page-5-1), we have

$$
sun(G^{'} - X) \ge 2|X|.
$$
 (6)

First, we assume that $c > 1$. We consider any one big sun component, say L_1 , in *G*^{\prime} and let *N*₁ be its factor-critical subgraph. Set *Z* = *V*(*N*₁), by the definition of big sun and factor-critical subgraph, we have $|Z| \geq 3$. Then, L_1 has at least three leaves in *G*^{\prime} − *X*. So, we can always choose one vertex, say w, in *Z* such that *G* − (*X* ∪ {*w*}) has an isolated vertex, no matter whether u and v belong to L_1 or not. This means that *i* $(Q − (X ∪ {w}))$ ≥ 1 .

By the definition of isolated toughness, we have

$$
2 < I(G) \le \frac{|X \cup \{w\}|}{i\Big(G - (X \cup \{w\})\Big)} = 2,
$$

a contradiction.

Second, we assume that $c = 0$. We first assume that $a \neq 0$. In this case, we claim that *u* ∈ *ISO*(*G*^{\prime} − *X*) or *v* ∈ *ISO*(*G*^{\prime} − *X*). To see this, we first show that *X* \neq {*u*} and *X* ≠ {*v*}. Suppose, to the contrary, that *X* = {*u*}. Then *v* ∉ *I O S*(*G*^{$'$} − *X*). Otherwise, $d_G(v) = 1$, a contradiction to the fact that *G* is a 2-edge-connected graph. Also, for any other vertex $w \in V(G) \setminus \{u, v\}$, $w \notin IOS(G' - X)$. Otherwise, $d_G(w) = 1$, a contradiction. So, $u \in V(G) \setminus X$ and $v \in V(G) \setminus X$. Now, let *z* be a vertex in $V(G)\setminus\{u, v\}$ such that $X = \{z\}$. Then, for any one vertex w in $V(G)\setminus\{u, v, z\}$, w can not be an isolated vertex in $G' - X$, for otherwise, $d_G(w) = 1$, a contradiction to the fact that *G* is a 2-edge-connected. Since $a \ge 1$, we must have $|\{u, v\} \cap IOS(G' - X)| \ge 1$. Assume that $v \in IOS(G'-X)$. Then $d_G(v) = 2$.

Let $S = X \cup \{u\}$. Then v is an isolated vertex in $G - S$ and $|S| = 2$. So,

$$
2 < I(G) \le \frac{|S|}{i(G - S)}
$$
\n
$$
= 2,
$$

a contradiction.

Now, we assume that $a = 0$ and $c = 0$. Then, by [\(5\)](#page-5-2) and [\(6\)](#page-6-0), we have $b =$ $sun(G^\prime - X) \geq 2|X| = 2$. Let *W* be the vertex set composed of all 2*b* end-vertices of *b* $K_2's$, and let $T = V(G') \setminus (X \cup W)$. Then we have

- $X = \{u\}$ and $v \in W \cup T$ (or $X = \{v\}$ and $u \in W \cup T$), or
- $u \in W$ and $v \in W$, or
- $u \in W$ and $v \in T$ (or $v \in W$ and $u \in T$), or
- $u \in T$ and $v \in T$.

First, we assume that $X = \{u\}$ and $v \in W \cup T$ (or $X = \{v\}$ and $u \in W \cup T$). If $X = \{u\}$ and $v \in W$, there is an independent edge v*x* in $G' - X$. So, *x* is an isolated vertex in $G - \{u, v\}$. Then

$$
2 < I(G) \le \frac{|\{u, v\}|}{i(G - \{u, v\})} = 2,
$$

a contradiction. If $X = \{u\}$ and $v \in T$, there is an independent edge *yz* in $G' - X$. So, *z* is an isolated vertex in $G - \{u, v\}$. Then

$$
2 < I(G) \le \frac{|\{u, y\}|}{i(G - \{u, y\})} = 2,
$$

a contradiction.

Second, we assume that $u \in W$ and $v \in W$.

Since $b \ge 2$, we let *us* and *vt* be two K_2^{\prime} *s* in *W* of *G*[']. Let $S = X \cup \{u, v\}$. Then *s* and *t* are isolated vertices in $G - S$. Moreover, $|S| = 3$. Hence,

$$
2 < I(G) \le \frac{|S|}{i(G - S)}
$$
\n
$$
= \frac{3}{2},
$$

a contradiction.

Third, we assume that $u \in W$ and $v \in T$ (or $v \in W$ and $u \in T$).

Note that $v \in T$. Since $b \ge 2$, there must exist a K_2 edge, say xy , in $G' - X$ such that $x \neq u$ and $y \neq u$. Let $S = X \cup \{x\}$. Then $|S| = 2$ and $G - S$ has an isolated vertex *y*. Therefore,

$$
2 < I(G) \le \frac{|S|}{i(G - S)}
$$
\n
$$
= 2,
$$

a contradiction.

Finally, we assume that $u \in T$ and $v \in T$.

Let *xy* be any one K_2 edge in $G' - X$. Set $S = X \cup \{x\}$. Then $|S| = 2$ and $G - S$ has an isolated vertex *y*. Therefore,

$$
2 < I(G) \le \frac{|S|}{i(G - S)}
$$
\n
$$
= 2,
$$

a contradiction.

Case 3. $|X| \ge 2$.

 $\textcircled{2}$ Springer

In this case, we have $\varepsilon_2(X) \leq 2$. Hence, by [\(4\)](#page-5-1), we have

$$
sun(G^{'} - X) \ge 2|X| - 1.
$$
 (7)

We consider the following two subcases.

Subcase 3.1. $|X| \le a + b$.

Note that $i(G - X) \leq i(G' - X) \leq i(G - X) + 2$. We further consider the following three subcases.

Subcase 3.1.1. $i(G' - X) = i(G - X)$.

In this subcase, we have *u* ∉ *ISO*(*G*^{\prime} − *X*) and *v* ∉ *ISO*(*G*^{\prime} − *X*). Otherwise, $i(G'-X) > i(G-X)$, a contradiction.

Let *W* be the vertex subset composed of all 2*b* end-vertices of *b* independent edges in $G' - X$. We choose the vertex subset *Y* by the following procedure.

If *u* ∈ *W* and *v* ∈ *W*, then *u* and *v* belong to two distinct K_2 ^{*s*} in $G' - X$, and we let *Y* be a *b*-element vertex subset by choosing one vertex from each of *b* K_2 's such that $u \in Y$ or $v \in Y$; if one vertex of *u* and *v*, say *u*, is an element in *W*, and *v* ∈ *V*(*G*) \ (*X* ∪ *ISO*(*G*^{$'$} − *X*) ∪ *W*), then we let *Y* be a *b*-element vertex subset by choosing one vertex from each of *b* K_2 's such that $u \in Y$; Otherwise, we let *Y* be a *b*-element vertex subset obtained by taking one vertex from each of *b* K_2 's.

Thus, $G - (X \cup Y)$ has $a + b$ isolated vertices, that is, $i(G - (X \cup Y)) = a + b$. Since $|X \cup Y| = |X| + b$, by the definition of isolated toughness, we have

$$
2 < I(G) \le \frac{|X \cup Y|}{i\left(G - (X \cup Y)\right)}
$$
\n
$$
= \frac{|X| + b}{a + b}
$$
\n
$$
\le \frac{a + 2b}{a + b},
$$

resulting in $a < 0$, which is impossible.

Subcase 3.1.2. $i(G' - X) = i(G - X) + 1$.

In this subcase, we have $u \in ISO(G' - X)$ and $v \notin ISO(G' - X)$, or $u \notin ISO(G' - X)$ *X*) and *v* ∈ *ISO*($G' - X$). Suppose without loss of generality that *u* ∈ *ISO*($G' - X$) and $v \notin ISO(G'-X)$. Then, $v \notin X$, for otherwise, $i(G'-X) = i(G-X)$, a contradiction to our assumption.

Let *W* be the same vertex subset defined as in Subcase 3.1.1. If $v \in W$, we let *Y* be a *b*-element vertex subset obtained by taking one vertex from each of $b K_2^{'s}$ such that $v \in Y$. Then *u* is also an isolated vertex in $G - (X \cup Y)$. Thus, $i(G - (X \cup Y)) = a + b$ and $|X \cup Y| = |X| + b$. Similar to Subcase 3.1.1, we obtain a contradiction.

If $v \in V(G') \setminus (X \cup W \cup ISO(G' - X))$, then we choose *Y* to be a *b*-element vertex subset obtained by taking one vertex from each of b $K_2^{'s}$. By our choice of *Y*, *u* is still an isolated vertex in $G - (X \cup Y \cup \{v\})$. Thus, $i(G - (X \cup Y \cup \{v\})) \ge a + b$. Also, we have $|X \cup Y \cup \{v\}| = |X| + b + 1$. Therefore, we obtain

$$
2 < I(G) \le \frac{|X \cup Y \cup \{v\}|}{i\left(G - (X \cup Y \cup \{v\})\right)}
$$
\n
$$
\le \frac{|X| + b + 1}{a + b}
$$
\n
$$
\le \frac{a + 2b + 1}{a + b},
$$

yielding that *a* < 1, which is a contradiction to our assumption that $u \in IOS(G'-X)$. **Subcase 3.1.3.** $i(G' - X) = i(G - X) + 2$.

In this subcase, we must have $\{u, v\} \subseteq ISO(G' - X)$. So, $a = i(G' - X) \ge 2$. First, we assume that $a \geq 3$. Let *Y* be a *b*-element vertex subset obtained by taking one vertex from each of *b* $K_2's$. Then *v* is also an isolated vertex in $G - (X \cup Y \cup \{u\})$. Therefore, $G - (X \cup Y \cup \{u\})$ has $a + b - 1$ isolated vertices. Then

$$
2 < I(G) \le \frac{|X \cup Y \cup \{u\}|}{i\left(G - (X \cup Y \cup \{u\})\right)}
$$
\n
$$
= \frac{|X| + b + 1}{a + b - 1}
$$
\n
$$
\le \frac{a + 2b + 1}{a + b - 1},
$$

resulting in *a* < 3, which is a contradiction to our assumption.

Now, we assume that $a = 2$.

First, we suppose that $c = 0$. Since $b + 2 = a + b + c = \text{sun}(G' - X) \ge 2|X| - 1$ by [\(5\)](#page-5-2) and [\(7\)](#page-8-0), we have $b \ge 2|X| - 3$. Let *Y* be the *b*-element vertex subset obtained by taking one vertex from each of *b* K_2 's. It is easy to see that neither *u* nor *v* is an isolated vertex in $G - (X \cup Y)$. So,

$$
2 < I(G) \le \frac{|X \cup Y|}{i\left(G - (X \cup Y)\right)}
$$
\n
$$
= \frac{|X| + b}{a + b - 2}
$$
\n
$$
= \frac{|X| + b}{b},
$$

resulting in $b < |X|$. Thus, we have $|X| > 2|X| - 3$, that is, $|X| < 3$. By our assumption that $|X| \ge 2$, we have $|X| = 2$. So, $b = 1$. Let w be one end-vertex of the unique K_2 in $G' - X$. Note that *a* = 2, *b* = 1, *c* = 0 and |*X*| = 2. Then *G* − (*X* ∪ {*u*, *w*}) has two isolated vertices, and thus

$$
2 < I(G) \le \frac{|X \cup \{u, w\}|}{i (G - (X \cup \{u, w\}))}
$$

= 2,

a contradiction.

Second, we suppose that $c \geq 1$. For each $i = 1, \ldots, c$, we let N_i be the factorcritical subgraph of big sun component L_i . According to the definition of big sun and factor-critical subgraph, for each $i = 1, \ldots, c$, we have $|V(N_i)| \geq 3$. For each *i* = 1, ..., *c*, we let $Z_i = V(N_i)$. So, for each *i* = 1, ..., *c*, $L_i - Z_i \cong |V(N_i)|K_1$. Let $Z = Z_1 \cup Z_2 \cup \cdots \cup Z_c$. Let *Y* be the *b*-element vertex subset obtained by taking one vertex from each of *b* K_2 's. Since $a = 2$, both *u* and *v* are not isolated vertices in *G* − (*X* ∪ *Y* ∪ *Z*), then *G* − (*X* ∪ *Y* ∪ *Z*) has *b* + $\sum_{i=1}^{c} |V(N_i)|$ isolated vertices. Hence,

$$
2 < I(G) \le \frac{|X \cup Y \cup Z|}{i\left(G - (X \cup Y \cup Z)\right)} \\
= \frac{|X| + b + \sum_{i=1}^{c} |V(N_i)|}{b + \sum_{i=1}^{c} |V(N_i)|},
$$

from which it follows that

$$
|X| > b + \sum_{i=1}^{c} |V(N_i)| \ge b + 3c.
$$

So, $2 + b + c = a + b + c = \text{sun}(G' - X) \ge 2|X| - 1 > 2b + 6c - 1$, that is, $b + 5c < 3$, a contradiction to our assumption that $c \geq 1$.

Subcase 3.2. $|X| > a + b$.

In this case, we have $a + b \leq |X| - 1$. Since $a + b + c \geq 2|X| - 1$, we must have |*c*|≥|*X*|.

For each $i = 1, \ldots, c$, we let N_i be the factor-critical subgraph of L_i . According to the definition of factor-critical subgraph, we have $|V(N_i)| \ge 3$ for each $i = 1, \ldots, c$. For each $i = 1, \ldots, c$, we let $Z_i = V(N_i)$. So, for each $i = 1, \ldots, c, L_i - Z_i \cong$ $|V(N_i)|K_1$. Let $Z = Z_1 ∪ Z_2 ∪ · · · ∪ Z_c$. Also, we let *Y* be the *b*-element vertex subset obtained by taking one vertex from each of $b K_2's$.

By above analysis, we have

$$
i\Big(G^{'} - (X \cup Y \cup Z)\Big) = a + b + \sum_{i=1}^{c} |V(N_i)|. \tag{8}
$$

Also, we have

$$
|X \cup Y \cup Z| = |X| + b + \sum_{i=1}^{c} |V(N_i)|.
$$
 (9)

Since

$$
i\Big(G-(X\cup Y\cup Z)\Big)\geq i\Big(G^{'}-(X\cup Y\cup Z)\Big)-2,
$$

by [\(8\)](#page-10-0), [\(9\)](#page-11-2) and the definition of isolated toughness, we have

$$
2 < I(G) \le \frac{|X \cup Y \cup Z|}{i\left(G - (X \cup Y \cup Z)\right)}
$$

$$
\le \frac{|X \cup Y \cup Z|}{i\left(G' - (X \cup Y \cup Z)\right) - 2}
$$

$$
= \frac{|X| + b + \sum_{i=1}^{c} |V(N_i)|}{a + b + \sum_{i=1}^{c} |V(N_i)| - 2}.
$$
 (10)

By [\(10\)](#page-11-3) and $|V(N_i)| > 3$ for each $i = 1, \ldots, c$, we arrive at

$$
|X| > 2a + b + \sum_{i=1}^{c} |V(N_i)| - 4 \ge 2a + b + 3c - 4.
$$
 (11)

By [\(5\)](#page-5-2) and [\(7\)](#page-8-0), we have $a + b + c = \text{sun}(G' - X) \ge 2|X| - 1$. This, in joint with [\(11\)](#page-11-4), gives $a + b + c > 4a + 2b + 6c - 9$, that is, $3a + b + 5c < 9$.

But, by our assumption that $|c| \ge |X|$ and $|X| \ge 2$, we have $10 \le 5|X| \le 5c \le 5$ $3a + b + 5c < 9$, a contradiction.

This completes the proof.

\Box

Compliance with ethical standards

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- 1. Akiyama, J., Avis, D., Era, H.: On a {1, 2}-factor of a graph. TRU Math. **16**, 97–102 (1980)
- 2. Akiyama, J., Kano, M.: Path factors of a graph. In: F. Harary JS, Maybee (Eds.) Graphs and Applications, Proc. 1st Colorado Symposium on Graph Theory, Wiley, New York, 1982, pp. 1-21. (1985)
- 3. Bazgan, C., Benhamdine, A.H., Li, H., Wo´zniak, M.: Partitioning vertices of 1- tough graph into paths. Theoret. Comput. Sci. **263**, 255–261 (2001)
- 4. Chvátal, V.: Tough graphs and Hamiltonian circuits. Discret. Math. **5**, 215–228 (1973)
- 5. Kaneko, A.: A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Combin. Theory Ser. B **88**, 195–218 (2003)
- 6. Kano, M., Katona, G.Y., Király, Z.: Packing paths of length at least two. Discret. Math. **283**, 129–135 (2004)
- 7. Yang, J., Ma, Y., Liu, G.: Fractional (*g*, *f*)-factors in graphs. Appl. Math. J. Chin. Univ. Ser. A **16**, 385–390 (2001)
- 8. Zhang, H., Zhou, S.: Characterizations for *P*≥2-factor and *P*≥2-factor covered graphs. Discret. Math. **309**, 2067–2076 (2009)
- 9. Zhou, S., Wu, J., Zhang, T.: The existence of *P*≥3-factor covered graphs. Discuss. Math. Graph Theory **37**, 1055–1065 (2017)
- 10. Zhou, S., Sun, Z.: Binding number conditions for *P*≥2-factor and *P*≥3-factor uniform graphs. Discret. Math. **343**, 111715 (2020)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.