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Abstract
Human mobility has been significantly influencing public health since time immemo-
rial.A susceptible-infected-deceased epidemic reaction diffusion networkmodel using
asymptotic transmission rate is proposed to portray the spatial spread of the epidemic
among two cities due to population dispersion. Qualitative behaviour including global
attractor and persistence property are obtained. We also study asymptotic behaviour
of the whole network with the help of asymptotic behaviour at individual cities. The
epidemic model shows up two equilibria, (i) the disease-free, and (ii) unique endemic
equilibria. An expression that can be used to calculate the basic reproduction number
for heterogeneous environment, for the entire network is obtained. We use graph the-
ory to analyze the global stability of our diffusive two-city model. We also performed
bifurcation analysis and discovered that endemic equilibrium changes stability via
Hopf bifurcations. A significant reduction in the number of infectives were observed
when proper migration rate is maintained between the cities. Numerical results are
provided to illuminate and clarify theoretical findings. Simulation experiments for
two-dimensional spatial models show that infectious populations will increase if con-
tact heterogeneity is increased, but it will decline if infective populations perform
more local random movement. We observe that infection risk may be understated if
the parameters used to estimate the basic reproduction number remains unchanged
through space or time.
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1 Introduction

A record of past events in humanmankind shows that infectious disease has a profound
effect on human populations, including their development and evolution. Individual’s
health status is affected by many factors, such as the quantity of time spent in a spe-
cific place, availability and access to affordable health care, complex economic and
social factors, educational attainments, and lifestyles. Despite significant advances in
medical sciences, infectious disease affects both the human and animal population
in many parts of the world. As we know, performing experiments on the population
is forbidden one can use mathematical model to investigate the transmission, predict
the outbreak and even control of epidemics [2]. At present, mathematical models are
considered as one of the active topic in public health and biology to determine whether
the epidemics can be broken out or not [37]. Many real-world systems often interact
and influence each other. There is an enduring relationship between migration and the
introduction of diseases. In past decades, manymathematical models were constructed
to study the effect of the spatial heterogeneity and migration on disease transmission
[13,15,18]. Hethcote (1976) [14] proposed two-patch epidemicmodel with population
dispersal. Wang and Zhao [56] and references therein also described the dynamics of
disease propagation between different patches resulting from population dispersal.
These studies consider meta-population models, in which the population are subdi-
vided into distinct patches, each of which are considered as homogeneous. This type
of model formulation process is frequently used for understanding the transmission
of disease between and within different population centers. One can use these models
to examine the spatial dynamics of city-by-city transmission and to investigate the
reason for high levels of synchronicity observed between town, cities, and so forth
during disease outbreaks.

Complex network models is another emerging field that is widely studied to inves-
tigate epidemic spreading, including rumours, human disease and computer viruses.
Complex network is a new branch in statistical physics which provides a reliable
model for the intensive study of the epidemic spreading. In complex network mod-
elling nodes represent individuals or organizations and link the interactions among
them.Mathematical analysis of suchmodels have revealed the importance of topology
for investigating propagation dynamics. Liu et al. [33], Wen-Jie and Xing-Yuan [62]
studied the epidemic spreading and discussed the credibility of homogeneous mixing
hypothesis. Ren and Wang [46] proposed a network model with time-varying com-
munity structure. They found that the time of the epidemic outbreak depends mainly
on the mobility rate of the individual. Wen-Jie and Yuan [60] proposed a novel model
with two strategies for controlling epidemic disease: quarantine and message deliv-
ery. Nian et al. [40] constructed a dynamic network model based on Barabasi-Albert
(BA), keeping the same total number of edges. They showed immunization based on
node activity is effective and is more feasible in dynamic networks. Wang and Zhao
[59] generalized the susceptible-Infected-Susceptible (SIS) model that explores the
propagation of multi-messages by considering their correlation degree. These models
provided very powerful results but did not display the complete local and global spatial
spread dynamics.

123



Deciphering role of inter and intracity human dispersal... 771

These researches motivated our work, yet majority of them are focused on static
network models. However, in reality our life is not static. We move from one city to
another to performour job etc. and thenwe comeback to our own city and perform local
random movement. The major drawback of these models is that they do not include
spatial heterogeneity and local random movement which can also affect the spread of
epidemics. The heterogeneity of the spatial environment is considered as an important
contributing factor in propagating many contagious diseases. This is barely surprising
as populations in actuality are not homogeneous: interactions between individuals are
likely to have limited scope. As spatial spread of disease relies on complex interaction
between distinct elements (like, diverse nature of a given population and the dynamics
innate to a given pathogen/host interaction), mathematical models provide a quality
conceptual structure with which emergence of spatial patterns and processes involved
can be studied and explained. In modeling geographic effects or spatial dispersal of
a disease, a discrimination is usually created between dispersal and diffusion models.
Using partial differential equations, one can typically introduce spatial variation in epi-
demic models. A reaction–diffusion (RD) model describes the proliferation (reaction)
and movement (diffusion) of individuals. By diffusion model, dissemination of infec-
tion to immediate adjoining neighbours can be studied. This mechanical–biological
interaction within and surrounding cells has been previously incorporated into mod-
elling cancer of brain, breast, kidney and pancreas. Here, we apply it to model spread
of disease among two connected cities using a mechanically coupled RD model. The
spatial spread of diseases like influenza [64], Ebola involvesmany unusual and distinct
components. Therefore, modeling their spread is a complicated task.

The propagation of global pandemic diseases are affected by transportation, and is
considered as one of the relevant and crucial problems on the epidemiological multi-
group models. Over the last forty years, both the scope and process of migration have
experienced significant shifts, and the majority of these changes have transformed the
innate characteristics of migration-accompanied infectious disease. In this paper, an
effort has been made to decipher the effect of migration on epidemic spread among
heterogeneous cities coupled through reaction-diffusion modeling. The aim is to rec-
ommend some preventive health-policy measures during an outbreak. Asymptotic
infection rate which displays a saturation effect have been rarely considered for net-
work reaction-diffusion modeling [10]. The asymptotic infection rate, β I

S+I+c , is a
function of the number of infections present at a given point of time. This signifies the
fact that the number of contacts an individual carrying the virus can have with other
individuals reaches some finite maximum value due to the spatial or social distribution
of the population and/or limitation of time. We believe that this is the first work that
considers a two-patch reaction-diffusion epidemiological model to mimic the scenario
of intra and intercity human dispersal. We also computed basic reproduction numbers
for coupled reaction-diffusion systems.We emphasize that this rate and heterogeneous
transmission rate has significant contributions to the dynamics of disease spread. Our
mathematical analysis are inspired by [8,9,16,21,25–27,30,31,43,50,61,63].

The manuscript is organized as follows: In Sect. 2 two-city susceptible-infected-
deceased (SID) model with global and local movement is formulated. In Sect. 3, the
existence of equilibrium is analysed and reproduction number is calculated. Global
stability using graph theory is discussed in Sect. 4. Numerical results are presented to
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confirm the analytical findings in Sect. 5. In Sect. 6, we summarize the main contri-
butions of the work.

2 Formulation of epidemic model

In the model introduced by Upadhyay et al. (2014) [54], there is no intercity travel.
Communicable diseases such as sexual diseases and influenza can be passed on easily
fromone city to other cities. Therefore, considering the effect of both local (within city)
and global (across city) population dispersal on the spread of epidemics are relevant
and important. In this work, we considered two city models which are connected
by road. We do not care about the dynamics taking place in connecting roads. A
typical disease is captured by the following Susceptible-Infected-Deceased structure
modelling:

d S

dt
= r S

(
1 − S + I

K

)
− βSI

S + I + c
,

d I

dt
= βSI

S + I + c
− aI ,

d D

dt
= aI .

We omit the equation D for further calculation since the above system does not depend
on D. The following assumptions are taken into account while formulating the two
city epidemiological model:

(i) We considered the population that is organized and is interacting among two
cities.

(ii) Let (S1, I1) and (S2, I2) denotes the density of susceptible and infective individ-
uals resident in city 1 and city 2 respectively.

(iii) The disease is transmitted to a susceptible individual by an effective contact with
an infected individual.

(iv) We use asymptotic transmission incidence to model disease transmission phe-
nomenon, which, for human is considered more accurate than mass action
[10,38,54].

(v) The virus is spread among the population only and the disease is not inherited
genetically.

(vi) During travelling there is no birth or death.

Considering above assumptions the epidemic situation in two cities with bidirectional
movement can be modeled by the following system of differential equation,

d S1
dt

= r1S1

(
1 − S1 + I1

K1

)
− β1S1 I1

S1 + I1 + c1
+ m1S2 − m2S1

= f1(S1, I1) + m1S2 − m2S1, (1)
d I1
dt

= β1S1 I1
S1 + I1 + c1

− a1 I1 + m3 I2 − m4 I1
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= f2(S1, I1) + m3 I2 − m4 I1, (2)
d S2
dt

= r2S2

(
1 − S2 + I2

K2

)
− β2S2 I2

S2 + I2 + c2
+ m2S1 − m1S2

= f3(S2, I2) + m2S1 − m1S2, (3)
d I2
dt

= β2S2 I2
S2 + I2 + c2

− a2 I2 + m4 I1 − m3 I2 = f4(S2, I2) + m4 I1 − m3 I2. (4)

All the parameters appearing in (1–4) are assumed to be positive constants. A concise
description about (1–4) system parameters and variables is presented in Table 1.
Further, we suppose that functions S1, I1, S2, I2 depend on time as well as on space.
The heterogeneity in space and the local movement of individuals plays a crucial
role in reflecting epidemiological spread. As an effect of growing international trade,
intensive human mobility and inevitable menace of contagious epidemics, in-depth
understanding of statistical and dynamical properties of human travel are essentially
important [6]. We now assume both susceptible and infectious population perform
randommovement within their city.We consider habitatΩ1 andΩ2 ∈ R

2 as a bounded
identical domain with smooth boundary ∂Ω1 and ∂Ω2 representing city 1 and city 2
respectively. Two cities are considered to be identical. Here we also assume that β1
and β2 depends on the spatial location p1 = (x1, y1) and p2 = (x2, y2), is positive
Hölder continuous function on Ω1 and Ω2 respectively. The Laplacian operator ∇2 =
∂2

∂x2
+ ∂2

∂ y2
, is used to describe the local Brownian motion in two-dimensional space.

It can be interpreted as the non-regular and continuous movement of individuals.
Incorporating these facts, Eq. (1–4) can be written in R

2 domain as

∂S1
∂t

= DS1∇2S1 + f1(S1(p1, t), I1(p1, t)) + m1S2(p2, t) − m2S1(p1, t),

p1 ∈ Ω1, p2 ∈ Ω2, (5)
∂ I1
∂t

= DI1∇2 I1 + f2(S1(p1, t), I1(p1, t)) + m3 I2(p2, t) − m4 I1(p1, t),

p1 ∈ Ω1, p2 ∈ Ω2, (6)
∂S2
∂t

= DS2∇2S2 + f3(S2(p2, t), I2(p2, t)) + m2S1(p1, t) − m1S2(p2, t),

p1 ∈ Ω1, p2 ∈ Ω2, (7)
∂ I2
∂t

= DI2∇2 I2 + f4(S2(p2, t), I2(p2, t)) + m4 I1(p1, t) − m3 I2(p2, t),

p1 ∈ Ω1, p2 ∈ Ω2. (8)

Now, consider a translation map f : Ω1 → Ω2 with p2 = f (p1) = p1 + L ,
L represents a fixed distance from one city to another. As per our knowledge, this
situation has not been modelled yet and is an initial step for modelling movement
of individuals between both inter and intra city. As all models, this model too is
limited by some assumptions like that the cities are identical and people from one
city move to another city at exactly the same position obeying some fixed distance
law. However, we hope this research work will open many paths towards modelling
movement of population in any desired location within a different city. Under this map
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any position p2 in city 2 can be reflected by position p1 in city 1. Mathematically, we
can write

S2(p2, t) = Ŝ2(p1, t), p1 ∈ Ω1, p2 ∈ Ω2,

I2(p2, t) = Î2(p1, t), p1 ∈ Ω1, p2 ∈ Ω2.

Therefore, (5–8) is equivalent to

∂t S1 − DS1∇2S1

= f1(S1(p1, t), I1(p1, t)) + m1 Ŝ2(p1, t) − m2S1(p1, t)

= g1(S1, I1, Ŝ2), p1 ∈ Ω1, (9)

∂t I1 − DI1∇2 I1

= f2(S1(p1, t), I1(p1, t)) + m3 Î2(p1, t) − m4 I1(p1, t)

= g2(S1, I1, Î2), p1 ∈ Ω1, (10)

∂t S2 − DS2∇2S2

= f3(Ŝ2(p1, t), Î2(p1, t)) + m2S1(p1, t) − m1 Ŝ2(p1, t)

= g3(Ŝ2, Î2, S1), p1 ∈ Ω1, (11)

∂t I2 − DI2∇2 I2

= f4(Ŝ2(p1, t), Î2(p1, t)) + m4 I1(p1, t) − m3 Î2(p1, t)

= g4(Ŝ2, Î2, I1), p1 ∈ Ω1. (12)

For the sake of neat and general representation of variables we dropˆnotation i.e. we
write Ŝ2 = S2 and Î2 = I2 we rewrite the Eq. (9–12) as follows

∂t S1 − DS1∇2S1
= f1(S1(x, t), I1(x, t)) + m1S2(x, t) − m2S1(x, t)

= g1(S1, I1, S2), x ∈ Ω, (13)

∂t I1 − DI1∇2 I1
= f2(S1(x, t), I1(x, t)) + m3 I2(x, t) − m4 I1(x, t)

= g2(S1, I1, I2), x ∈ Ω, (14)

∂t S2 − DS2∇2S2
= f3(S2(x, t), I2(x, t)) + m2S1(x, t) − m1S2(x, t)

= g3(S2, I2, S1), x ∈ Ω, (15)

∂t I2 − DI2∇2 I2
= f4(S2(x, t), I2(x, t)) + m4 I1(x, t) − m3 I2(x, t)

= g4(S2, I2, I1), x ∈ Ω. (16)
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The system can be written compactly as,

∂u

∂t
= D∇2u + ξ(u), x ∈ Ω, (17)

where u = (S1, I1, S2, I2)T , D = (DS1, DI1 , DS2 , DI2)
T and

ξ(u) =

⎛
⎜⎜⎝

g1(S1, I1, S2)
g2(S1, I1, I2)
g3(S2, I2, S1)
g4(S2, I2, I1)

⎞
⎟⎟⎠. The system (17) is analyzed under the initial conditions

given by

S10(x, 0) ≥ 0, I10(x, 0) ≥ 0, S20(x, 0) ≥ 0, I20(x, 0) ≥ 0, (18)

where x ∈ Ω ∈ R
2 and zero flux boundary conditions

∂S1
∂ν

= ∂ I1
∂ν

= ∂S2
∂ν

= ∂ I2
∂ν

= 0. (19)

ν represents the outward unit normal vector on the boundary ∂Ω which is assumed to
be smooth. Neumann or zero-flux boundary conditions biologically implies that the
domain boundary is isolated or insulated from the external environment i.e. there are no
fluxes of populations through the boundary [39]. By the standard parabolic theory, (17)
admits a unique nonnegative classical solution (S1(x, t), I1(x, t), S2(x, t), I2(x, t)) ∈
C2,1(Ω̄×(0,∞)), and satisfies (17) pointwisely.Moreover, from the strongmaximum
principle and the Hopf boundary lemma for parabolic equations [45] guarantee that
S1(x, t), I1(x, t), S2(x, t), I2(x, t) > 0 for all (x, t) ∈ Ω̄ × (0,∞).
We now define two travel matrices

A = (ai j )2×2 =
(

0 m2
m1 0

)
, and B = (bi j )2×2 =

(
0 m4

m3 0

)
. (20)

Here, ai j and bi j describe the mobility rate of susceptible and infected from a city i to
city j respectively. We assume these matrices are irreducible. Biologically, it means
individuals in city 1 can travel to city 2 directly or indirectly.

3 Dynamical behaviour of the two-city model

Before studying the stability behavior of our spatial model we give the following result
to show the boundedness of system (17) which is important from ecological point of
view.
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Fig. 1 Transfer diagram of the two-city model for disease transmission

Table 1 Parameter values of system (17) and their biological meanings. We mostly took hypothetical
parameter value which are in ecological permissible range

Variable/parameter Parameter values Description

S1(t) S1(0) = 1100 Susceptible density in city 1 at time t

I1(t) I1(0) = 89 Infected density in city 1 at time t

S2(t) S2(0) = 1233 Susceptible density in city 2 at time t

I2(t) I2(0) = 10 Infected density in city 2 at time t

r1, r2 1.02951, 2.23 Growth rate of susceptible in city 1 and 2 respectively

K1, K2 5000, 2000 Carrying capacity of city 1 and 2 respectively

β1 2.15 Transmission rate of city 1

c1, c2 10,20 Constants which display a saturation effect due to the
social or spatial distribution of the population and
limitation of time

β2 0.98 Transmission rate of city 2

a1, a2 0.15, 2.13 Recovery rate of the infective in city 1 and 2 respectively

m1 1.2 Migration rate of susceptible population from city 2 to
city 1

m2 3.2 Migration rate of susceptible population from city 1 to
city 2

m3 0.2 Migration rate of infectives from city 2 to city 1

m4 3.1 Migration rate of infectives from city 1 to city 2

DS1 , DI1 5, 0.01 Diffusion coefficient of susceptible and infectives of
city 1 respectivey.

DS2 , DI2 10, 0.05 Diffusion coefficient of susceptible and infectives of
city 2 respectively

3.1 Some preliminary properties of the spatial model

Proposition 1 All non-negative solutions of model system (1–4) which initiate in R
4+

are uniformly bounded, with ultimate bound ( r1
4η + 1)K1 + ( r2

4η + 1)K2, where η =
min(a1, a2).
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Proof We define,

W (t) = S1(t) + I1(t) + S2(t) + I2(t). (21)

The time derivative of (21) along the solutions of (1–4) is

dW

dt
= d S1

dt
+ d I1

dt
+ d S2

dt
+ d I2

dt
, (22)

for each η > 0, the following inequality hold:

dW

dt
+ ηW = r1S1

(
1 − S1 + I1

K1

)
+ r2S2

(
1 − S2 + I2

K2

)

−(a1 − η)I1 − (a2 − η)I2 + η(S1 + S2),

Taking η = min(a1, a2), the above inequality satisfies

dW

dt
+ ηW ≤ r1S1

(
1 − S1

K1

)
+ r2S2

(
1 − S2

K2

)
+ ηS1 + ηS2.

dW

dt
+ ηW ≤

(r1
4

+ η
)

K1 +
(r2
4

+ η
)

K2 = L. (23)

Using comparison lemma for t > T̃ > 0 we have

W (t) ≤ L

η
−
(

L

η
− W (T̃ )

)
e−η(t−T̃ ). (24)

Then for T̃ = 0, we have

W (t) ≤ L

η
−
(

L

η
− W (0)

)
e−η(t). (25)

For large value of t , we have W (t) ≤ L
η
with η = min(a1, a2). �	

For a biologically practical system all population are required to be constrained by a
bound in time by their environments. Thus, the feasible region of (1–4) can be chosen
as E = {(S1, I1, S2, I2) ∈ R

4+|W (t) = S1(t) + I1(t) + S2(t) + I2(t) ≤ L
η
}. It can be

easily seen that E is positively invariant with respect to (1–4). Let us denote E0: the
interior of E , and ∂E : the boundary of E .
Proposition 2 All non-negative solution (S1, I1, S2, I2) of model (17) with initial con-
dition (18), satisfies the following inequality

lim sup
t→∞

max
x∈Ω̄

(S1(., t) + S2(., t)) ≤ max{K ,max
Ω̄

(S10(x) + S20(x))},

lim sup
t→∞

max
x∈Ω̄

(I1(., t) + I2(., t)) ≤ max

(
βK − a(c + K )

a
,max

Ω̄
(I10(x) + I20(x))

)
.
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where the meaning of a, β, K can be found in proof.

Proof By virtue of (13) and (15) we have the following inequality,

∂S1
∂t

≤ DS1ΔS1 + r1S1

(
1 − S1

K1

)
+ m1S2 − m2S1, (26)

∂S2
∂t

≤ DS2ΔS2 + r2S2

(
1 − S2

K2

)
+ m2S1 − m1S2. (27)

Since the system (26)- (27) is cooperative, therefore by using comparison principle
of parabolic equations [11], one can show (S1(x, t), S2(x, t)) is a subsolution of the
following problem

d S̄1
dt

= r1 S̄1

(
1 − S̄1

K1

)
+ m1 S̄2 − m2 S̄1, (28)

d S̄2
dt

= r2 S̄2

(
1 − S̄2

K2

)
+ m2 S̄1 − m1 S̄2. (29)

Let S = S̄1 + S̄2. Adding (28) and (29) and performing straightforward computations,
we get

d(S̄1 + S̄2)

dt
= r1 S̄1

(
1 − S̄1

K1

)
+ r2 S̄2

(
1 − S̄2

K2

)
,

d S

dt
≤ 2r S

(
1 − S

K

)
,

where r = max(r1, r2), and K = max(K1, K2). Again, using comparison principle
one can show S(t) is a subsolution of the following problem

d S̄

dt
= 2r S̄

(
1 − S̄

K

)
.

We observe that the positive constant

S̄ = max{K ,max
Ω̄

(S10(x) + S20(x))}, (30)

is the supersolution to (28–29). Therefore,

S̄1(t) + S̄2(t) ≤ S(t) ≤ S̄(t).

Also, limt→∞ S̄(t) ≤ K . Thus, from well known comparison principle for parabolic
equations, we finally have

S1(x, t) + S2(x, t) ≤ S̄1(t) + S̄2(t) ≤ max{K ,max
Ω̄

(S10(x) + S20(x))} := S̄(t),
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∀x ∈ Ω, t ≥ 0. (31)

Hence, we have

S1(x, t) + S2(x, t) ≤ K = Ū1 := Supt≥0||S1(., x) + S2(., x)||∞,∀x ∈ Ω̄,

This implies

lim sup
t→∞

max
x∈Ω̄

(S1(x, t) + S2(x, t)) ≤ max{K ,max
Ω̄

(S10(x) + S20(x))}.

Next, making use of (14) and (16) and putting upper bound of S1 and S2 we have the
following inequality,

∂ I1
∂t

≤ DI1ΔI1 + β1Ū1(I1 + I2)

Ū1 + (I1 + I2) + c1
− a1 I1 + m3 I2 − m4 I1, (32)

∂ I2
∂t

≤ DI2ΔI2 + β2Ū1(I1 + I2)

Ū1 + (I1 + I2) + c2
− a2 I2 + m4 I1 − m3 I2. (33)

Again, since the system (32)- (33) is cooperative by using comparison principle of
parabolic equations [11], one can show (I1(x, t), I2(x, t)) ≤ ( Ī1(t), Ī2(t)), where
( Ī1(t), Ī2(t)) is a solution of the following differential equation

d Ī1
dt

= β1Ū1( Ī1 + Ī2)

Ū1 + ( Ī1 + Ī2) + c1
− a1 Ī1 + m3 Ī2 − m4 Ī1, (34)

d Ī2
dt

= β2Ū1( Ī1 + Ī2)

Ū1 + ( Ī1 + Ī2) + c2
− a2 Ī2 + m4 Ī1 − m3 Ī2. (35)

Adding (34–35) along with few computations and letting I = Ī1 + Ī2, we have the
following

d I

dt
≤
(

βK

K + I + c
− a

)
I ,

where β = max(β1, β2), a = min(a1, a2) and c = min(c1, c2). Following the same
analysis as above, one can show that for t ≥ 0 we have the following inequality

I1(x, t) + I2(x, t)

≤ Ī1(t) + Ī2(t) ≤ max

(
βK − a(c + K )

a
,max

Ω̄
(I10(x) + I20(x))

)
=: Ī (t),

∀x ∈ Ω, t ≥ 0. (36)

Hence, we have

I1(x, t) + I2(x, t)
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≤ max

(
βK − a(c + K )

a
,max

Ω̄
(I10(x) + I20(x))

)
:= Ū2,∀x ∈ Ω̄, (37)

This implies

lim sup
t→∞

max
x∈Ω̄

(I1(., t) + I2(., t)) ≤ max

(
βK − a(c + K )

a
,max

Ω̄
(I10(x) + I20(x))

)
.

�	
Definition 1 [7]: The spatial model (17) is said to have the persistence property if for
any nonnegative initial data (S10(x), I10(x), S20(x), I20(x)), there exists positive con-
stants εi = εi (S10, I10, S20, I20) for i = 1, 2, 3, 4, such that corresponding solution,
(S1, I1, S2, I2) of model (17) satisfies,

lim inf
t→+∞ min

Ω̄
S1(x, t) ≥ ε1, lim inf

t→+∞ min
Ω̄

I1(x, t) ≥ ε2,

lim inf
t→+∞ min

Ω̄
S2(x, t) ≥ ε3, lim inf

t→+∞ min
Ω̄

I2(x, t) ≥ ε4.

Proposition 3 Assume that if

β1 >
((a1 + m4)(c1 + W1))

W1
, r1 >

β1Ū2

(c1 + Ū2)
,

m2 + β1Ū2

(c1 + Ū2)
< r1, K1 >

r1Ū2(c1 + Ū2)

(r1 − m2)(c1 + Ū2) − β1Ū2)
, (38)

β2 >
((a2 + m3)(c2 + W3))

W3
, r2 >

β2Ū2

(c2 + Ū2)
,

m1 + β2Ū2

(c2 + Ū2)
< r2, K2 >

r2Ū2(c2 + Ū2)

(r2 − m1)(c2 + Ū2) − β2Ū2)
, (39)

(where definition of W1 and W3 are given in the proof) holds, than system (17) has the
persistence property.

Proof From (13), we have

∂S1
∂t

≥ DS1ΔS1 + r1S1

(
1 − S1 + I1

K1

)
− β1S1 I1

S1 + I1 + c1
− m2S1,

∂S1
∂t

≥ DS1ΔS1 + r1S1

(
1 − S1

K1

)
− r1S1Ū2

K1
− β1S1Ū2

Ū2 + c1
− m2S1,

∂S1
∂t

≥ DS1ΔS1 + S1

(
r1

(
1 − S1

K1

)
− r1Ū2

K1
− β1Ū2

Ū2 + c1
− m2

)
,

for t > t1. Since (38) holds, then for small enough ε > 0 chosen

K1

r1

(
r1

(
1 − Ū2

K1

)
− m2 − β1Ū2

c1 + Ū2

)
− ε > 0. (40)

123



Deciphering role of inter and intracity human dispersal... 781

Hence, there exists t2 > t1 such that for any t > t2,

S1(x, t) ≥ W1, (41)

where W1 = K1
r1

(
r1
(
1 − Ū2

K1

)
− m2 − β1Ū2

c1+Ū2

)
− ε.

Now, we apply lower bound of S1 to equation (14), and we have

∂ I1
∂t

≥ DI ΔI1 +
(

β1W1

W1 + I1 + c1
− a1 − m4

)
I1. (42)

Then there exists t3 > t2 such that for any t > t3,

I1(x, t) ≥ W2, (43)

where

W2 = −c1 + W1

(
β1

a1 + m4
− 1

)
− ε. (44)

Similarly, we can find bounds for S2 and I2.

S2(x, t) ≥ W3 = K2

r2

(
r2

(
1 − Ū2

K2

)
− m1 − β2Ū2

c2 + Ū2

)
− ε,

I2(x, t) ≥ W4 = −c2 + W3

(
β2

a2 + m3
− 1

)
− ε. (45)

Summarizing, we have the following

lim inf
t→∞ min

Ω̄
S1(x, t) ≥ W1.

lim inf
t→∞ min

Ω̄
I1(x, t) ≥ W2.

lim inf
t→∞ min

Ω̄
S2(x, t) ≥ W3.

lim inf
t→∞ min

Ω̄
I2(x, t) ≥ W4. (46)

Thus, the model system (17) is persistent. �	

3.2 Possible equilibria and their existence criteria

Our main interest in this section is the existence and uniqueness of the equilibrium.
For this purpose let us first introduce some notations. For a closed linear operator
Z : D(Z) ⊂ L2(Ω) → L2(Ω), where D(Z) is the domain of Z , the spectral spread
s(Z) of Z is defined by

s(Z) = sup{Re(λ) : λ ∈ σp(Z)},
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where σp denotes the point spectrum of Z .
We will first discuss equilibrium points in City 1 without any migration. There are
only two equilibria for the following elliptic problem,

0 = r1S1

(
1 − S1 + I1

K1

)
− β1S1 I1

S1 + I1 + c1
+ DS1∇2S1,

0 = β1S1 I1
S1 + I1 + c1

− a1 I1 + DI1∇2 I1, (47)

with boundary conditions

∂S1
∂ν

= ∂ I1
∂ν

= 0, x ∈ ∂Ω.

The system has,

1. A disease free equilibrium (DFE) is a time independent solution of the form E10 =
(S0

10, 0), where S0
10 > 0 for x ∈ Ω . It is obvious that (S0

10, 0) is a disease free
equilibrium if and only if S0

10 is a positive solution of the equation,

DS1∇2S1 + S1r1

(
1 − S1

K1

)
= 0, x ∈ Ω. (48)

Now, we state the following proposition [48]

Proposition 4 Equation (48) has a positive solution S0
10 if and only if s(DS1∇2+r1) >

0. Moreover, the positive solution S0
10 is unique and it is strictly positive on Ω .

2. An endemic equilibrium E∗
10(S∗

10, I ∗
10) exists iff there is a positive solution to the

(47).

For more generality we investigate the existence of endemic equilibrium when
β1(x), a1(x), r1(x) are positive Hölder continuous functions on Ω . Before the main
result, we state a useful lemma [32],

Lemma 1 Let Ω be a bounded Lipschitz domain in R
n. Let Λ be a non-negative con-

stant and suppose that z ∈ W 1,2(Ω) is a non-negative weak solution of the inequalities

0 ≤ −∇2z + Λz in Ω,
∂z

∂ν
≤ 0 on ∂Ω.

Then, for any q ∈ [1, n/(n − 2)], there exists a positive constant C0, depending on
q,Λ and Ω, such that ||z||q ≤ C0in f z.

Proposition 5 Problem (47) admits at least one positive solution.

Proof The proof uses the approach given by [53]; [29]; [30]; [42]. But for the reader
convenience we summarize the steps of the proof given in Appendix A. �	
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Now, we give two simple observations which give the existence of equilibrium points
for the other cities and hence give us an idea about the existence of equilibrium for
the entire network.

Remark 1 Suppose that system (17) is at an equilibrium E0 = (S0
1 , 0, S0

2 , 0), and given
city 1 is at disease free equilibrium, E10. The city 2 that can be accessed from city 1 is
also at the DFE. In particular, if outgoing matrices A and B are irreducible, then both
cities are at the DFE.

Indeed for showing this, suppose the city 1 is at the DFE, i.e., I1 = 0. Then from Eq.
(14) we have

∂ I1
∂t

= m3 I2.

As the city 1 is in disease free equilibrium, ∂ I1
∂t = 0, now since m3 > 0 it follows

that I2 = 0. This implies that the entire system is at disease free equilibrium, E0.

Remark 2 Suppose that system (17) is at an equilibrium E∗ = (S∗
1 , I ∗

1 , S∗
2 , I ∗

2 ), and
that the disease is endemic in city 1. Then the disease is also endemic in city 2 that can
be accessed from city 1. In particular, if the outgoing matrices A and B are irreducible,
then the disease is endemic in both cities.

Indeed for showing this, suppose that the disease is endemic in city 1, i.e., I1 > 0.
We will prove this result by contradiction. Suppose that I2 = 0. Since the system is
at equilibrium, from (16) we have

0 = ∂ I2
∂t

= m4 I1.

Again since m4 > 0, it follows I1 = 0, which is a contradiction. Therefore I2 > 0 if
the disease is endemic in city 1.

Similar results were obtained for the ODE multi-city epidemic model [3]. These
results can be extended for n cities in the similar way. Moreover these results give an
idea that if the cities are connected and have access to each other then either both cities
will be disease-free or both will be in disease endemic situations. We have illustrated
this result numerically in Sect. 5.

3.3 Calculation of basic reproduction number

The basic reproduction number, R0 is interpreted as the expected number of new cases
generated by a single infected host in a completely susceptible population [55]. This
number is very useful because it assists to figure out whether infectious disease will
spread through the population or will die out.
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Following the steps in [51] we first calculate the basic reproduction number for system
(1–4). For the epidemic (1–4), we define:

F =
⎛
⎜⎝

β1S01
S01+c1

0

0
β2S02

S02+c2

⎞
⎟⎠ , V =

(
m4 + a1 −m3

−m4 m3 + a2

)
. (49)

The basic reproduction number can be calculated by finding the spectral radius of the
next generation matrix FV −1.

RO DE
0 = max{RO DE

01 , RO DE
02 }, (50)

where RO DE
0 j ( j = 1, 2) is the basic reproduction number of each city given by

RO DE
01 = β1(a2 + m3)S0

1

(a1(a2 + m3) + a2m4)(c1 + S0
1 )

,

RO DE
02 = β2(a1 + m4)S0

2

(a1(a2 + m3) + a2m4)(c2 + S0
2 )

.

Now, in order to define the basic reproduction number for model (17), we use the
approach given by [58]; [44]. We assume that the state variables are near the disease-
free steady state, E0. Let the distribution of initial infection is represented by φ(x).
Under the affect of mortality, mobility and transfer of individuals in infected compart-
ments, the distribution of those infective members as time evolves becomes T (t)φ(x).
Thus, the distribution of new infection at time t is F(x)T (t)φ(x). Subsequently, the
distribution of total new infection is

∫ ∞

0
F(x)T (t)φ(x)dt . (51)

Define

L(φ)(x) :=
∫ ∞

0
F(x)T (t)φdt = F(x)

∫ ∞

0
T (t)φdt .

L is a positive continuous operator which maps the initial infection distribution of the
total infective members produced during the infection period. Following [58]; [35] we
define spectral radius of L as the basic reproduction number

RH P DE
0 := r(L)

(RH P DE
0 represents basic reproduction number in heterogeneous environment)

(52)

for model (17).
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Now, we define the basic reproduction number RH P DE
01 for the system of isolated city

1. We linearize the system around the DFE E10 = (S0
10, 0) and obtain the following

equation

∂ I1
∂t

= DI1∇2 I1 +
(

β1S0
10

S0
10 + c1

− a1

)
I1,

∂ I1
∂ν

= 0. (53)

By substituting I1(x, t) = e−λtξ(x), λ ∈ R into the equation and dividing both sides
by e−λt , we obtain the following linear eigenvalue problem

DI1∇2ξ +
(

β1S010
S010+c1

− a1

)
ξ + λξ = 0,

∂ξ
∂ν

= 0. (54)

By the Krein-Rutman Theorem [20], if (λ, ξ) is a solution of (54) with ξ 
= 0 on
Ω then λ is real. Moreover, there exists a least eigenvalue λ∗, with its corresponding
eigenfunction ξ∗ positive on Ω . Also, there is no other eigenvalue λ that has an
eigenfunction ξ which is positive everywhere. Notice that (λ∗, ξ∗) satisfies

DI1∇2ξ∗ +
(

β1(x)S0
10

S0
10 + c1

− a1

)
ξ∗ + λ∗ξ∗ = 0.

Following [1], λ∗ is given by the variational characterization as:

λ∗ = in f

{[∫
Ω

DI1

∣∣∣∣∇φ(x)|2 +
(

a1 − β1(x)S0
10

S0
10 + c1

)
φ2(x)

]
:

φ ∈ W 1,2(Ω) and
∫

Ω

φdx = 1

}
,

RH P DE
01 = sup

⎧⎪⎨
⎪⎩

∫ β1(x)S010
S010+c1

φ2(x)dx∫ [DI1 |∇φ(x)|2 + a1φ2(x)]dx
: φ ∈ W 1,2(Ω)

⎫⎪⎬
⎪⎭ . (55)

Similarly for city 2,

RH P DE
02 = sup

⎧⎪⎨
⎪⎩

∫ β2(x)S020
S020+c2

φ2(x)dx∫ [DI2 |∇φ(x)|2 + a2φ2(x)]dx
: φ ∈ W 1,2(Ω)

⎫⎪⎬
⎪⎭ . (56)

The definition of RH P DE
0 for (17) is closely related to the stability of DFE, E0 =

(S0
1 , 0, S0

2 , 0). Linearizing the model around E0, the stability of E0 can be decided by
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the sign of the principal eigenvalue of the problem:

μφ1 = DI1∇2φ1 +
(

β1(x)S1
S1 + c1

− (m4 + a1)

)
φ1 + m3φ2, x ∈ Ω,

μφ2 = DI2∇2φ2 + m4φ1 +
(

β2(x)S2
S2 + c2

− (m3 + a2)

)
φ2, x ∈ Ω,

∂φ1

∂ν
= ∂φ2

∂ν
= 0, x ∈ ∂Ω. (57)

Since the system is cooperative, (57) has a principal eigenvalue μ0 associated with a
positive eigenvector [23].

Following [36,53,58], the basic reproduction number RH P DE
0 for (17) is defined

as the spectral radius r(−FO−1), where O : D(O) ⊂ C(Ω̄;R2) → C(Ω̄;R2) is a

linear operator O =
(

DI1∇2 0
0 DI2∇2

)
− V . F and V are as defined in (49).

D(O) = (φ1, φ2) ∈ ∩p≥1W 2,p(Ω;R) : ∂φ1

∂ν
= ∂φ2

∂ν
= 0,

on ∂Ω and O(φ1, φ2) ∈ C(Ω̄;R2).

However, when the infection coefficients β1 and β2 are spatially independent, the basic
reproduction number admits the same value as its ODE counterpart [55]. We state the
following result from [58]:

Theorem 1 If each DS1 , DI1 , DS2 and DI2 is a positive constant and F(x) = F
and V (x) = V are independent of x ∈ Ω , then basic reproduction number for
homogeneous environment R P DE

0 = r(FV −1) = RO DE
0 .

Proof See [58] for the proof. �	

Sect. 5 gives numerical evidence for these analytical results.

4 Global stability analysis

In this section, we deduce sufficient conditions under which the disease free and
endemic equilibrium globally asymptotically stable in a homogeneous environment.
Graph theoretical approaches developed by [28] are utilized in our proof. Before
starting, we recall some preliminaries from graph theory.
Consider a weighted directed graph or digraph G = (W , E) containing a set W =
{1, 2, 3...n} of vertices and a set E of arcs (i, j) leading from source vertex i to
destination vertex j and each arc ( j, i) is assigned a positive weight mi j . The weight
matrix of weighted digraph is given by M = (mi j )n×n whose entry mi j equals the
weight of arc ( j, i) if it exists, and 0 otherwise. Aweighted digraph (G, M) is strongly
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connected if and only if the weight matrix M is irreducible. The Laplacian matrix of

(G, M) is defined as L =

⎛
⎜⎜⎝

∑
k 
=1 m1k −m12 ... −m1n

−m21
∑

k 
=2 m2k ... −m2n

: : : :
−mn1 −mn2 ...

∑
k 
=n mnk

⎞
⎟⎟⎠,

Let Ci denote the cofactor of the i th diagonal element of L . The result which will
be used in our proofs are given as follows [19]:

Proposition 6 Assume n ≥ 2. Then

Ci =
∑
T ∈Ti

W (T ), i = 1, 2, 3...., n. (58)

where Ti is the set of all spanning trees T of (G, M) that are rooted at vertex i , and
W (T ) is the weight of T . In particular, if (G, M) is strongly connected, then Ci > 0
for 1 ≤ i ≤ n.

Theorem 2 Assume n ≥ 2. Let Ci be given in the above proposition. Then the following
identity holds:

n∑
i, j=1

Ci mi j Gi (xi ) =
n∑

i, j=1

Ci mi j G j (x j ), (59)

where Gi (xi ), 1 ≤ i ≤ n, are arbitrary functions.

Proposition 7 Assume RO DE
0 ≤ 1. Suppose that infective travel matrix B = (bi j ) is

irreducible. Then the disease-free equilibrium E0 is globally asymptotically stable.

Proof Suppose B = (bi j ) is irreducible (see (20)). Let F and V be given as in (49).
We observe that V is a non-singular M-matrix since all the off-diagonal entries of V
are non-positive and the sum of the entries of each of its columns are positive. Since
B is irreducible, then V −1 > 0 is also irreducible. By Perron-Frobenious Theorem
[4], non-negative irreducible matrix V −1F has a positive left eigenvector (w1, w2)

corresponding to eigenvalue ρ(V −1F).

(w1, w2)F−1V = RO DE
0 (w1, w2) (60)

and thus

1

RO DE
0

(w1, w2) = (w1, w2)F−1V (61)

Let di = wi
βi S0i

S0i +ci

> 0, i = 1, 2 and I = (I1, I2)T . Set

L1 = d1 I1 + d2 I2. (62)
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Differentiating L1 along solutions of system (1–4), we obtain

L′
1 = d1

(
β1S1 I1

S1 + I1 + c1
− a1 I1 − m4 I1 + m3 I2

)

+d2

(
β2S2 I2

S2 + I2 + c2
− a2 I2 + m4 I1 − m3 I2

)
,

≤ d1

(
β1S0

1 I1
S0
1 + c1

− (a1 + m4)I1 + m3 I2

)

+d2

(
β2S0

2 I2
S0
2 + c2

− (a2 + m3)I2 + m4 I1

)
,

=
(

w1

β1S0
1/(S0

1 + c1)
,

w2

β2S0
2/(S0

2 + c2)

)
(F − V )I ,

= (w1, w2)(1 − F−1V )I ,

= (w1, w2)(1 − 1

RO DE
0

)I ≤ 0,

Therefore, L1 is a Lyapunov function for system (1–4). Since di > 0 for i = 1, 2,
L′
1 = 0 implies that either Si = S0

i or Ii = 0 for any 1 ≤ i ≤ 2. When Si = S0
i , we

have

0 = (S0
i )

′ = ri S0
i

(
1 − S0

i + Ii

Ki

)
− βi S0

i Ii

S0
i + Ii + ci

∓ m1S0
1 ± m2S0

2 .

Comparing these equations with

0 = ri Si

(
1 − Si

Ki

)
∓ m1S1 ± m2S2.

we have Ii = 0. Thus, we showed that L′
1 = 0 implies I1 = I2 = 0. It can be

easily verified that the only invariant subset of the set {(S1, I1, S2, I2) ∈ E |I1, I2 = 0}
is the singleton E0. Therefore, by LaSalle Invariance Principle [24], E0 is globally
asymptotically stable in E0. �	

Now, we establish the global stability of DFE, E0 for a homogeneous spatial model
system (13–16). For this, we select a Lyapunov function as:

V1(t) =
∫ ∫

Ω

L1(I1, I2)d A, (63)

where L1(I1, I2) is given as in (62).

dV1

dt
=
∫ ∫

Ω

[
∂L1

∂ I1

∂ I1
∂t

+ ∂L1

∂ I2

∂ I2
∂t

]
d A,
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=
∫ ∫

Ω

dL1

dt
d A +

∫ ∫
Ω

(
DI1

∂L1

∂ I1
∇2 I1 + DI2

∂L1

∂ I2
∇2 I2

)
d A,

= T1 + T2,

where T1 = ∫ ∫
Ω

dL1
dt d A and T2 = ∫ ∫

Ω

(
DI1

∂L1
∂ I1

∇2 I1 + DI2
∂L1
∂ I2

∇2 I2
)

d A. We

now consider T2 and determine the sign of each term. We utilize the formula known
as Green’s first identity in the plane

∫ ∫
Ω

F∇2Gd A =
∫

Ω

F
∂G

∂ν
d S −

∫ ∫
Ω

(∇F .∇G)d A,

∫ ∫
∂L1

∂ I1
∇2 I1d A =

∫
Ω

∂L1

∂ I1

∂ I1
∂ν

d S −
∫ ∫

Ω

[
∇(

∂L1

∂ I1
).∇ I1

]
d A,

= −
∫ ∫

Ω

[
∇
(

∂L1

∂ I1

)
∇ I1

]
d A. (64)

Now,

∇
(

∂L1

∂ I1

)
= ∂2L1

∂ I 21

∂ I1
∂x

î + ∂2L1

∂ I 21

∂ I1
∂ y

ĵ .

Hence,

∫ ∫
Ω

∂L1

∂ I1
∇2 I1d A = −

∫ ∫
∂2L1

∂ I 21

[(
∂ I1
∂x

)2
+
(

∂ I1
∂ y

)2]
d A ≤ 0.

Similarly,

∫ ∫
Ω

∂L1

∂ I2
∇2 I2d A = −

∫ ∫
∂2L1

∂ I 22

[(
∂ I2
∂x

)2
+
(

∂ I2
∂ y

)2]
d A ≤ 0.

The above analysis shows that if T1 ≤ 0, then V1(t)
dt ≤ 0.This implies that E0 is globally

asymptotically stable in presence of diffusion if E0 is globally asymptotically stable
in the absence of diffusion.

Proposition 8 Assume that RO DE
0 > 1 and suppose that the following assumptions

are satisfied for all 1 ≤ i, j ≤ 2

1. A, B are irreducible.
2. There exists λ > 0 such that ai j S∗

j = λbi j I ∗
j .

3. Si − (Si +Ii )
Ki

(Si − S∗
i ) < 0, Si 
= S∗

i .

4. S∗
i (Ii − I ∗

i ) − I ∗
i (Si − S∗

i ) < 0, Si 
= S∗
i , Ii 
= I ∗

i .

Then there exists a unique equilibrium E∗ which is globally asymptotically stable.
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Proof We prove the result when all assumptions are satisfied. For city 1 set

L1(S1, I1) = S1 − S∗
1 − S∗

1 ln
S1
S∗
1

+ I1 − I ∗
1 − I ∗

1 ln
I1
I ∗
1

. (65)

From equilibrium equation, we obtain

r1S∗
1 − m2S∗

1 = r1S∗
1

(
S∗
1 + I ∗

1

K1

)
+ β1S∗

1 I ∗
1

S∗
1 + I ∗

1 + c1
− m1S∗

2 ,

a1 I ∗
1 + m4 I ∗

1 = β1S∗
1 I ∗

1

S∗
1 + I ∗

1 + c1
+ m3 I ∗

2 .

Note that 1 − x + lnx ≤ 0 for x > 0 and equality holds if and only if x = 1.
Differentiating L1 along the solution of system (1–4), we obtain

L′
1 = r1S1 − r1S1

(
S1 + I1

K1

)
− β1S1 I1

S1 + I1 + c1
+ m1S2 − m2S1

+S∗
1

(
r1

(
S1 + I1

K1

)
+ β1 I1

S1 + I1 + c1
− m1S2

S1

)
− (r1S∗

1 − m2S∗
1 )

+
(

β1S1 I1
S1 + I1 + c1

− a1 I1 + m3 I2 − m4 I1

)

−I ∗
1

(
β1S1

S1 + I1 + c1
− a1 + m3 I2

I1
− m4

)
,

≤ r1S1 − r1S1

(
S1 + I1

K1

)
+ m1S2

+S∗
1

(
r1

(
S1 + I1

K1

)
+ β1 I1

S1 + I1 + c1
− m1S2

S1

)

−(r1S∗
1

(
S∗
1 + I ∗

1

K1

)
+ β1S∗

1 I ∗
1

S∗
1 + I ∗

1 + c1
− m1S∗

2 )

+ (m3 I2) − I ∗
1

(
β1S1

S1 + I1 + c1
+ m3 I2

I1

)
+
(

β1S∗
1 I ∗

1

S∗
1 + I ∗

1 + c1
+ m3 I ∗

2

)
,

≤ r1(S1 − (S1 + I1)

K1
(S1 − S∗

1 )) + β1

S1 + I1 + c1
[S∗

1 (I1 − I ∗
1 ) − I ∗

1 (S1 − S∗
1 )]

+m1S∗
2

(
1 − S∗

1 S2
S∗
2 S1

+ ln
S∗
1 S2

S∗
2 S1

)
+ m1S∗

2

(
S2
S∗
2

+ ln
S∗
2

S2
− S1

S∗
1

− ln
S∗
1

S1

)

+m3 I ∗
2

(
1 − I2 I ∗

1

I ∗
2 I1

+ ln
I2 I ∗

1

I ∗
2 I1

)
+ m3 I ∗

2

(
I2
I ∗
2

+ ln
I ∗
2

I2
− I1

I ∗
1

− ln
I ∗
1

I1

)
,

≤ m1S∗
2

(
S2
S∗
2

+ ln
S∗
2

S2
− S1

S∗
1

− ln
S∗
1

S1

)
+ m3 I ∗

2

(
I2
I ∗
2

+ ln
I ∗
2

I2
− I1

I ∗
1

− ln
I ∗
1

I1

)
,

≤ m3 I ∗
2

[(
λ

S2
S∗
2

+ λln
S∗
2

S2
+ I2

I ∗
2

+ ln
I ∗
2

I2

)
−
(

λ
S1
S∗
1

+ λln
S∗
1

S1
+ I1

I ∗
1

+ ln
I ∗
1

I1

)]
,
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= m3 I ∗
2 [G2(S2, I2) − G1(S1, I1)],

= b21 I ∗
2 [G2(S2, I2) − G1(S1, I1)],

where Gi (Si , Ii ) = λ
Si
S∗

i
+ λln

S∗
i

Si
+ λ

Ii
I ∗
i

+ λln
I ∗
i
Ii

, i = 1, 2.

Similarly, if we consider L2(S2, I2) = S2 − S∗
2 − S∗

2 ln S2
S∗
2

+ I2 − I ∗
2 − I ∗

2 ln I2
I ∗
2
we have

L′
2 ≤ m4 I ∗

1 [G1(S1, I1) − G2(S2, I2)] = b12 I ∗
1 [G1(S1, I1) − G2(S2, I2)]. Consider

a weight matrix M = (mi j ) with entry mi j = bi j Ii and denote the corresponding
weighted digraph as (G, M). Let Ci = ∑T ∈Ti

W (T ) ≥ 0 be as given in proposition
6 with (G, M). Then, by Theorem 2, the following identity holds

2∑
i=1

Ci

2∑
j=1

bi j I ∗
i [Gi (Si , Ii ) − G j (S j , I j )] = 0. (66)

Set

L3(S1, I1, S2, I2) =
2∑

i=1

CiLi (Si , Ii ). (67)

Differentiating (67) and using (66),

L′
3 =

2∑
i=1

CiL′
i ≤

2∑
i=1

Ci

2∑
j=1

bi j I ∗
i [Gi (Si , Ii ) − G j (S j , I j )] = 0, (68)

for all (S1, I1, S2, I2) ∈ E0. Therefore, L3 is a Lyapunov function for the system
(1–4). To prove E∗ is globally asymptotically stable, we need to examine the largest
compact invariant set. Since B is irreducible, we know that Ci > 0 for i = 1, 2 and
thus L′

3 = 0 implies that Si = S∗
i , and I1 = I ∗

1 for i = 1, 2. Therefore, the only
compact invariant subset of the set where L′

3 = 0 is the singleton E∗. Therefore, by
LaSalle Invariance Principle, E∗ is globally asymptotically stable in the interior of
E0. �	
Now, we are in position to prove the global stability of E∗ for spatial model system
(13–16). Next, we choose a Lyapunov function as

V2(t) =
∫ ∫

Ω

L3(S1, I1, S2, I2)d A, (69)

where L3(S1, I1, S2, I2) is given as in (67). Then,

dV2

dt
=
∫ ∫

Ω

[
∂L3

∂S1

∂S1
∂t

+ ∂L3

∂ I1

∂ I1
∂t

+ ∂L3

∂S2

∂S2
∂t

+ ∂L3

∂ I2

∂ I2
∂t

]
d A,

=
∫ ∫

Ω

dL3

dt
d A
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+
∫ ∫

Ω

(
DS1

∂L3

∂S1
∇2S1 + DI1

∂L3

∂ I1
∇2 I1

+DS2
∂L3

∂S2
∇2S2 + DI2

∂L3

∂ I2
∇2 I2

)
d A,

= U1 + U2,

where U1 = ∫ ∫
Ω

dL3
dt d A and

U2 = ∫ ∫
Ω

(
DS1

∂L3
∂S1

∇2S1 + DI1
∂L3
∂ I1

∇2 I1 + DS2
∂L3
∂S2

∇2S2 + DI2
∂L3
∂ I2

∇2 I2
)

d A.

∫ ∫
Ω

F∇2Gd A =
∫

Ω

F
∂G

∂n
d S −

∫ ∫
Ω

(∇F .∇G)d A,

∫ ∫
∂L3

∂S1
∇2S1d A =

∫
Ω

∂L3

∂S1

∂S1
∂n

d S −
∫ ∫

Ω

[
∇(

∂L3

∂S1
).∇S1

]
d A,

= −
∫ ∫

Ω

[
∇
(

∂L3

∂S1

)
.∇S1

]
d A. (70)

Now,

∇
(

∂L3

∂S1

)
= ∂2L3

∂S2
1

∂S1
∂x

î + ∂2L3

∂S2
1

∂S1
∂ y

ĵ, (71)

Hence,

∫ ∫
Ω

∂L3

∂S1
∇2S1d A = −

∫ ∫
∂2L3

∂S2
1

[(
∂S1
∂x

)2
+
(

∂S1
∂ y

)2]
d A ≤ 0. (72)

Similarly,

∫ ∫
Ω

∂L3

∂ I1
∇2 I1d A = −

∫ ∫
∂2L3

∂ I 21

[(
∂ I1
∂x

)2
+
(

∂ I1
∂ y

)2]
d A ≤ 0,

∫ ∫
Ω

∂L3

∂S2
∇2S2d A = −

∫ ∫
∂2L3

∂S2
2

[(
∂S2
∂x

)2
+
(

∂S2
∂ y

)2]
d A ≤ 0,

∫ ∫
Ω

∂L3

∂ I2
∇2 I2d A = −

∫ ∫
∂2L3

∂ I 22

[(
∂ I2
∂x

)2
+
(

∂ I2
∂ y

)2]
d A ≤ 0 (73)

The above analysis indicates that if U1 ≤ 0, then dV2(t)
dt ≤ 0. Thus, we have

the following consequence: if E∗ is globally asymptotically stable in the absence
of diffusion, then E∗ will remain globally asymptotically stable in the presence of
diffusion.
The same procedure will work for homogeneous coupled reaction-diffusion system
with n nodes or cities and any topology or connections.
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5 Numerical simulation for two cities

The global dynamical behaviour of two-city model in the interior ofR+
4 is investigated

numerically. The values of the parameters are hypothetical but are chosen carefully
on the basis of the ranges reported in Jorgensen [17] and are ecologically permissible
parameter values. The ODEs (1–4) were integrated using Runge-Kutta method and
for spatial model we employ explicit standard five-point approximation programmed
in the MATLAB R2017a software environment.

5.1 Numerical simulation for non-spatial model and effect of mobility

For the parameter values m1 = 1.2, m2 = 0.2, a1 = 0.15, m3 = 0.2, m4 = 0.1, a2 =
0.13 and other parameters as given in Table 1 we obtain positive equilibrium point
as E∗ = (48.9651, 642.9726, 52.3128, 321.6942), which is globally asymptotically
stable (c.f. Fig. 2a). If we change the parameterm4 = 3.1we observe that the dynamics
changes from stable focus to limit cycle (c.f. Fig. 2b). These figures suggest that change
in migration rate can induce bifurcation.

We have used the MATLAB matcont toolbox for plotting equilibrium manifolds
of E∗ and are presented in Fig. 3a, b. These diagrams are generated by taking m4 and
m1 as a bifurcation parameter. In Fig. 3a, variations of the infective I1 and I2 popula-
tions are given as functions of 0 < m4 < 5, with the values of the other parameters
are as given above. When 0 < m4 < 0.28826133 the equilibrium E∗ is stable (all
eigenvalues have negative real parts). When m4 ≈ m4cr1 = 0.28826133 a complex
conjugate pair becomes purely imaginary and the equilibrium loses stability through
Hopf-bifurcation and becomes unstable giving rise to limit cycle which is orbitally
stable (first Lyapunov coefficient is negative). For 0.28826133 < m4 < 3.3198113 the
equilibrium, E∗ unstable (two eigenvalues have positive real parts). However, when
m4 ≈ m4cr2 = 3.3198113 the system again experiences Hopf-bifurcation (supercriti-
cal). For 3.3198113 < m4 < 5, E∗ is again stable (all eigenvalues have negative real
parts).

Now, we investigate the effect of m1. As m1 increases from 0 to 8 two Hopf
bifurcations are observed. When 0 < m1 < 0.16385636 we have unstable branches
(two eigenvalues are positive and two have negative real parts). At m1 ≈ m1cr1 =
0.16385636 a complex conjugate pair becomes purely imaginary giving rise to the first
Hopf point (supercritical). For 0.16385636 < m1 < 6.583927 we observe a stable
branch (all eigenvalues havenegative real parts).Again atm1 ≈ m1cr2 = 6.583927 two
eigenvalues becomes purely imaginary giving rise to secondHopf point (supercritical).
As 6.583927 < m1 < 8 we again observe an unstable branch (two eigenvalues are
positive and two have negative real parts). Thus in the present system and for the
given parameter values we observe two Hopf-bifurcations, one is stabilizing and other
is destabilizing the equilibrium E∗.

Nextwe draw aHopf bifurcation curve in (m1, m4) plane (c.f. Fig. 4) fromfirstHopf
point (m4 ≈ m4cr1 = 0.28826133) in order to detect bifurcations with codimension-2
[22]. No codimension-2 bifurcation is observed.We also performed the continuation of
the limit cycle from the first Hopf point whenm1, m4 are treated as the free parameters.
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Fig. 2 Numerical simulation of the system (1–4), a time series for infectives in both cities showing global
stability of E∗ with m4 = 0.1, b time series for infectives showing periodic dynamics in two cities with
m4 = 3.1. Other parameter values are the same as given in text

At m1 = 1.2 and m4 = 0.28826131 Limit point cycle is observed. Limit Point Cycle
(LPC) is a fold bifurcation of the cycle from the family of limit cycles bifurcating
from the Hopf point, where two limit cycles with different periods are present near
LPC point. No other bifurcation point was found in this curve. Identical results were
obtained when we carried out the continuation of limit cycles from other Hopf point
and hence are not reported. Our simulation results can be compared to the results given
by [46]. They derived a critical value with respect to the mobility rate and found that
when mobility rate is larger than critical value outbreak occurs before it dies out.

Now, suppose that initially city 1 and 2 are disjoint (zero mobility), and that the
disease is present in city 1, while city 2 is such that the disease is absent. For the
parameter values given in Table 1 we find that (RO DE

01 )isolated = β1K1
a1(K1+c1)

> 1 while

(RO DE
02 )isolated = β2K2

a2(K2+c2)
< 1. Now we connect both the cities. We observe that

mobility can stabilize or destabilize the DFE. We observe that when we set migration
m1 = 1.2, m2 = 0.2, m3 = 0.2, m4 = 0.1, the infection spreads in both the cities (c.f.
Fig. 5a). The effective reproduction number for the whole network is 8.8880 greater
than unity. The simulation confirms the instability of the disease-free steady statewhen
RO DE
0 > 1. Moreover, when we set migration m1 = 1.2, m2 = 3.2, m3 = 0.2, m4 =

3.1, the infection is dies out in both the cities (c.f. Fig. 5b). In this case, the effective
reproductive number is 0.719094 which is less than unity for the whole network. A
change in mobility can induce a bifurcation from RO DE

0 < 1 to RO DE
0 > 1 or vice-

versa. Therefore, parameters mi can play an important role in disease controlling.

5.2 Numerical simulation for spatial model

Wecheck the above result for our spatialmodel system (13–16)without andwith spatial
heterogeneity. To examine the spatio-temporal dynamics of the system, we carry out
intensive numerical simulations for model (13–16) in two-dimensional spaces using
finite difference scheme for the 2D Laplacian. We consider two cities to be identical
square domains. All our numerical simulations use zero-flux or Neumann boundary
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Fig. 3 A branch of equilibria displaying existence of Hopf-bifurcations, a in the (m4, I1) and (m4, I2)-
plane, b in the (m1, I1) and (m1, I2)-plane. Other parameter values are the same as given in text. H: denote
a Hopf point

Fig. 4 The Hopf bifurcation
curve in (m1, m4) plane. LPC:
denote limit point cycle

conditions and nonzero initial conditions. We discretize the system of size 200× 200
through x → (x0, x1, x2, ..., xN ) and y → (y0, y1, y2, ..., yN ), with N = 800 i.e.
the spacing between the lattice points is Δh = 0.25. In the present study, we set
Δt = 0.001.
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Fig. 5 a Time series for infectives showing the disease is sustained in two cities when m1 = 1.2, m2 =
0.2, m3 = 0.2, m4 = 0.1, b time series for infectives showing disease is disappearing in both cities when
m1 = 1.2, m2 = 3.2, m3 = 0.2, m4 = 3.1. Other parameter values are the same as those listed in Table 1

5.2.1 The effect of mobility

Weconfirmnumerically that if the parameters and thediffusion coefficient are constant,
the reproduction number is the same as in the ODE case. Again, we suppose that cities
1 and 2 are isolated, and initially the disease spreads in city 1 while disease is absent
in city 2, i.e., R P DE

01 ≈ 14.304723 > 1 while R P DE
02 ≈ 0.455555 < 1. Now, let us

connect the cities. We observe that when we set migration m1 = 1.2, m2 = 0.2, m3 =
0.2, m4 = 0.1, the infection spreads in both the cities (c.f. Fig. 6a). The effective
reproductive number for the coupled PDE system is R P DE

0 ≈ 8.9035 > 1. However,
when we set more strong migration rate m1 = 1.2, m2 = 3.2, m3 = 0.2, m4 = 3.1,
the infection dies out in both the cities (c.f. Fig. 6b). The effective reproductive number
for the coupled PDE system is R P DE

0 ≈ 0.7968 < 1. We observe that the value of
R P DE
0 is almost the same as in the ODE case which is in agreement with the result of

Theorem 1.
Now, we are interested in studying the effect of heterogeneity. To capture the

seasonality of school contacts, the transmission rate β1 and β2 can be set to be
the periodic function. For this, we consider β1 = 2.15(1 + cos((πxy)/10)) and
β2 = 0.98(1+ cos((πxy)/10)), and keep other parameters the same as above. There
is no explicit formula for computing the basic reproduction number RH P DE

0 in a spa-
tially heterogeneous infection. Thus, we numerically compute it by using solvepdeeig
MATLAB function. If the cities are disconnected, we find RH P DE

01 ≈ 23.037539
while RH P DE

02 ≈ 0.748634 < 1. When the cities are connected, we observe that
the disease spreads in both the cities with small population dispersal and it requires
a stronger dispersal rate to reach disease-free state. Even for the migration rate
m1 = 1.2, m2 = 3.2, m3 = 0.2, m4 = 3.1, we found RH P DE

0 ≈ 1.290126 > 1
which implies that the infection does not dies out in both the cities (c.f. Fig. 7a) which
was not the case in ODE and spatial model without heterogeneity. From these simu-
lations, we have two implications, (i) the risk of infection could be underestimated if
we compute basic reproduction number using constant parameters, (ii) more stronger
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Fig. 6 Spatial dynamics for the homogeneous system (13–16) varying migration coefficient m2, m4 at
t = 100 days, a m2 = 0.2, m4 = 0.1 with R P DE

0 ≈ 8.9035 > 1, b m2 = 3.2, m4 = 3.1 with

R P DE
0 ≈ 0.79688 < 1. Initial conditions and other parameter values are the same as those listed in

Table 1. Blue color represents minimum density and yellow color represents maximum density

migration rate from disease endemic city to disease free city is required to achieve
overall disease free state in spatially heterogeneous domain (c.f. Fig. 7b). In contrast,
[46] showed that the epidemic will die in the first community when the mobility rate
is too low. Also, if mobility rate is high enough the epidemic can spread into second
community before it die.

Conclusion: Figure 5, 6 and 7 gives an overview of the dynamics of the basic repro-
duction number with respect to the mobility of the susceptible and infected individuals
from City 1 (disease endemic) to City 2 (disease free). These figures show that if the
dispersal rate from endemic to disease free city (m2 and m4) increases it can bring
effective reproduction numbers down below unity.

5.2.2 Disease dissemination with varying diffusion

In this subsection, we investigate the influence of diffusion coefficients on RH P DE
0

and hence on disease prevalence or absence. Here, we fix the parameter values DS1 =
1, DS2 = 5, DI2 = 0.05, β1 = 2.15(1+cos(πxy/10)), β2 = 0.98(1+cos(πxy/10))
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Fig. 7 Spatial dynamics for the heterogeneous system (13–16) with β1(x, y) = 2.15(1 +
cos(πxy/10)), β2(x, y) = 0.98(1 + cos(πxy/10)) and varying migration coefficient m2, m4 at t = 100
days, a m2 = 3.2, m4 = 3.1 with RH P DE

0 ≈ 1.290126, b m2 = 7.2, m4 = 7.1 with RH P DE
0 ≈

0.88655 < 1. Initial conditions and other parameter values are the same as those listed in Table 1. Blue
color represents minimum density and yellow color represents maximum density

and other parameter values given in Table 1 and vary parameter DI1 . Our numerical
computations signify that RH P DE

0 decreases as DI1 increases and the system under-
goes a transition from RH P DE

0 > 1 to RH P DE
0 < 1 as DI1 varies from 0.01 to 10

(c.f. Fig. 8). Similarly, RH P DE
0 decreases as any other diffusion coefficient increases.

Hence, the larger the local random diffusion, the smaller is the infection risk.
Thefinding is in accordancewith the previouswork [62]. They showed thatwhen the

agents move with a high velocity the inhomogeneity of epidemic spreading decreases.
Similar results were found in [57] for a time-delayed reaction-diffusion model of
dengue fever. However, recently [47] showed that monotonicity of RH P DE

0 with
respect to diffusion rates does not hold in general. Moreover, we also observe a change
in pattern formation as diffusion coefficient changes from DI1 = 0.01 to DI2 = 10.
Infected population of city 1 gathers into large cluster at DI2 = 10.
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Fig. 8 Spatial dynamics of the system (13–16) varying diffusion coeffcient DI1 at t = 300 days, a DI1 =
0.01 , b DI1 = 1 and c DI1 = 10. Other parameter values are the same as those listed in Table 1. These

figures indicate RH P DE
0 is decreasing function of DI1
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5.2.3 The effect of spatial heterogeneity

Next, we take β1 = 2.15(1 + pcos(πxy/10)) and β2 = 0.98(1 + pcos(πxy/10)),
where 0 < p ≤ 1 can be interpreted as an order of magnitude of infection het-
erogeneity. We now fix DI1 = 0.01 and other parameters as above. Our numerical
computation indicates that if p is increased from 0 to 1 i.e. more heterogeneity of spa-
tial infection, RH P DE

0 increases as a function of p. We calculate the value of RH P DE
0

numerically and found that for (i) p = 0.1, RH P DE
0 ≈ 0.876137 < 1, (ii) p = 0.4,

RH P DE
0 ≈ 1.113995 > 1, (iii) p = 0.8, RH P DE

0 ≈ 1.431082 > 1. These simula-
tion shows that infection risk become more intense by heterogeneous spatial disease
transmission (c.f. Fig. 9).

Our simulation result are in agreement with [41]. They modified the standard SIRS
model onWS small-world network and BA scale-free network and analysed themodel
theoretically and performed computer simulation on different networks. They found
that on increasing the number of links the critical value to contact rate (λc) decreases,
i.e. for contact rate>critical value to contact rate, infection spreads and becomes
persistent. Our simulation result also shows that an increase in heterogeneity (that
can be compared to increase in nodes) increases the infectives. However, we did not
consider effect of vaccination in controlling the epidemic propagation and can be an
important factor.

6 Conclusions and discussions

A complete analysis of a two-city reaction-diffusion model is presented to study the
transmission of epidemics. We considered distinct parameters for both the cities. We
showed that when the coupled reaction-diffusion system is at an equilibrium and city
1 has disease endemic situations, the city 2 (connected to city 1 directly or indirectly)
will be also at an disease endemic level. These conclusions assume that the entire
coupled system is at a steady state equilibrium. The formula for calculating basic
reproduction number RH P DE

0 for two city reaction-diffusion models is derived using
previous findings. This formula permits us to suggest some control measures against
disease spread from one city to another and to investigate the effectiveness of present
public health policies. The disease free equilibrium (DFE) is globally asymptotically
stable if the basic reproduction number forODE (RO DE

0 ) is less than unity i.e. RO DE
0 ≤

1, and unstable if RO DE
0 > 1. The health impact and consequences produced by

population migration is directly related to two basic factors, (i) the distance between
source and the destination [49], and (ii) the size of the mobile population migrating
between different disease prevalent cities. We found the existence of codimension-1
bifurcations (two Hopf-points and Limit Point of Cycles) and discussed how endemic
equilibrium, E∗ changes its stability through Hopf-bifurcations. We have also shown
that a population migration results in the spread of the disease in both cities, even
though the disease is not prevalent in one isolated city. We also observed that a more
strong population dispersal rate from disease endemic city to disease free city can
bring the entire system to disease free situation.
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Fig. 9 Spatial dynamics of the system (13–16) varying magnitude of infection heterogeneity p where
β1 = 2.15(1 + pcos(πxy/10)) and β2 = 0.98(1 + pcos(πxy/10)) at t = 300 days, a p = 0.1 with
RH P DE
0 ≈ 0.876137 < 1, b p = 0.4 with RH P DE

0 ≈ 1.1139949 > 1 and c p = 0.8 with RH P DE
0 ≈

1.431082. Other parameter values are the same as those listed in Table 1. These figures indicate RH P DE
0

is an increasing function of p
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Moreover, for spatially homogeneous infections i.e. if all parameters are constant,
we demonstrated numerically that the diffusion coefficients DI1 and DI2 has no effect
on the value of the basic reproduction number. Although, in a spatially heteroge-
neous environment, the random diffusion coefficients DI1 and DI2 affects the basic
reproduction number.Wenotice thatmore local randommovements among the popula-
tion reduces the basic reproduction number. Alternatively, more spatial heterogeneity
induces higher RH P DE

0 and as a result more infection risk. Numerical simulation
shows that infection risk can be understated if spatially constant parameters are used
to calculate basic reproduction number.

To see the effect of traveling between and within the cities, comparative degrees of
analysis are required. There are a large number of possibilities to extend the present
two-city model, in order to quantify the practicality. Complex network provides a
powerful platform to study the role of heterogeneous topology such as a small world,
scale free and is ignored traditionally. Analytic solution for the complete model is
complicated, however the numerical solutions can be used to plan control strategies,
for instance by adjusting migration parameters. The development and analysis of such
reaction-diffusion network models are still in their beginning. It is worthy to note that
in this work we assume that the displacements are made from a point of the first city
to exactly the symmetrical point of the other. To generalize it, we have to consider an
integral term to allow individuals to go to desired point in the other city. This issue will
be addressed in our forthcoming work and can assist us to understand spatial spread
of an epidemic more accurately when populations migrate from one location of a city
to another city randomly.

Acknowledgements This work is supported by Normandie region France and XTerm ERDF project (Euro-
pean Regional Development Fund) on Complex Network and Applications.

A Appendix

Proof of Proposition 5 We consider the following auxiliary system

− DS1∇2S1 = (θr1(x) + (1 − θ)r10)S1

(
1 − S1 + I1

K1

)

− (θβ1(x) − (1 − θ)β10)S1 I1
S1 + I1 + c1

, (74)

−DI1∇2 I1 = (θβ1(x) − (1 − θ)β10)S1 I1
S1 + I1 + c1

− (θa1(x) − (1 − θ)a10)I1,

∂S1
∂ν

= ∂ I1
∂ν

= 0. (75)

where r10, β10, a10 are positive constant and the parameter θ ∈ [0, 1]. Problem (74–
75) becomes problem (47) at θ = 1. We divide the proof into three parts for easy
understanding.

123



Deciphering role of inter and intracity human dispersal... 803

Step 1. We find the upper bounds for any positive solution (S1, I1) to (74–75). In view
of (74), it holds

∫
Ω

S1dx ≤ K1 and
∫

Ω

I1dx ≤ K1. (76)

Thus, we can find a positive constant C independent of θ ∈ [0, 1] such that

(θr1(x) + (1 − θ)r10)S1

(
1 − S1 + I1

K1

)
≤ max(max r1(x), r10)

∫
Ω

S1dx ≤ C

and

(θβ1(x) + (1 − θ)β10)
S1 I1

S1 + I1 + c1
≤ max(max β1(x), β10)

∫
Ω

I1dx ≤ C

The positive constant C does not depend on the parameter θ ∈ [0, 1] and can be
different depending on its position. Applying L1 estimate theory for elliptic equations
[5] to Equ. (74–75), we obtain ||S1||W 1,1(Ω) ≤ C and ||I1||W 1,1(Ω) ≤ C . Application of
Sobolev embedding theorem gives us,

W 1,1(Ω) → L p(Ω), ∀1 ≤ p ≤ n

n − 1
or 1 ≤ p < ∞ if n = 1.

we have

||S1||L p(Ω), ||I1||L p(Ω) ≤ C, ∀1 ≤ p ≤ n

n − 1
or 1 ≤ p < ∞ if n = 1. (77)

Applying L p estimate for elliptic equations [12] to (74–75) leads to

||S1||W 2,p(Ω), ||I1||W 2,p(Ω) ≤ C,

∀1 ≤ p ≤ n

n − 1
or 1 ≤ p < ∞ if n = 1. (78)

Again we apply Sobolev embedding theorem, to get

||S1||L p∗
(Ω), ||I1||L p∗

(Ω) ≤ C,

∀1 ≤ p∗ ≤ n

n − 3
or 1 ≤ p∗ < ∞ if n = 1. (79)

Repeating the above process finitely many times, one can affirm that

||S1||L∞(Ω) ≤ C, ||I1||L∞(Ω) ≤ C . (80)
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Step 2. Now, we find lower bounds for any positive solution (S1, I1) to (74–75).
Integrating (75) over Ω gives

∫
Ω

[θβ(x) + (1 − θ)β10] S1 I1
S1 + I1 + c1

dx =
∫

Ω

[θa(x) + (1 − θ)a10]I1dx, (81)

Clearly, (81) indicates

c
∫

Ω

I1dx ≤ d
∫

Ω

S1dx, (82)

where c = min(min a(x), a10) > 0, d = max(max β(x), β10) > 0. One can then
insert

∫
Ω

I1dx ≤ K1 − ∫
Ω

S1dx into (82) to get

∫
S1dx ≥ cK1

c + d
. (83)

Notice that S1 satisfies

−∇2S1 + 1

DS1
max(max β1(x), β10)S1 > 0,∀x ∈ Ω. (84)

Thus, together with (83) and Lemma 1 with q = 1 concludes that

S1(x) ≥ C,∀x ∈ Ω. (85)

We next take minΩ I1(x) = I (x0). According to [34], one can see

[θβ1(x0) + (1 − θ)β10]S1(x0)

S1(x0) + I1(x0) + c1
≤ θa1(x) + (1 − θ)a10. (86)

This leads to

minΩ̄ I1(x) = I1(x0) ≥ min(minΩ̄ β1(x), β10)S1(x0)

max(maxΩ̄ a1(x), a10))
− c1 − S1(x0) ≥ C . (87)

If β1(x0)S1(x0)/a1(x0) − c1 − S1(x0) > 0, from the above analysis of step 1 and 2
we can always find a positive constant C∗ > 1, which is independent of θ ∈ [0, 1],
such that any positive solution (S1, I1) of (74–75) satisfies

1

C∗ < S1(x), I1(x) < C∗,∀x ∈ Ω̄ (88)

Step 3. Finally, we find existence of positive solution to (74–75). Let us denote a set,

Θ = {(S1, I1) ∈ C(Ω̄) × C(Ω̄) : 1

C∗ < S1(x), I1(x) < C∗, } (89)
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Thus, (74–75) has no positive solution (S1, I1) ∈ ∂Θ . For θ ∈ [0, 1], we also define
the operator

H(θ, (S1, I1)) = (−∇2 + I )−1(ĥ(θ, (S1, I1)), h̃(θ, (S1, I1))), (90)

ĥ = S + D−1
S1

(
(θr1(x) + (1 − θr10))S1

(
1 − S1 + I1

K1

)

− (θβ1(x) − (1 − θ)β1(x))S1 I1
S1 + I1 + c1

)
,

h̃ = I + D−1
I1(

(θβ1(x) − (1 − θ))S1 I1
S1 + I1 + c1

− (θa1(x) − (1 − θ)a10)I1

)
, (91)

Clearly, the existence of positive solutions of (47) is identical to the existence of
fixed point of the operator H(1, .) in Θ . From standard elliptic regularity theory one
can find that H is a compact operator from [0, 1]×Θ to C(Ω̄)×C(Ω̄). Furthermore,
we have

(S1, I1) 
= H(θ, (S1, I1)),∀θ ∈ [0, 1] and (S1, I1) ∈ ∂Θ.

Therefore, the topological degree deg(I − H(θ, .),Θ) is well-defined and is indepen-
dent of θ ∈ [0, 1]. Denote

S∗
10 = a1(

√
B + (c1r1 + K1(a1 − β1 + r1)))

2β1r1

I ∗
10 = −(a1 − β1)

2K1 − (β1(c1 − K1) + a1(c1 + K1))r1 +√(a1 − β1)2B

2β1r1

where B = (a1 − β1)K 2
1 + 2K1(β1(c1 − K1) + a1(c1 + K1))r1 + (c1 + K1)

2r21 .
[54] have already proved that (S∗

10, I ∗
10) is linearly stable when β1(x), r1(x), a1(x) are

constant. Using well-known Leray-Schauder degree index formula, we have

deg(I − H(0, .),Θ) = index(I − H(0, .), (S∗
10, I ∗

10)) = 1.

Therefore, from homotopy invariance of the Leray-Schauder degree it follows that

deg(I − H(1, .),Θ) = deg(I − H(0, .),Θ) = 1,

which implies that H(1, .) has at least one fixed point in Θ . As a consequence, (47)
has at least one positive solution. �	
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