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Abstract
A compact quadratic spline collocation (QSC) method for the time-fractional Black–
Scholes model governing European option pricing is presented. Firstly, after eliminat-
ing the convection term by an exponential transformation, the time-fractional Black–
Scholes equation is transformed to a time-fractional sub-diffusion equation. Then
applying L1 − 2 formula for the Caputo time-fractional derivative and using a collo-
cationmethod based on quadratic B-spline basic functions for the space discretization,
we establish a higher accuracy numerical scheme which yields 3 − α order conver-
gence in time and fourth-order convergence in space. Furthermore, the uniqueness of
the numerical solution and the convergence of the algorithm are investigated. Finally,
numerical experiments are carried out to verify the theoretical order of accuracy and
demonstrate the effectiveness of the new technique. Moreover, we also study the effect
of different parameters on option price in time-fractional Black–Scholes model.

Keywords Time-fractional Black–Scholes equation · European option · Exponential
transformation · Quadratic spline collocation method

1 Introduction

In recent years, fractional partial differential equations have become powerful tools for
describing many phenomenons in applied science, such as anomalous diffusion trans-
port, fluid flow in porous materials, electric conductance of biological systems, signal
processing etc. [1–3]. To some extent, their appearance and development make up for
defects of the classical integer-order partial differential equations because fractional
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derivatives can describe the characteristics of long memory and nonlocal dependence
of many anomalous processes.

Under this background, the fractional Black–Scholes models have been proposed
one after another. As we know, it is difficult generally to obtain analytical solutions
of fractional partial differential equations due to the nonlocal property of fractional
derivatives. Therefore, many researchers have devoted various numerical methods for
both spatial-fractional Black–Scholes model [4–7] and time-fractional Black–Scholes
model [8–11]. In this paper, we consider the following time-fractional Black–Scholes
model [11]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂αU (S, τ )

∂τα
+ 1

2
σ 2S2

∂2U (S, τ )

∂S2
+ r S

∂U (S, τ )

∂S
− rU (S, τ ) = 0,

(S, τ ) ∈ (0,∞) × (0, T ),

U (S, T ) = z(S),

U (0, τ ) = p(τ ), U (∞, τ ) = q(τ ),

(1)

where U (S, τ ) denotes the price of an option, S is the asset price, τ is the current
time, T > 0 is the expiry time, σ > 0 is the volatility of underlying asset, r > 0 is
the risk-free interest rate. ∂αU (S,τ )

∂τα is a modified right Riemann-Liouville fractional
derivative of order α (0 < α ≤ 1) defined by

∂αU (S, τ )

∂τα
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

�(1 − α)

d

dτ

∫ T

τ

U (S, χ) −U (S, T )

(χ − τ)α
dχ, 0 < α < 1,

∂U (S, τ )

∂τ
, α = 1.

Model (1) is the classical Black–Scholes model when α = 1 .
For time-fractional Black–Scholes equation of European put options, Zhang et al.

[12] presented a 2 − α order accurate in time and second order accurate in space
implicit difference scheme. Koleva and Vulkov [13] developed a weighted finite dif-
ference method with temporal accuracy of first order and spatial accuracy of second
order for solving a time-fractional Black–Scholes equation. In order to price American
option, Zhou andGao [14] gave a Laplace transformmethod and a boundary-searching
finite difference method for a free-boundary time-fractional Black–Scholes equation.
The method is 2 − α order convergent with respect to the time variable and second
order convergent with respect to the space variable. Cen et al. [15] deduced a numer-
ical technique of problem (1) by applying an integral discretization scheme in time
direction and a central difference scheme for the spatial discretization. The approx-
imate solution converges exact solution with first order accuracy in time and second
accuracy in space. From the above literatures, it appears that the convergence precision
of numerical methods is low. Thus, based on the work of [12], Staelen and Hendy [16]
constructed an implicit difference scheme with 2 − α order convergence in time and
fourth order convergence in space. Tian et al. [17] derived three different compact finite
difference schemes for the time-fractional Black–Scholes model governing European
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option pricing, in which by employing Padé approximation scheme for the space dis-
cretization, the spatial convergence accuracy of these three algorithms are all improved
to fourth order, and the temporal convergence orders are 2− α, 2, 3− α, respectively.

As can be seen from the previous work, the numerical methods to solve the time-
fractional Black–Scholes model have mostly been based on finite difference methods.
In [18], Pradip Roul described a quintic spline collocation method for model (1).
The technique achieved temporally 2 − α order accuracy and spatially fourth-order
accuracy.

Considering the good property of the quadratic B-spline basis function, that is
quadratic B-spline basis functions have maximum smoothness in the quadratic spline
space. Furthermore, compared with the finite difference method, the advantage of
quadratic spline collocation (QSC) method is that the algorithm allows to obtain
approximation at any point in the solution domain,whereas thefinite differencemethod
allows to obtain approximation only at the gridpoints. Thus QSC method is an effec-
tive technique to approximate the solutions of differential equations. However, the
application of QSC method for fractional diffusion equations is limited [19–22].

In this paper, we will establish a compact QSC method to solve the numerical
solution of the time-fractional Black–Scholes model (1), which is to ensure the spatial
accuracy can still reach fourth order, while temporal accuracy can be improved to 3−α

order. The outline of this paper is arranged as follows. In Sect. 2, we transform the
time-fractional Black–Scholes model into an equivalent time-fractional sub-diffusion
model by an exponential transformation. In Sect. 3, a compact QSC method with
a temporally 3 − α order accuracy and a spatially fourth-order accuracy is derived
for solving the problem. In Sect. 4, the uniqueness of the solution of the collocation
equation and the convergence analysis of the new scheme are proved. In Sect. 5,
numerical examples are carried out to confirm the high accuracy and the efficiency of
proposed technique. A conclusion is given in Sect. 6.

2 Transformation of the time-fractional Black–Scholes Model

For model (1), we introduce the following variable transformations:

S = ex , τ = T − t, V (x, t) = U (ex , T − t).

According to Zhang et al. [12], the modified right R-L fractional derivative in the
equation can be transformed to the following Caputo form:

C
0 D

α
t V (x, t) = 1

�(1 − α)

∫ t

0

∂V (x, ζ )

∂ζ
(t − ζ )−α dζ.

123



330 Z. Tian et al.

Thus problem (1) can be expressed as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
0 D

α
t V (x, t) − 1

2
σ 2Vxx (x, t) −

(

r − 1

2
σ 2

)

Vx (x, t) + rV (x, t) = 0,

(x, t) ∈ (−∞,∞) × (0, T ],
V (x, 0) = z(x),
V (−∞, t) = p(t), V (+∞, t) = q(t).

(2)

Truncate the original unbounded domain into a finite interval [a, b], and add a
source term f (x, t) to the right-hand side of the equation without loss of generality.
(2) can be rearranged as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
0 D

α
t V (x, t) − 1

2
σ 2Vxx (x, t) −

(

r − 1

2
σ 2

)

Vx (x, t) + rV (x, t) = f (x, t),

a < x < b, 0 < t ≤ T ,

V (x, 0) = z(x), a < x < b,
V (a, t) = p(t), V (b, t) = q(t), 0 ≤ t ≤ T .

(3)
Multiplying 2

σ 2 on the both sides of the first equation in model (3), we have

2

σ 2
C
0 D

α
t V (x, t) − Vxx (x, t) +

(

1 − 2r

σ 2

)

Vx (x, t) + 2r

σ 2 V (x, t) = 2

σ 2 f (x, t). (4)

Let 1 − 2r
σ 2 = β, introducing the exponential transformation that is similar to Liao

(see [23]):

V (x, t) = e
1
2

∫ x

0
βds

· v(x, t) = e
1
2βx · v(x, t),

we can eliminate the convection term in Eq. (4) and transform it into

C
0 D

α
t v(x, t) − σ 2

2

∂2v(x, t)

∂x2
+

[
1

2σ 2

(

r − σ 2

2

)2

+ r

]

v(x, t) = f (x, t) · e− 1
2βx .

For simplifying the above equation, denote σ 2

2 = λ and 1
2σ 2 (r − σ 2

2 )2 + r = w,
and it can immediately deduce that λ > 0, w > 0 according to actual meaning of the
model. Thus, (3) leads to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
0 D

α
t v(x, t) − λ

∂2v(x, t)

∂x2
+ wv(x, t) = f (x, t) · e− 1

2βx , a < x < b, 0 < t ≤ T ,

v(x, 0) = z(x) · e− 1
2βx , a < x < b,

v(a, t) = p(t) · e− 1
2βa, v(b, t) = q(t) · e− 1

2βb, 0 ≤ t ≤ T .

(5)
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For convenience, we let G(x, t) = f (x, t) · e− 1
2βx , φ(x) = z(x) · e− 1

2βx , ϕ(t) =
p(t) · e− 1

2βa , ψ(t) = q(t) · e− 1
2βb. Therefore (5) can be represented as the following

time-fractional sub-diffusion model

C
0 D

α
t v(x, t) − λ

∂2v(x, t)

∂x2
+ wv(x, t) = G(x, t), a < x < b, 0 < t ≤ T , (6)

subjecting to the initial condition:

v(x, 0) = φ(x), a < x < b, (7)

and the boundary conditions:

v(a, t) = ϕ(t), v(b, t) = ψ(t), 0 ≤ t ≤ T . (8)

3 Preliminaries

For positive integer numbers Nt and Nh , let tn = (n − 1) · �t, n = 1, 2, . . . , Nt + 1;

xi = a + (i − 1) · h, i = 1, 2, . . . , Nh + 1, where �t = T

Nt
and h = b − a

Nh
are the

time step size and the spatial step size respectively.
We denote P2([xi , xi+1]) by the set of quadratic polynomials on [xi , xi+1], and

define

S2 = {s ∈ C1([a, b]) | s ∈ P2([xi , xi+1]), i = 1, 2, . . . , Nh}

as the space of quadratic splines.
Let

u(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x2, x ∈ [0, 1],
−3 + 6x − 2x2, x ∈ [1, 2],
9 − 6x + x2, x ∈ [2, 3],
0, elsewhere,

be the quadratic B-spline function, and {Bk}Nh+2
k=1 with

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

B2(x) = 1

2
u

(
x − a

h
+ 1

)

− 1

2
u

(
x − a

h
+ 2

)

,

Bk(x) = 1

2
u

(
x − a

h
− k + 3

)

, k = 1, 3, . . . , Nh, Nh + 2,

BNh+1(x) = 1

2
u

(
x − a

h
− Nh + 2

)

− 1

2
u

(
x − a

h
− Nh + 1

)

,

can be chosen as a set of the basis functions of the space S2.
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By simple calculation of the quadratic spline basis function and their second-order
derivatives at the collocation points {ηi }Nh+2

i=1 , we can get the following conclusions.

Proposition 1 (1) For the basis function B1(x), we have

B1(ηi ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

2
, i = 1,

1

8
, i = 2,

0, i = 3, . . . , Nh + 2,

B ′′
1 (ηi ) =

{ 1

h2
, i = 2,

0, i = 3, . . . , Nh + 1.

(2) For the basis function B2(x), we have

B2(ηi ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

5

8
, i = 2,

1

8
, i = 3,

0, i = 1, 4, . . . , Nh + 2,

B ′′
2 (ηi ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 3

h2
, i = 2,

1

h2
, i = 3,

0, i = 4, . . . , Nh + 1.

(3) For the basis function Bk(x) with k = 3, . . . , Nh, we have

Bk(ηi ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

8
, |i − k| = 1,

3

4
, i = k,

0, else,

i = 1, 2, . . . , Nh + 2,

B ′′
k (ηi ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

h2
, |i − k| = 1,

− 2

h2
, i = k,

0, else,

i = 2, . . . , Nh + 1.
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(4) For the basis function BNh+1(x), we have

BNh+1(ηi ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

8
, i = Nh,

5

8
, i = Nh + 1,

0, i = 1, . . . , Nh − 1, Nh + 2,

B ′′
Nh+1(ηi ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

h2
, i = Nh,

− 3

h2
, i = Nh + 1,

0, i = 1, . . . , Nh − 1.

(5) For the basis function BNh+2(x), we have

BNh+2(ηi ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

8
, i = Nh + 1,

1

2
, i = Nh + 2,

0, i = 1, . . . , Nh,

B ′′
Nh+2(ηi ) =

{ 1

h2
, i = Nh + 1,

0, i = 2, . . . , Nh .

For the quadratic spline interpolations, some conclusions (see[25,26]) are given as
follows.

Lemma 1 For a function v(x) ∈ C4[a, b], let vs(x) be the quadratic spline interpo-
lation of function v(x) such that

vs(ηi ) = v(ηi ), i = 2, 3, . . . , Nh + 1; (9)

vs(ηi ) = v(ηi ) − h4

128

∂4v

∂x4
(ηi ), i = 1, Nh + 2; (10)

∂2vs

∂x2
(ηi ) = ∂2v

∂x2
(ηi ) − h2

24

∂4v

∂x4
(ηi ) + O(h4), i = 2, 3, . . . , Nh + 1; (11)

‖v(η) − vs(η)‖∞ = O(h4), (12)

where η = (η1, η2, . . . , ηNh+2)
�, ‖v − vs‖∞ = max{|v(x) − vs(x)|, x ∈ [a, b]}.

4 Compact QSCmethod for the time-fractional Black–Scholes model

The main purpose of this section is to construct a new higher order numerical method
for problem (6)–(8).
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4.1 Time descretization

At time t = tn+1(n = 1, 2, . . . , Nt ), Eq. (6) can be expressed as

C
0 D

α
t v(x, tn+1) − λ

∂2v(x, tn+1)

∂x2
+ wv(x, tn+1) = G(x, tn+1), a < x < b. (13)

Using the L1 − 2 formula (see [24]), the Caputo time-fractional derivative of the
above equation is descretized as

C
0 D

α
t v(x, tn+1) = �t−α

�(2 − α)

[
c̃(α)
1 v(x, tn+1) −

n∑

k=2

(c̃(α)
n−k+1 − c̃(α)

n−k+2)v(x, tk)

− c̃(α)
n v(x, t1)

]
+ O(�t3−α), (14)

where the truncation error term O(�t3−α) comes under the assumption that v(·, t) ∈
C3([0, T ]).

In Eq. (14), when n = 1,

c̃(α)
1 = ã(α)

1 = 1,

and when n ≥ 2

c̃(α)
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ã(α)
1 + b̃(α)

1 , j = 1,

ã(α)
j + b̃(α)

j − b̃(α)
j−1, 2 ≤ j ≤ n − 1,

ã(α)
j − b̃(α)

j−1, j = n,

in which

ã(α)
l = l1−α − (l − 1)1−α, 1 ≤ l ≤ n,

b̃(α)
l = 1

2 − α
[l2−α − (l − 1)2−α] − 1

2
[l1−α + (l − 1)1−α], 1 ≤ l ≤ n − 1.

The properties of coefficients c̃(α)
j ( j = 1, 2, . . . , n) appeared in formula (14) can

be seen in [24].
Setting

d1 = − c̃(α)
n �t−α

�(2 − α)
,

dk = −(c̃(α)
n−k+1 − c̃(α)

n−k+2)�t−α

�(2 − α)
, k = 2, 3, . . . , n,

dn+1 = c̃(α)
1 �t−α

�(2 − α)
,
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(14) becomes

C
0 D

α
t v(x, tn+1) = dn+1v(x, tn+1) +

n∑

k=2

dkv(x, tk)

+d1v(x, t1) + O(�t3−α). (15)

Use (15) in (13). Denoting vn+1(x) as the approximate solution of v(x, tn+1) and
dropping the truncation error term, we obtain the following time descretization of
model (6)–(8) at (n + 1)-th time level

(dn+1 + w)vn+1(x) − λ
∂2vn+1(x)

∂x2
= gn+1(x), (16)

where gn+1(x) = Gn+1(x)−
n∑

k=2
dkvk(x)−d1v1(x), a < x < b, n = 1, 2, . . . , Nt ,

the corresponding boundary and initial conditions can be discretized as

v1(x) = φ(x), a < x < b, (17)

vn+1(a) = ϕ(tn+1), vn+1(b) = ψ(tn+1), n = 1, 2, . . . , Nt . (18)

4.2 Space descretization

Discretizing Eq. (16) at the collocation points {ηi }, i = 2, 3, . . . , Nh + 1, we have

(dn+1 + w)vn+1(ηi ) − λ
∂2vn+1

∂x2
(ηi ) = gn+1(ηi ), n = 1, 2, . . . , Nt . (19)

Inserting (9) and (11) into the above equation yieds

(dn+1 + w)vn+1
s (ηi ) − λ

∂2vn+1
s

∂x2
(ηi ) − h2

24
λ

∂4vn+1

∂x4
(ηi ) = gn+1(ηi ) + O(h4). (20)

Noticing Eq. (16), we get

λ
∂2vn+1(x)

∂x2
= (dn+1 + w)vn+1(x) − gn+1(x). (21)

Then we can deduce that

λ
∂4vn+1(x)

∂x4
= (dn+1 + w)

∂2vn+1(x)

∂x2
− ∂2gn+1(x)

∂x2
. (22)
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By using (22), Eq. (20) can be written

(dn+1 + w)vn+1
s (ηi ) − λ

∂2vn+1
s

∂x2
(ηi ) − h2

24

[

(dn+1 + w)
∂2vn+1

∂x2
(ηi )

−∂2gn+1

∂x2
(ηi )

]

= gn+1(ηi ) + O(h4). (23)

Further, applying (21) to (23), we obtain

[

(dn+1 + w) − h2(dn+1 + w)2

24λ

]

vn+1
s (ηi ) − λ

∂2vn+1
s

∂x2
(ηi )

=
[

1 − h2(dn+1 + w)

24λ

]

gn+1(ηi ) − h2

24

∂2gn+1

∂x2
(ηi ) + O(h4). (24)

In order to discuss conveniently, we let σ1 = (dn+1 + w) − h2(dn+1 + w)2

24λ
,

σ2 = −λ, σ3 = 1 − h2(dn+1 + w)

24λ
, Eq. (24) can be arranged as the following form

σ1v
n+1
s (ηi ) + σ2

∂2vn+1
s

∂x2
(ηi ) = σ3g

n+1(ηi ) − h2

24

∂2gn+1

∂x2
(ηi ) + O(h4). (25)

By (10), the corresponding boundary conditions are

vn+1
s (η1) + O(h4) = ϕ(tn+1), vn+1

s (ηNh+2) + O(h4) = ψ(tn+1). (26)

In Eq.(25), denoting vn+1
h (ηi ) as the approximate solution of vn+1

s (ηi ) and omitting
O(h4) term, we construct the following collocation system

σ1v
n+1
h (ηi ) + σ2

∂2vn+1
h

∂x2
(ηi ) = σ3g

n+1(ηi ) − h2

24

∂2gn+1

∂x2
(ηi ),

i = 2, 3, . . . , Nh + 1, n = 1, 2, . . . , Nt , (27)

with the initial condition

v1h(ηi ) = φ(ηi ), i = 2, 3, . . . , Nh + 1, (28)

and the boundary conditions

vn+1
h (η1) = ϕ(tn+1), vn+1

h (ηNh+2) = ψ(tn+1). (29)

At the time mesh point t = tn+1, according to the collocation technique, vn+1
h (x)

can be expressed as a linear combination of quadratic B-spline basis functions Bk(x)
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proposed in Sect. 3, thus

vn+1
h (x) =

Nh+2∑

k=1

ξn+1
k Bk(x), (30)

where coefficients {ξn+1
k }Nh+2

k=1 are to be determined. By (29), it is easy to obtain

ξn+1
1 = 2ϕ(tn+1), ξ

n+1
Nh+2 = 2ψ(tn+1), n = 1, 2, . . . , Nt . (31)

Substituting (30) into Eq.(27), the collocation equation can be represented as

σ1

Nh+2∑

k=1

ξn+1
k Bk(ηi ) + σ2

Nh+2∑

k=1

ξn+1
k

∂2Bk

∂x2
(ηi ) = σ3g

n+1(ηi ) − h2

24

∂2gn+1

∂x2
(ηi ),

i = 2, 3, . . . , Nh + 1, n = 1, 2, . . . , Nt . (32)

According to the Proposition 1, we let

A = 1

8

⎛

⎜
⎜
⎜
⎜
⎜
⎝

5 1
1 6 1

. . .
. . .

. . .

1 6 1
1 5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Nh×Nh

, D = 1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−3 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Nh×Nh

.

Then the above Eq. (32) can be written in the following matrix form

(σ1A + σ2D)ξn+1 = Cn+1, (33)

where ξn+1 = (ξn+1
2 , ξn+1

3 , . . . , ξn+1
Nh+1)

� and Cn+1 = (cn+1
2 , cn+1

3 , . . . , cn+1
Nh+1)

�, in
which

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn+1
2 = σ3gn+1(η2) − h2

24

∂2gn+1

∂x2
(η2) − (

σ1

4
+ 2σ2

h2
)ϕ(tn+1),

cn+1
i = σ3gn+1(ηi ) − h2

24

∂2gn+1

∂x2
(ηi ), i = 3, 4, . . . , Nh,

cn+1
Nh+1 = σ3gn+1(ηNh+1) − h2

24

∂2gn+1

∂x2
(ηNh+1) − (

σ1

4
+ 2σ2

h2
)ψ(tn+1).

Let H = σ1A + σ2D, the matrix Eq. (33) is simplified as

Hξn+1 = Cn+1, n = 1, 2, . . . , Nt . (34)
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Combining ξn+1 obtained from (34) and ξn+1
1 , ξn+1

Nh+2 got from (31), we let ξ̃n+1 =
(ξn+1

1 , ξn+1
2 , . . . , ξn+1

Nh+1, ξ
n+1
Nh+2)

�. Simultaneously, by Proposition 1 we set

Ã = 1

8

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 0 0
1 5 1

1 6 1
. . .

. . .
. . .

1 6 1
1 5 1
0 0 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(Nh+2)×(Nh+2)

.

According to the expression (30),

vn+1
h (η) = Ãξ̃n+1 (35)

is the quadratic spline approximate solution of system (6)–(8) at each time level tn+1,
where η = (η1, η2, . . . , ηNh+2)

�.

5 Convergence analysis

In this section, we aim to investigate the convergence analysis of the compact QSC
method.

Proposition 2 When σ > 0.527, ‖(σ2D)−1‖∞ < 1 is held, where σ > 0 is the
volatility of underlying asset.

Proof Note that σ2 = −σ 2

2
, we have

‖(σ2D)−1‖∞ = 2h2

σ 2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎜
⎜
⎝

3 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−1∥∥
∥
∥
∥
∥
∥
∥
∥
∥
∥∞

.

Let E =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

3 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Nh×Nh

for the convenience of subsequent discussions

and by simple calculation we have the following conclusions.
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When Nh = 2, D = 1

h2

(−3 1
1 −3

)

, so E−1 =
(

3 −1
−1 3

)−1

= 1

8

(
3 1
1 3

)

, then we

have ‖E−1‖∞ = 1

2
;

When Nh = 4, ‖E−1‖∞ = (4 − 1) · (1 + 3) + (4 + 1) · (1 + 3)

4 · 4 = 2 ;

When Nh = 6, ‖E−1‖∞ = (6 − 1) · (1 + 3 + 5) + (6 + 1) · (1 + 3 + 5)

4 · 6 = 9

2
;

When Nh = 8,‖E−1‖∞ = (8 − 1) · (1 + 3 + 5 + 7) + (8 + 1) · (1 + 3 + 5 + 7)

4 · 8= 8 ;

· · ·

When Nh = 2k + 2, (k = 1, 2, · · · ),

‖E−1‖∞ = [(Nh − 1) + (Nh + 1)] · [1 + 3 + · · · + (Nh − 1)]
4 · Nh

= N 2
h

8
.

So, if we want ‖(σ2D)−1‖∞ < 1 to be established, we just make
2h2

σ 2 · N 2
h

8
< 1

when Nh = 2k, (k = 1, 2, · · · ). By h = 1

Nh
, we have σ >

1

2
.

When Nh = 3, ‖E−1‖∞ = 2 · 3 · 1 + 32

4 · 3 = 5

4
;

When Nh = 5, ‖E−1‖∞ = 2 · 5 · (1 + 3) + 52

4 · 5 = 13

4
;

When Nh = 7, ‖E−1‖∞ = 2 · 7 · (1 + 3 + 5) + 72

4 · 7 = 25

4
;

· · ·

When Nh = 2k + 1, (k = 1, 2, · · · ),

‖E−1‖∞ = 2 · Nh · [1 + 3 + · · · + (Nh − 2)] + N 2
h

4 · Nh
= N 2

h + 1

8
.

Therefore, if we want ‖(σ2D)−1‖∞ < 1 to be true, we only need to make
2h2

σ 2 · N
2
h + 1

8
< 1 when Nh = 2k + 1, (k = 1, 2, · · · ). Further, because of h = 1

Nh
,

we have σ >
1

2

√

1 + 1

N 2
h

, and when Nh is equal to 3,
1

2

√

1 + 1

N 2
h

= 0.527 is the

largest.
So in summary, when σ > 0.527, ‖(σ2D)−1‖∞ < 1 is established for Nh ≥ 2. 	

It is worth noting that it is not hard to verify the conclusion about ‖E−1‖∞ is correct

through numerical experiments.
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Theorem 1 Supposing σ1 > 0, the solution obtained from the collocation system
(27)–(29) is unique.

Proof Since λ = σ 2

2
, we immediately get λ > 0. Noticing σ2 = −λ, we have

H = σ1A + σ2D = σ1 · 1
8

⎛

⎜
⎜
⎜
⎜
⎜
⎝

5 1
1 6 1

. . .
. . .

. . .

1 6 1
1 5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ λ

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

3 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

For the first and last row of the matrix H ,

|5
8
σ1 + 3

h2
λ| − |1

8
σ1 − 1

h2
λ| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4

8
σ1 + 4

h2
λ > 0,

1

8
σ1≥ 1

h2
λ,

6

8
σ1 + 2

h2
λ > 0,

1

8
σ1 <

1

h2
λ.

For the second row to the Nh − 1 row of the matrix H ,

|6
8
σ1 + 2

h2
λ| − 2|1

8
σ1 − 1

h2
λ| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4

8
σ1 + 4

h2
λ > 0,

1

8
σ1≥ 1

h2
λ,

σ1 > 0,
1

8
σ1 <

1

h2
λ.

By the definition of strictly diagonally dominant matrix, when σ1 > 0 the matrix
H is a strictly diagonally dominant matrix. Hence, H is a nonsingular matrix which
indicates the solution of the matrix equation (34) uniquely exists.

According to (31) and (35), the solution obtained from the collocation system (27)–
(29) is unique. 	


In fact, it is not difficult to find that the condition of σ1 > 0 is satisfied in most
cases in the following numerical experiments.

Theorem 2 Let vn+1(η) be the exact solution of problem (16)–(18) at the colloca-
tion points and vn+1

h (η) be the collocation approximation from (27)–(29). Supposing
v(x) ∈ C4([a, b]), when σ > 0.527 and ‖(σ2D)−1(σ1A)‖∞ < 1, the truncation
error is

‖vn+1(η) − vn+1
h (η)‖∞ = O(h4), (36)

123



A compact quadratic spline collocation method… 341

where η = (η1, η2, . . . , ηNh+2)
�, ‖v − vh‖∞ = max{|v(x) − vh(x)|, x ∈ [a, b]}.

Proof Subtracting (27) from (25), we have

σ1(v
n+1
s (ηi ) − vn+1

h (ηi )) + σ2
∂2(vn+1

s − vn+1
h )

∂x2
(ηi ) = O(h4), (37)

where i = 2, 3, . . . , Nh + 1; n = 1, 2, . . . , Nt .
Let

vn+1
s (x) =

Nh+2∑

k=1

θn+1
k Bk(x),

(37) yields

σ1

Nh+2∑

k=1

(θn+1
k − ξn+1

k )Bk(ηi ) + σ2

Nh+2∑

k=1

(θn+1
k − ξn+1

k )
∂2Bk

∂x2
(ηi ) = O(h4). (38)

In order to complete the error analysis, we prove the matrix D is invertible firstly.
Let Dy = 0 with y = (y1, y2, . . . , yNh )

�, we have

−3y1 + y2 = 0;
y1 − 2y2 + y3 = 0;
y2 − 2y3 + y4 = 0;

· · ·
yNh−2 − 2yNh−1 + yNh = 0;

yNh−1 − 3yNh = 0.

Then we can get y2 = 3y1, y3 = 5y1, y4 = 7y1, . . . , yNh−1 = (2Nh −3)y1, yNh =
(2Nh −1)y1, which means y1 = y2 = · · · = yNh = 0 considering yNh−1−3yNh = 0.
Hence, the invertibility of matrix D is carried out.

Second, we will prove ‖H−1‖∞ is bound.
Noticing

H−1 = [(σ2D)(σ2D)−1(σ1A + σ2D)]−1 = [I + (σ2D)−1(σ1A)]−1(σ2D)−1,

when ‖(σ2D)−1(σ1A)‖∞ < 1 we apply Neumann series of matrix and have

H−1 = {I +
∞∑

m=1

(−1)m[(σ2D)−1(σ1A)]m}(σ2D)−1.
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According to the Proposition 2, ‖(σ2D)−1‖∞ < 1 is established when σ > 0.527.
We can obtain the following inequality

‖H−1‖∞ ≤ [1 +
∞∑

m=1
‖(σ2D)−1(σ1A)‖m∞]‖(σ2D)−1‖∞

< 1 +
∞∑

m=1
|(σ2D)−1(σ1A)‖m∞

= 1

1 − ‖(σ2D)−1(σ1A)‖∞
.

Thus, when ‖(σ2D)−1(σ1A)‖∞ < 1 the boundedness of ‖H−1‖∞ is proved.
Setting εn+1

k = θn+1
k − ξn+1

k , (k = 2, 3, . . . , Nh + 1), εn+1 = (εn+1
2 , εn+1

3 , · · ·
εn+1
Nh+1)

�, and taking into account (38), ‖εn+1‖∞ = O(h4) is gained.

By (31), we get εn+1
1 = εn+1

Nh+2 = 0. Let ε̃n+1 = (0, εn+1
2 , εn+1

3 , · · · εn+1
Nh+1, 0)

�,
because that

‖vn+1
s (η) − vn+1

h (η)‖∞ = ‖ Ãε̃n+1‖∞ ≤ ‖ Ã‖∞‖ε̃n+1‖∞,

and ‖ Ã‖∞ is bound, we have

‖vn+1
s (η) − vn+1

h (η)‖∞ = O(h4). (39)

By formulas (12) and (39), using triangular inequality, we have the spacial error
bound

‖vn+1(η) − vn+1
h (η)‖∞ ≤ ‖vn+1(η) − vn+1

s (η)‖∞ + ‖vn+1
s (η) − vn+1

h (η)‖∞
= O(h4) + O(h4) = O(h4).

	

Theorem 3 Let v(x, t) ∈ C4,3

x,t ([a, b] × [0, T ]), when σ > 0.527 and ‖(σ2D)−1

(σ1A)‖∞ < 1, the exact solution v(η, tn+1) of problem (6)–(8) and the collocation
solution vn+1

h (η) proposed numerical method (27)–(29) satisfy

‖v(η, tn+1) − vn+1
h (η)‖∞ = O(h4 + �t3−α),

where η = (η1, η2, . . . , ηNh+2)
�, n = 1, 2, . . . , Nt .

Proof According to Theorem 2 and considering the numerical error about time in
expression (14),

‖v(η, tn+1) − vn+1
h (η)‖∞ = O(h4 + �t3−α)

can be immediately carried out. 	
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6 Numerical experiments

In this section, two examples with exact solutions are presented to demonstrate the
high accuracy of the compact QSC method proposed in Sect. 4. The corresponding
numerical results are listed below. Moreover, for showing the effectiveness of the
new scheme, we use three different European option pricing problems: European
put option, European call option and European double barrier knock-out call option,
respectively. After that, we take European put option as an example to illustrate the
effect of different parameters on option price in time-fractional Black–Scholes model.

Example 1 Consider the following time-fractional Black–Scholes model with homo-
geneous boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t V (x, t) − σ 2

2

∂2V (x, t)

∂x2
− (r − σ 2

2
)
∂V (x, t)

∂x
+ rV (x, t) = f (x, t),

0 < x < 1, 0 < t ≤ 1,
V (x, 0) = x5 − x4, 0 < x < 1,
V (0, t) = 0, V (1, t) = 0, 0 ≤ t ≤ 1,

(40)

with 0 < α < 1, r = 0.02 and σ = 0.8, where

f (x, t) = 6t3−α

�(4 − α)
(x5 − x4) − (t3 + 1)

·
[
σ 2

2
(20x3 − 12x2) +

(

r − σ 2

2

)

(5x4 − 4x3) − r(x5 − x4)

]

is chosen such that the exact solution is V (x, t) = (t3 + 1)x4(x − 1).

Example 2 Consider the following time-fractional Black–Scholes model with nonho-
mogeneous boundary conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
0 D

α
t V (x, t) − σ 2

2

∂2V (x, t)

∂x2
−

(

r − σ 2

2

)
∂V (x, t)

∂x
+ rV (x, t) = f (x, t),

0 < x < 1, 0 < t ≤ 1,
V (x, 0) = x4 + 1, 0 < x < 1,
V (0, t) = t3 + 1, V (1, t) = 2(t3 + 1), 0 ≤ t ≤ 1,

(41)
with 0 < α < 1, r = 0.5 and σ = √

2, where

f (x, t) = 6t3−α

�(4 − α)
(x4+1) − (t3 + 1)

[
σ 2

2
· 12x2+

(

r − σ 2

2

)

· 4x3 − r(x4 + 1)

]

is chosen such that the exact solution is V (x, t) = (t3 + 1)(x4 + 1).
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Table 1 Numerical errors and convergence orders for Example 1 with different �t when h = 1/200

α = 0.2 α = 0.5 α = 0.8
�t Max-error Rate Max-error Rate Max-error Rate

1/10 5.3144e-06 3.0317e-05 1.2014e-04

1/20 8.1141e-07 2.7114 5.4650e-06 2.4718 2.6248e-05 2.1944

1/40 1.2242e-07 2.7286 9.7909e-07 2.4807 5.7259e-06 2.1966

1/80 1.8200e-08 2.7498 1.7459e-07 2.4875 1.2477e-06 2.1982

1/160 2.5779e-09 2.8197 3.0941e-08 2.4964 2.7161e-07 2.1997

Table 2 Numerical errors and convergence orders for Example 1 with different h when �t = 1/1000

α = 0.2 α = 0.5 α = 0.8
h Max-error Rate Max-error Rate Max-error Rate

1/8 1.2720e-04 1.2714e-04 1.3135e-04

1/16 8.5517e-06 3.8947 8.5378e-06 3.8964 8.5541e-06 3.9407

1/32 5.5464e-07 3.9466 5.5406e-07 3.9458 5.5332e-07 3.9504

Tables 1, 2, 3, and 4 list the numerical results of the time-fractional Black–
Scholes models (40) and (41), respectively. In these tables the Max-error denotes
the Maximum-norm error which is measured by

max
1≤i≤Nh+2,1≤n≤Nt

|V (ηi , tn+1) − vn+1
h (ηi ) · e 1

2βηi |,

where V (ηi , tn+1) is the true solution of the Black–Scholes model at point (ηi , tn+1)

and vn+1
h (ηi ) is the compact QSC approximate solution of system (27)-(29). The tem-

poral convergence order is given by the formula Rate = log2
Max − error(�t)

Max − error(�t/2)
,

as for the spacial convergence order, it is Rate = log2
Max − error(h)

Max − error(h/2)
for the

spatial step size h.
From Tables 1 and 3, it can be seen that for different values of α the compact QSC

method yields 3 − α order accuracy in time for both Examples 1 and 2.
To verify the spacial numerical accuracy, taking different space steps h and different

values of time-fractional order α, the computational results of Examples 1 and 2 are
showed in Tables 2 and 4, respectively. One can observe from them that the orders of
convergence of the new algorithm are all four in space direction.
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Table 3 Numerical errors and convergence orders for Example 2 with different �t when h = 1/200

α = 0.2 α = 0.5 α = 0.8
�t Max-error Rate Max-error Rate Max-error Rate

1/10 5.5314e-05 3.0814e-04 1.1775e-03

1/20 8.4397e-06 2.7124 5.5460e-05 2.4741 2.5707e-04 2.1955

1/40 1.2740e-06 2.7278 9.9278e-06 2.4819 5.6047e-05 2.1975

1/80 1.9077e-07 2.7395 1.7702e-06 2.4876 1.2211e-05 2.1985

1/160 2.8453e-08 2.7452 3.1493e-07 2.4908 2.6600e-06 2.1987

Table 4 Numerical errors and convergence orders for Example 2 with different h when �t = 1/1000

α = 0.2 α = 0.5 α = 0.8
h Max-error Rate Max-error Rate Max-error Rate

1/8 8.4567e-05 8.4466e-05 8.4857e-05

1/16 5.5024e-06 3.9420 5.4978e-06 3.9414 5.5004e-06 3.9474

1/32 3.5077e-07 3.9715 3.5077e-07 3.9703 3.5294e-07 3.9620

Example 3 Consider the time-fractional Black–Scholes model [6]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂αU (S, τ )

∂τα
+ 1

2
σ 2S2

∂2U (S, τ )

∂S2
+ (r − E)S

∂U (S, τ )

∂S
− rU (S, τ ) = 0,

(S, τ ) ∈ (Sa, Sb) × (0, T ),

U (S, T ) = z(S),

U (Sa, τ ) = p(τ ), U (Sb, τ ) = q(τ ).

(42)

When z(S) = max{K − S, 0}, p(τ ) = Ke−r(T−τ) and q(τ ) = E = 0, problem
(42) is a European put option. As for the European call option, the initial and boundary
conditions correspondingly are z(S) = max{S − K , 0}, p(τ ) = E = 0 and q(τ ) =
Sb−Ke−r(T−τ). Here the parameters are r = 0.05, σ = 0.55, the strike price K = 50,
Sa = 0.1(a = −2.3), Sb = 100(b = 4.6) and T = 1(year). Applying the compact
QSC method, Figs. 1 and 2 illustrate the effect of different time-fractional derivative
orderα onoptionprices forEuropeanput option andEuropean call option, respectively.
As can be seen from the two figures that the time-fractional derivatives have little effect
on option price for the cases of deep-in-the-money( S � K ) and deep-out-the-money
(S  K ) and have significant effect near on-the-money (S ≈ K ).

When z(S) = max{S − K , 0} and p(τ ) = q(τ ) = 0, model (42) describes a
time-fractional European double barrier knock-out call option. The parameters are
r = 0.03, σ = 0.55, Sa = 3(a = 1.1), Sb = 15(b = 2.7), T = 1(year), the strike
price K = 10 and the dividend yield E = 0.01. The curves with different α of double
barrier option price are plotted in Fig. 3. For α = 1 the above problem reduces to the
classical Black–Scholes model. One can observe from the figure that the smaller the
order α the higher the peak of the curve when S is greater than the strike price K .
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Fig. 1 Curves of European put option with different α
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Fig. 2 Curves of European call option with different α

This shows that compared with the classic Black–Scholes model, the time-fractional
Black–Scholes model can more reflect the jump movement of problem.

Let’s take European put option as an example to investigate the effect of different
parameters on option price in time-fractional Black–Scholes model.
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Fig. 3 Curves of double barrier option with different α

Example 4 Consider the time-fractional Black–Scholes model governing European
put option ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂αU (S, τ )

∂τα
+ 1

2
σ 2S2

∂2U (S, τ )

∂S2
+ r S

∂U (S, τ )

∂S

−rU (S, τ ) = 0, (S, t) ∈ (Sa, Sb) × (0, T ),

U (S, T ) = max{K − S, 0},
U (Sa, τ ) = Ke−r(T−τ), U (Sb, τ ) = 0,

(43)

with α = 0.5, and Sa = 0.1(a = −2.3), Sb = 100(b = 4.6).

Using the new algorithm proposed in Sect. 4, the curves of the European put option
pricing to different values of parameters are shown in Fig. 4a–d.

Figure 4a shows the influence of volatility of the stock price movement on option
price, which confirms a well-known statement in the real financial world: high risk,
high return. From Fig. 4b, it can be seen that the higher the interest rate is, the lower
the option will be. One can deduce from Fig. 4c that the option price goes up when the
exercise price increases. Finally, Fig. 4d illustrates that when the stock price is much
lower than the strike price, an option with shorter expiration date is more profitable
than an option with longer expiration date. While the stock price is higher, an option
with longer expiration date is more favorable.

The above results match what happens in the real market very well.

7 Conclusion

In this work, a compact QSC method for the time-fractional Black–Scholes model
governing European option pricing has been studied. Firstly, by an exponential
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Fig. 4 Curves of European put option with different values of parameters

transformation the time-fractional Black–Scholes equation was transformed into a
time-fractional sub-diffusion equation. Then the Caputo time-fractional derivativewas
approximated by the L1 − 2 formula, and for the space direction we used a colloca-
tion method based on quadratic B-spline basis functions. Thus we constructed a new
higher numerical method with convergence order O(�t3−α + h4) for time-fractional
Black–Scholesmodel.Moreover, the error bound of the schemewas discussed. Finally,
numerical examples showed the accuracy and effectiveness of the proposed technique.
The extension of themethod to theBlack–Scholesmodel with spatial fractional deriva-
tive and other fractional models will be the future work for us.
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