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Abstract
Brooks’ theorem states that for a graph G, if Δ(G) ≥ 3, then χ(G) ≤
max{Δ(G), ω(G)}. Borodin and Kostochka conjectured a result strengthening
Brooks’ theorem, stated as, if Δ(G) ≥ 9, then χ(G) ≤ max{Δ(G) − 1, ω(G)}.
This conjecture is still open for general graphs. In this paper, we show that the con-
jecture is true for graphs having no induced path on five vertices and no induced cycle
on four vertices.

Keywords Coloring · Chromatic bound · Borodin–Kostochka’s conjecture ·
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1 Introduction

All the graphs considered are finite, simple, and undirected. In a graph, two vertices
are said to be adjacent if there is an edge between them. A clique in a graph G is a
set of pairwise adjacent vertices of G and the clique number of G is the maximum
cardinality of a clique in G. Let Pr and Cs denote the path on r vertices and the
cycle on s vertices, respectively. The complete graph on n vertices is denoted by Kn .
The degree of a vertex in a graph G is the number of vertices adjacent to it and the
maximum (resp. minimum) degree of the graph G is the maximum (resp. minimum)
of the degrees of the vertices of G.

By proper coloring of a graph, we mean, assigning colors to the vertices of the
graph in such a way that no two adjacent vertices receive the same color. A graph is k-
colorable, if it has a proper coloring using at most k colors. The smallest k, for which a
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Fig. 1 Some special graphs. In (i) and (i i), bolder edges represents that the sets at the ends are complete
to each other

graph is k-colorable, is known as the chromatic number of the graph. It has always been
amatter of interestwith practical applications to bound the chromatic number of graphs
by functions of different parameters such as clique number and maximum degree of
the graphs. Extensive research has taken place to this end (see [11,13,15,16]). For a
graph G = (V , E), we use χ(G), ω(G), Δ(G), and δ(G) to denote the chromatic
number, the clique number, the maximum degree, and the minimum degree of G,
respectively. By greedy coloring approach, it is easy to see that χ(G) ≤ Δ(G) + 1.
Brooks observed that odd cycles and complete graphs are the only graphs to achieve
this bound and strengthened this bound by proving the following result.

Theorem 1 (Brooks’ theorem [1]) For a graph G, if Δ(G) ≥ 3, then χ(G) ≤
max{Δ(G), ω(G)}.

Borodin and Kostochka conjectured that Brooks’ bound can be further improved if
Δ(G) ≥ 9.

Conjecture 1 (Borodin–Kostochka [2]) For a graph G, if Δ(G) ≥ 9, then χ(G) ≤
max{Δ(G) − 1, ω(G)}.

Note that if ω(G) ≥ Δ(G), then by Brooks’ theorem, G satisfies the Borodin–
Kostochka’s conjecture. Therefore, to prove the conjecture, it is sufficient to prove that
for a graph G, ifΔ(G) ≥ 9 and ω(G) ≤ Δ(G)−1, then χ(G) ≤ Δ(G)−1. Cranston
et al. [4] mentioned that Conjecture 1 cannot be strengthened by making Δ(G) ≥ 8
or ω(G) ≤ Δ(G) − 2. For example if Δ(G) = 8, then we get a counterexample (see
the graph G1 of Fig. 1) to Conjecture 1. Notice that Δ(G1) = 8 and ω(G1) = 6 <

7 = Δ(G1) − 1, whereas χ(G1) = 8 > 7 = Δ(G1) − 1. Moreover, if ω(G) ≤
Δ(G) − 2, then notice that for the graph G2 (see Fig. 1), we have Δ(G2) = t ≥ 9
and ω(G2) = Δ(G2) − 2, whereas χ(G2) = Δ(G2) − 1. This implies that if the
hypothesis ω(G) ≤ Δ(G) − 1 is strengthened to ω(G) ≤ Δ(G) − 2, then the bound
χ(G) ≤ Δ(G) − 1 cannot be strengthened to χ(G) ≤ Δ(G) − 2.

For a given positive integer k, we use the standard notation [k] to denote the set
{1, 2, . . . , k}. We say a graph G contains H if there is an induced subgraph of G
isomorphic to H . A graph G is called H -free if G does not contain H . For a family
of graphs H, G is called H-free if G is H -free for every H ∈ H. A graph class G is
said to be hereditary, if for every graph G in G, all the induced subgraphs of G belong
to G. Note that the class of H-free graphs is a hereditary graph class. If H = {H}
(resp. H = {H1, H2}), then H-free graphs are simply written as H -free ((H1, H2)-
free) graphs. In 1981, Dhurandhar [8], verified the Borodin–Kostochka’s conjecture
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for H-free graphs, where H = {claw, K5 − e, co − twin − house}. Kierstead and
Schmerl [10] proved the validity of the conjecture in the class of (claw, K5 − e)-free
graphs. In 2013, Cranston and Rabern [6] removed the need to exclude K5 − e from
the graph and verified the conjecture for claw-free graphs. Cranston and Rabern [5]
showed that, if for a graph G, χ(G) ≥ Δ(G) ≥ 13, then G contains a clique of
size Δ(G) − 3. Note that the Borodin–Kostochka’s conjecture can be restated as, if a
graph G satisfies χ(G) ≥ Δ(G) ≥ 9, then G contains a clique of size Δ(G). In 1999,
Reed [14] presented the strongest partial result towards the Borodin–Kostochka’s
conjecture by showing that the conjecture is true for all graphs having maximum
degree at least 1014. In a recent paper by Cranston et al. [4], the Borodin–Kostochka’s
conjecture is verified for (P5, gem)-free graphs.

In this note, we validate the Borodin–Kostochka’s conjecture for (P5,C4)-free
graphs using their structural properties. The result is stated in the following theorem.

Theorem 2 Let G be a (P5,C4)-free graph. If Δ(G) ≥ 9, then χ(G) ≤ max{Δ(G)−
1, ω(G)}.

2 Terminology, notations, and preliminary results

Let G be a graph. The sets NG(v) = {u : uv ∈ E(G)} and NG[v] = NG(v) ∪ {v}
are called the open neighborhood and the closed neighborhood of the vertex v in G.
If xy ∈ E(G) for x, y ∈ V (G), then x and y are called the endpoints of the edge
xy. The degree of a vertex v in G is denoted by dG(v). If the context of the graph is
clear, we simply use N (v), N [v], and d(v) instead of NG(v), NG [v], dG(v). For sets
A, B ⊆ V (G), [A] denotes the subgraph of G induced by vertices of A and [A, B]
is the subset of E(G) consisting those edges which have one endpoint in A and other
in B. We say A is complete to B, or simply [A, B] is complete, if every vertex of A
is adjacent to every vertex of B. We say A is anticomplete to B or simply [A, B] is
anticomplete if [A, B] = ∅. Specifically, a vertex v ∈ V (G)\A is said to be complete
to A if [{v}, A] is complete. For a set A ⊆ V (G), G − A is the graph obtained by
removing the vertices belonging to A and all the edges incident on every vertex of A
from G. If A = {v}, then we simply use G − v instead of G − {v}.

The distance between two vertices u and v in G, denoted by dG(u, v) (or simply
d(u, v) if context of the graph is clear) is the length of a shortest path betweenu and v. If
H is a subgraph of G and v ∈ V (G), we define d(v, H) as min{d(v, x) : x ∈ V (H)}.
For A ⊆ V (G), we simply use d(v, A) to denote d(v, [A]). For the notations not
defined here, we refer to [9].

A graph G is called k-critical (resp. k-vertex critical), if χ(G) = k and any proper
subgraph (induced subgraph) ofG can be properly colored using k−1 colors. A graph
G is called critical (resp. vertex critical), if it is k-critical (resp. k-vertex critical) for
some positive integer k. The following lemma given by Dirac, states a useful property
of vertex critical graphs. For completeness, we present a short proof of it.

Lemma 1 ([7]) If a graph G is vertex critical, then δ(G) ≥ χ(G) − 1.

Proof If possible, let v be a vertex of G with d(v) ≤ χ(G) − 2. Since G is vertex
critical, G − v is (χ(G) − 1)-colorable. So all χ(G) − 1 colors used in G − v will
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not be used to color the vertices adjacent to v in G. Hence one of the colors among
(χ(G) − 1) colors can be given to v to produce a (χ(G) − 1)-coloring of G. This
contradicts the fact that χ(G) is the chromatic number of G. So δ(G) ≥ χ(G) − 1. �	

A buoy is a graph G, whose vertex set can be partitioned into five nonempty
sets, H1, H2, H3, H4, and H5 such that [Hi , Hi+1] is complete and [Hi , Hi+2] =
[Hi , Hi+3] = ∅ for every i ∈ [5], where addition in indices are done in modulo 5
arithmetic.Abuoy is said to be a complete-buoy if Hi is a clique for every i ∈ [5]. In [4],
it is proved that ifG is a complete-bouy, thenχ(G) ≤ max{Δ(G)−1, ω(G)} implying
that a complete-bouy satisfies the Borodin–Kostochka’s conjecture. We record this in
the following lemma to use later.

Lemma 2 ([4]) A complete-buoy satisfies the Borodin–Kostochka’s conjecture.

Kostochka and Catlin independently presented a useful result, by which one can
choose a counterexample for theBorodin–Kostochka’s conjecture in a hereditary graph
class G, if exists, to have maximum degree 9.

Theorem 3 ([3,12]) If G is a hereditary graph class and if the Borodin–Kostochka’s
conjecture is true for all graphs G ∈ G having Δ(G) = 9, then the conjecture is true
for all graphs in G.

3 Proof of Theorem 2

We first present a lemma that guarantees the existence of a vertex critical counterex-
ample of Conjecture 1 if a counterexample exists for the conjecture.

Lemma 3 If G is a smallest counterexample (smallest in terms of the number of ver-
tices) for the Borodin–Kostochka’s conjecture with Δ(G) = 9, then G must be vertex
critical.

Proof Since G is a counterexample for the Borodin–Kostochka’s conjecture, we have
ω(G) ≤ Δ(G) − 1 = 8 and χ(G) = Δ(G) = 9. Let u ∈ V (G) be arbitrary. If
Δ(G − u) = Δ(G) = 9, then χ(G − u) ≤ 8 since G is a smallest such graph. If
Δ(G−u) ≤ 8, then by Brooks’ theorem,χ(G−u) ≤ max{ω(G−u),Δ(G−u)} ≤ 8.
So χ(G − u) ≤ 8 < χ(G) implying that G is vertex critical. �	

By Theorem 3 and Lemma 3, we can conclude that, if some hereditary graph class
G contains a counterexample for the Borodin–Kostochka’s conjecture, then it must
contain a vertex critical counterexample having maximum degree 9.

To prove Theorem 2, we proceed by analyzing the (P5,C4)-free graphs having an
induced C5 and not having an induced C5. Let G be a (P5,C4)-free graph. If G does
not contain an induced C5, then G is perfect implying that χ(G) = ω(G) and hence
G satisfies the Borodin- Kostochka’s conjecture. If G contains an induced C5, then
we use the structural properties of G around an induced C5 to show the validity of
the Borodin- Kostochka’s conjecture. We now present the structural properties of a
(P5,C4)-free graphs around an induced C5.
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Fig. 2 Schematic representation of G. Here grey circular regions represent cliques and, bolder lines and
curves represent that their corresponding ends are complete to each other

LetG be a (P5,C4)-free graph andC = v1v2v3v4v5 be an inducedC5 ofG. All the
indices that will be used are with respect to modulo 5 arithmetic. Define the following
sets.

N1 = {v ∈ V (G)\V (C) : N (v) ∩ V (C) �= ∅},
N2 = V (G)\(N1 ∪ V (C)),

It is clear that if the sets V (C), N1 and N2 is a partition of V (G).

Claim 1 Each vertex in N1 is either adjacent to exactly three consecutive vertices in
C or complete to C.

Proof of Claim 1: Let v ∈ N1. If |N (v) ∩ V (C)| = 5, then we are done. So we may
assume that |N (v)∩V (C)| ≤ 4. If |N (v)∩V (C)| = 1, then without loss of generality,
let N (v) ∩ V (C) = {v1}. Now {v, v1, v2, v3, v4} induces a P5, a contradiction. So
|N (v) ∩ V (C)| ≥ 2. If |N (v) ∩ V (C)| = 2, then let u, w ∈ N (v) ∩ V (C). If
u and w are consecutive in C , then let u = vi and w = vi+1 for some i ∈ [5].
Now {v, vi+1, vi+2, vi+3, vi+4} induces a P5, a contradiction. If u and w are non
consecutive, then let u = vi and w = vi+2 for some i ∈ [5]. Now {v, vi , vi+1, vi+2}
induces a C4, a contradiction. So |N (v) ∩ V (C)| ≥ 3. If |N (v) ∩ V (C)| = 4, then
let vi /∈ N (v) for some i ∈ [5]. Now {v, vi−1, vi , vi+1} induces a C4, a contradiction.
Thus |N (v) ∩ V (C)| = 3. If all three vertices are not consecutive, then there exists
i ∈ [5] such that vi−1, vi+1 ∈ N (v) and vi /∈ N (v). This is true since d(u, w) ≤ 2 for
any pair of vertices u andw ofC . Now {v, vi−1, vi , vi+1} induces aC4, a contradiction.
Therefore, all vertices of N (v)∩V (C) must be consecutive. This completes the proof
of the claim. �	
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Using Claim 1, we now partition the setN1 into six setsU∪U1∪U2∪U3∪U4∪U5,
where U is complete to C and Ui is complete to {vi−1, vi , vi+1} and anticomplete to
{vi+2, vi+3} for every i ∈ [5]. Now, we observe following properties (see Fig. 2).

(3.1) U and Ui are cliques for every i ∈ [5].
If uu∗ /∈ E(G) for u, u∗ ∈ U , then {u, v1, u∗, v3} induces a C4. Again if such
u and u∗ are considered from Ui for i ∈ [5], then {u, vi+1, u∗, vi−1} induces
a C4.

(3.2) [U ,∪5
i=1Ui ] is complete.

If there exists x ∈ Ui for some i ∈ [5] and u ∈ U , such that u and x are not
adjacent, then {u, vi−1, x, vi+1} induces a C4 in G.

(3.3) [Ui ,Ui+1] is complete and [Ui ,Ui+2] = [Ui ,Ui+3] = ∅ for all i ∈ [5].
If [Ui ,Ui+1] is not complete for some i ∈ [5], then there exist x ∈ Ui and
y ∈ Ui+1 such that xy /∈ E(G). Then {y, vi+2, vi+3, vi+4, x} induces a P5. If
[Ui ,Ui+2] �= ∅ for some i ∈ [5], then there exist x ∈ Ui and y ∈ Ui+2 such that
xy ∈ E(G). Now {x, vi+4, vi+3, y} induces a C4. Similarly if [Ui ,Ui+3] �= ∅
for some i ∈ [5], then there exist x ∈ Ui and y ∈ Ui+3 such that xy ∈ E(G).
Now {x, vi+1, vi+2, y} induces a C4.

(3.4) [N2,∪5
i=1Ui ] = ∅.

If [N2,∪5
i=1Ui ] �= ∅, then there exist x ∈ N2 and y ∈ Ui for some i ∈ [5]

such that xy ∈ E(G). Now {x, y, vi+1, vi+2, vi+3} induces a P5 in G.

Theorem 2 If G is a (P5,C4)-free graph with Δ(G) ≥ 9, then χ(G) ≤ max{Δ(G) −
1, ω(G)}.
Proof LetG be the class of all (P5,C4)-free graphs. It is sufficient to prove the theorem
for connected graphs only. If possible, then let G be a smallest counterexample for
the Borodin–Kostochka’s conjecture in G that minimizes Δ(G). Since Δ(G) ≥ 9,
by Theorem 3, Δ(G) = 9 and by Lemma 3, G is vertex critical. If ω(G) ≥ 9,
then the result holds due to Brooks’ theorem. So we may assume that χ(G) = 9
and ω(G) ≤ 8. By Lemma 1, each vertex in G has degree either 8 or 9. If G has
no induced C5, then, since G is C4-free and every induced cycle of length more
than 5 contains an induced P5, G must be chordal implying that G is perfect. So
χ(G) = ω(G) ≤ max{ω(G),Δ(G) − 1}. This is a contradiction to the fact that
G is a counterexample of Conjecture 1. Hence G must contain an induced C5. Let
C = v1v2v3v4v5 be an induced C5 in G. Define the sets N1, N2, U , and Ui for
each i ∈ [5] as defined earlier. Now we proceed by considering the following two
cases. In each case, we show a contradiction to the fact that G is a counterexample to
Borodin-Kotoschka’s conjecture.
Case 1: ∪5

i=1Ui = ∅.
Recall that by Lemma 3, each vertex in G has degree 8 or 9; thus d(v1) ≥ 8. So

|N (v1) ∩ U | ≥ 6 implying that |U | ≥ 6. By (3.1), U is a clique and by definition of
U , U is complete to C . Thus d(u) ≥ 10 for every u ∈ U . This is a contradiction to
the fact that Δ(G) = 9.
Case 2: ∪5

i=1Ui �= ∅.
If U = ∅, then, since [N2,∪5

i=1Ui ] = ∅ by (3.4), we have N2 = ∅. Now observe
that G is isomorphic to [C ∪ (∪5

i=1Ui )], which is a complete-buoy. By Lemma 2, G
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satisfies the Borodin–Kostochka’s conjecture. This is a contradiction to the fact that
G is a counterexample for the Borodin–Kostochka’s conjecture. So we may assume
that U �= ∅.

If Ui �= ∅ for every i ∈ [5], then, since [U ,∪5
i=1Ui ] is complete by (3.2), we have

d(u) ≥ 10 for every u ∈ U . This is a contradiction to the fact that Δ(G) = 9. So we
may assume thatUi = ∅ for some i ∈ [5]. Let j ∈ [5] be the index, such thatUj = ∅.
Now if Ui �= ∅ for every i ∈ [5] and i �= j , then, since d(u) ∈ {8, 9} for every u ∈ U
(in fact for every u ∈ V (G)), by (3.2), we have |U | = 1 and |Ui | = 1 for every
i ∈ [5]\{ j}. Notice that d(v j ) = 5. This is a contradiction to the fact that δ(G) ≥ 8.
Hence we conclude that at least two among those sets must be empty. Let j ′ ∈ [5]
be the index other than j , such that Uj ′ = ∅. If j and j ′ are consecutive, thus due
to symmetry, we assume that j ′ = j + 1, i.e. Uj = Uj+1 = ∅. Now if Uj+2,Uj+3
and Uj+4 are non-empty, then by (3.1) and (3.2) and the fact that Δ(G) = 9, we
have 1 ≤ |U | ≤ 2 and 1 ≤ |Ui | ≤ 2 for every i ∈ { j + 2, j + 3, j + 4}. Hence
d(v j ) ≤ 5, which is again a contradiction to the fact that δ(G) ≥ 8. If j and j ′ are
non-consecutive, then, without loss of generality, we can assume j ′ = j + 2, i.e.
Uj = Uj+2 = ∅. Now if Ui �= ∅ for every i ∈ [5]\{ j, j + 2}, then using the same
arguments as above, we see that d(v j ) ≤ 6 which is a contradiction to the fact that
δ(G) ≥ 8. Hence we conclude that at least three sets among Ui ’s are empty, i.e. at
most two sets are non-empty. Now we assume that exactly two sets among Ui ’s are
non-empty. Let k, k′ ∈ [5]with k �= k′ such thatUk andUk′ are non-empty andUi = ∅
for every i ∈ [5]\{k, k′}. If k and k′ are consecutive, then due to symmetry, we can
take k′ = k + 1. By definition ofU and by (3.1)-(3.2), we have |U | ≤ 3. Now we can
see that d(vk+3) ≤ 5 which is a contradiction to the fact that δ(G) ≥ 8. So we may
assume that k and k′ to are nonconsecutive. Without loss of generality, we can take
k′ = k + 2. Again using the definition of U , (3.1), and (3.2), we see that 1 ≤ |U | ≤ 3
and 1 ≤ |Ui | ≤ 3 for i ∈ {k, k′}. This gives d(vk+3) ≤ 7, once again a contradiction
to the fact that δ(G) ≥ 8. So we can conclude that at most one set among Ui ’s can
be non-empty. Let Uk �= ∅ and Ui = ∅ for every i ∈ [5]\{k}. By (3.1) and (3.2),
we have |U | ≤ 4. This gives d(vk+2) ≤ 6, once again a contradiction to the fact that
δ(G) ≥ 8. Hence we may assume that Ui = ∅ for every i ∈ [5]. But this contradicts
the hypothesis taken in this case. So we can say that G cannot be a counterexample
to the Borodin–Kostochka’s conjecture. �	
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