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Abstract
The aim of this paper is to investigate the existence, uniqueness and continuous depen-
dence of solutions for a class of third order iterative differential equations with integral
boundary conditions. The method applied here is based on Schauder’s fixed point the-
orem. The main idea consists to convert the considered equation into an integral one
before using the fixed point theorem. Moreover, an example is given to illustrate our
main results.
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1 Introduction

This work establishes some suitable criteria that ensure the existence, uniqueness and
continuous dependence of solutions for the following third-order iterative boundary-
value problem:

x ′′′ (t) + f
(

x [0](t), x [1](t), x [2](t), . . . , x [n](t)
)

= 0, (1.1)

x (0) = x ′′ (0) = 0, α

∫ η

0
x (t) dt = x (T ) with η ∈ (0, T ) , (1.2)
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where x [0] (t) = t, x [1] (t) = x (t) , x [2] (t) = x (x (t)) , x [3] (t) = x [2] (x (t)) , . . . ,

x [n] (t) = x [n−1] (x (t)) are the iterates of the state x (t) and f is a continuous function
with respect to its arguments and satisfies some other conditions that will be specified
later.

This problem includes many important models. For instance, it arises in the model-
ing of draining or coating fluid flow problems, electromagnetic waves, thin film flow
and gravity-driven flows (see [10,11]).

In recent years, the existence of positive solutions for third-order ordinary dif-
ferential equations has been the subject of several investigations (see [1,6,7] and the
references cited therein). For example, by using a priori bounds and fixed point theory,
it was shown in [4] that the following problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y′′′ (t) = f
(
t, y (t) , y′ (t) , y′′ (t)

)
, 0 < t < 1,

y (0) = 0

y′ (0) − ay′′ (0) =
∫ 1

0
h1

(
y (s) , y′ (s)

)
ds,

y′ (1) + by′′ (1) =
∫ 1

0
h2

(
y (s) , y′ (s)

)
ds,

where a, b ≥ 0, f : [0, 1]×R
3 −→ R and h1, h2 : R2 −→ [0,+∞) are continuous

functions has at least one solution.
In [5], the authors converted the following problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y′′′ (t) = λ2y (t) + λ

2
√

π

(
1

t3/2

)
, 0 < t < 1,

y (0) = 1
y′ (0) = 0

y′′ (1) = −λ√
π

∫ 1

0
y (t) dt,

into a Volterra integral equation of the second kind before using the Adomian method
for solving this last one.

Iterative differential equation often arises in the modeling of a wide range of natural
phenomena such as disease transmission models in epidemiology, two-body problem
of classical electrodynamics, population models, physical models, mechanical mod-
els and other numerous models. This kind of equations which relates an unknown
function, its derivatives and its iterates, is a special type of the so-called differential
equations with state-dependent delays. More precisely, the following class of func-
tional differential equations with state and time-varying delays:

x ′′′ (t) + f (t, x(t), x(t − τ1 (t, x (t))), . . . , x(t − τn (t, x (t)))) = 0,

can be considered as the mother of Eq. (1.1) where the complicated lags τi (t, x (t))
give rise to the appearance of the iterates.

Almost the literature related to this type of equations that presently exists includes
first order equations. Unfortunately, very few papers have been devoted to study iter-
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ative differential equations of order greater than one (see [2,3,8,9,14]). The difficulty
in studying these equations which have distinctive characteristics lies in the iterative
terms that often hinder the application of usual methods.

To the best of the authors’ knowledge, there is no work dedicated to study third
order iterative differential equations except our two works [3,9]. The present paper
is a continuation of these last papers since it is devoted to investigate the existence,
uniqueness and continuous dependence of bounded positive solutions for a third order
iterative differential equation with integral boundary conditions. Generally, the pres-
ence of iterative terms in the differential equation leads to use very difficult techniques,
however, the advantage of our approach is that it combines Arzela–Ascoli theorem
together with Schauder’s fixed point theorem without using the Green’s function tech-
nique as used in the most recent works.

Our motivation comes from the fact that very little is known about third order
iterative problems and that several studies indicated that the delays in real phenomena
are generally depending on both the state and the time and usually cannot be set aside
or ignored especially in life sciences. Furthermore, as far as we know, this kind of
problems with integral boundary conditions has not been studied till now. Thus, it
is worthwhile to contribute in filling this gap by continuing the investigation in this
direction in order to enrich and complement the available works in the literature.

The content of this paper is arranged as follows.Wewill give some basic definitions
and some lemmas in the next section. Then, by virtue of Schauder’s fixed point theo-
rem, we will study the existence, uniqueness and continuous dependence of positive
solutions for problem (1.1)–(1.2). As an illustration, we provide an example to show
the feasibility of our main results in the fourth section. Finally, a conclusion and some
remarks are given in the last section.

2 Preliminaries

Let [0, T ] denote a real interval and

CBI nt = {
x ∈ C ([0, T ] ,R) : x (0) = x ′′ (0) = 0,

α

∫ η

0
x (t) dt = x (T ) , α ∈ R

∗, η ∈ (0, T )

}
,

equipped with norm

‖x‖ = sup
t∈[0,T ]

|x (t)| ,

the Banach space of all continuous functions on [0, T ] with the boundary conditions
x (0) = x ′′ (0) = 0 and α

∫ η

0 x (t) dt = x (T ) , α ∈ R
∗, η ∈ (0, T ) .

For 0 ≤ L ≤ T and M ≥ 0, let

CBI nt (L, M) = {x ∈ CBI nt , 0 ≤ x ≤ L,

|x (t2) − x (t1)| ≤ M |t2 − t1| , ∀t1, t2 ∈ [0, T ]} .
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Then CBI nt (L, M) is a closed convex and bounded subset of CBI nt .

Furthermore, we suppose that the nonlinearity f is globally Lipschitz in x, that is,
there exists a positive constants c1, c2, . . . , cn such that

| f (t, x1, . . . , xn) − f (t, y1, . . . , y2)| ≤
n∑

i=1

ci ‖xi − yi‖ . (2.1)

We introduce the constants

ρ = sup
s∈[0,T ]

| f (s, 0, 0, . . . , 0)| ,

ζ = ρ + L
n∑

i=1

ci

j=i−1∑
j=0

M j .

Lemma 1 [6] Let 2T �= αη2, then for y ∈ C ([0, T ] ,R), the problem

x ′′′ (t) + y (t) = 0, (2.2)

x (0) = x ′′ (0) = 0, α

∫ η

0
x (t) dt = x (T ) , η ∈ (0, T ) , α �= 0, (2.3)

has a unique solution given by

x(t) = t

2T − αη2

∫ T

0
(T − s)2y (s) ds − αt

3
(
2T − αη2

)
∫ η

0
(η − s)3y (s) ds

− 1

2

∫ t

0
(t − s)2y (s) ds.

Lemma 2 [6] Let 0 < α ≤ 2T

η2
. If y ∈ C [0, T ] and y(t) ≥ 0 on (0, T ), then the

unique solution of the problem (2.2)–(2.3) satisfies x(t) ≥ 0 for t ∈ [0, T ] .

Lemma 3 [13] If ϕ, ψ ∈ CBI nt (L, M) , then

∥∥ϕ[m] − ψ [m]
∥∥ ≤

m−1∑
j=0

M j ‖ϕ − ψ‖ , m = 1, 2, . . .

Theorem 1 [12] (Schauder’s fixed point theorem) Let M a non-empty compact convex
subset of a Banach space (X, ‖.‖) and A : M −→ M is a continuous mapping. Then
A has a fixed point.
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3 Main results

3.1 Existence results

The main tool that we will use to prove the existence of positive bounded solutions
of the problem (1.1)–(1.2) is the Schauder’s fixed point theorem. From Lemma 1, we
define the operator A : CBI nt (L, M) −→ CBI nt by

(Aϕ) (t) = t

2T − αη2

∫ T

0
(T − s)2 f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)
ds

− αt

3
(
2T − αη2

)
∫ η

0
(η − s)3 f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)
ds

− 1

2

∫ t

0
(t − s)2 f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)
ds. (3.1)

Since CBI nt (L, M) is a compact set as a uniformly bounded, equicontinuous and
closed subset of the space CBI nt . To prove that operator A has at least one fixed
point, we will show that:A is well defined,A is continuous andA (CBI nt (L, M)) ⊂
CBI nt (L, M), i.e.

(Aϕ) (t) ∈ CBI nt (L, M) for all ϕ ∈ CBI nt (L, M) .

Lemma 4 The operator A : CBI nt (L, M) −→ CBI nt given by the expression (3.1) is
well defined.

Proof To show thatA is well defined it suffuses to show that (Aϕ) (0) = (Aϕ)′′ (0) =
0 and α

∫ η

0 (Aϕ) (t) dt = (Aϕ) (T ) for all ϕ ∈ CBI nt (L, M) . Clearly (Aϕ) (0) = 0
and

(Aϕ)′′ (t) = 2
∫ t

0
f
(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)
ds,

so

(Aϕ)′′ (0) = 0.

Let ϕ ∈ CBI nt (L, M), we have

(Aϕ) (T ) = T

2T − αη2

∫ T

0
(T − s)2 f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)
ds

− αT

3
(
2T − αη2

)
∫ η

0
(η − s)3 f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)
ds

−1

2

∫ T

0
(T − s)2 f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)
ds.
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602 S. Cheraiet et al.

= 1

2

αη2

2T − αη2

∫ T

0
(T − s)2 f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)
ds

− αT

3
(
2T − αη2

)
∫ η

0
(η − s)3 f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)
ds,

and

α

∫ η

0
(Aϕ) (t)dt = α

∫ η

0

t

2T − αη2

(∫ T

0
(T − s)2 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

)
dt

−α

∫ η

0

αt

3
(
2T − αη2

)
(∫ η

0
(η − s)3 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

)
dt

−1

2
α

∫ η

0

(∫ t

0
(t − s)2 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

)
dt

= 1

2

αη2

2T − αη2

∫ T

0
(T − s)2 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

−1

6

α2η2

2T − αη2

∫ η

0
(η − s)3 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

−1

6
α

∫ η

0
(η − s)3 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds.

This gives

α

∫ η

0
(Aϕ) (t)dt = 1

2

αη2

2T − αη2

∫ T

0
(T − s)2 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

+1

3

T α

αη2 − 2T

∫ η

0
(η − s)3 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds.

Hence α

∫ η

0
(Aϕ) (t)dt = (Aϕ) (T ). Consequently A is well defined. ��

Lemma 5 Suppose that condition (2.1)holds. Then the operatorA : CBI nt (L, M) −→
CBI nt given by (3.1) is continuous.

Proof For ϕ,ψ ∈ CBI nt (L, M) , we have

|(Aϕ) (t) − (Aψ) (t)| ≤ t∣∣2T − αη2
∣∣
∫ T

0
(T − s)2

∣∣∣ f
(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)

− f
(
ψ [0](s), ψ [1](s), ψ [2](s), . . . , ψ [n](s)

)∣∣∣ ds

+1

3

|α| t∣∣(2T − αη2
)∣∣

∫ η

0

∣∣∣(η − s)3
∣∣∣
∣∣∣ f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)

− f
(
ψ [0](s), ψ [1](s), ψ [2](s), . . . , ψ [n](s)

)∣∣∣ ds

+1

2

∫ t

0
(t − s)2

∣∣∣ f
(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)

− f
(
ψ [0](s), ψ [1](s), ψ [2](s), . . . , ψ [n](s)

)∣∣∣ ds.
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Bounded positive solutions of an iterative three-point… 603

By (2.1), we obtain

|(Aϕ) (t) − (Aψ) (t)| ≤ t∣∣2T − αη2
∣∣
(∫ T

0
(T − s)2ds

)⎛
⎝

n∑
i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
⎞
⎠

+1

3

|α| t∣∣(2T − αη2
)∣∣

(∫ η

0

∣∣∣(η − s)3
∣∣∣ ds

)⎛
⎝

n∑
i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
⎞
⎠

+1

2

(∫ t

0
(t − s)2ds

)⎛
⎝

n∑
i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
⎞
⎠

= 1

3

tT 3
∣∣2T − αη2

∣∣

⎛
⎝

n∑
i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
⎞
⎠

+ 1

12

|α| η4t∣∣(2T − αη2
)∣∣

⎛
⎝

n∑
i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
⎞
⎠

+1

6
t3

⎛
⎝

n∑
i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
⎞
⎠

≤ 1

3

T 4
∣∣2T − αη2

∣∣

⎛
⎝

n∑
i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
⎞
⎠

+ 1

12

|α| η4T∣∣(2T − αη2
)∣∣

⎛
⎝

n∑
i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
⎞
⎠

+1

6
T 3

⎛
⎝

n∑
i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
⎞
⎠ ,

which implies that

|(Aϕ) (t) − (Aψ) (t)| ≤
(
1

3

tT 4
∣∣2T − αη2

∣∣ + 1

12

|α| η4T∣∣(2T − αη2
)∣∣ + 1

6
T 3

) (
n∑

i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
)

=
(

1

12

T
(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + 1

6
T 3

) (
n∑

i=1

ci

∥∥∥ϕ[i] − ψ [i]
∥∥∥
)

.

It follows from Lemma 3 that

|(Aϕ) (t) − (Aψ) (t)| ≤
⎛
⎝T

6

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
n∑

i=1

ci

j=i−1∑
j=0

M j

⎞
⎠ ‖ϕ − ψ‖ ,

which shows that the operator A is continuous. ��
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Lemma 6 Let 0 < α ≤ 2T

η2
. Suppose that condition (2.1) holds. If

1

6
ζ T

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
≤ L, (3.2)

and

ζ

6

(
1

2

4T 3 + |α| η4∣∣2T − αη2
∣∣ + 4T 2

)
≤ M, (3.3)

then A (CBI nt (L, M)) ⊂ CBI nt (L, M) .

Proof For ϕ in CBI nt (L, M) we have

|(Aϕ) (t)| ≤ t∣∣2T − αη2
∣∣
∫ T

0
(T − s)2

∣∣∣ f
(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)∣∣∣ ds

+ |α| t

3
∣∣2T − αη2

∣∣
∫ η

0

∣∣∣(η − s)3
∣∣∣
∣∣∣ f

(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)∣∣∣ ds

+1

2

∫ t

0
(t − s)2

∣∣∣ f
(
ϕ[0](s), ϕ[1](s), ϕ[2](s), . . . , ϕ[n](s)

)∣∣∣ ds.

But
∣∣∣ f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)∣∣∣ = ∣∣ f
(
s, ϕ(s), . . . , ϕ[n](s)

)

− f (s, 0, . . . , 0) + f (s, 0, . . . , 0)|
≤

∣∣∣ f
(

s, ϕ(s), ϕ[2](s), . . . , ϕ[n](s)
)

− f (s, 0, 0, . . . , 0)| + | f (s, 0, 0, . . . , 0)|

≤ ρ +
n∑

i=1

ci

j=i−1∑
j=0

M j ‖ϕ‖

≤ ρ + L
n∑

i=1

ci

j=i−1∑
j=0

M j = ζ,

so

|(Aϕ) (t)| ≤ tζ∣∣2T − αη2
∣∣
∫ T

0
(T − s)2 ds

+ |α| tζ

3
∣∣2T − αη2

∣∣
∫ η

0

∣∣∣(η − s)3
∣∣∣ ds

+1

2
ζ

∫ t

0
(t − s)2ds
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Bounded positive solutions of an iterative three-point… 605

= 1

3
T 3 t∣∣2T − αη2

∣∣ζ + 1

12
t

η4∣∣2T − αη2
∣∣ |α| ζ + 1

6
ζ t3

≤ 1

6
ζ T

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
≤ L.

From Lemma 2 and (3.2), we get

0 ≤ (Aϕ) (t) ≤ |(Aϕ) (t)| ≤ L.

Let t1, t2 ∈ [0, T ] with t1 < t2, we have

|(Aϕ) (t2) − (Aϕ) (t1)| ≤ |t2 − t1|∣∣2T − αη2
∣∣
∫ T

0
(T − s)2

∣∣ f
(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)∣∣ ds

+|α|
3

|t2 − t1|∣∣2T − αη2
∣∣
∫ η

0

∣∣(η − s)3
∣∣ f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

+1

2

∣∣∣∣
∫ t1

0
(t2 − s)2 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

+1

2

∫ t2

t1
(t2 − s)2 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

−1

2

∫ t1

0
(t1 − s)2 f

(
ϕ[0](s), ϕ[1](s), . . . , ϕ[n](s)

)
ds

∣∣∣∣

≤ 1

3

ζ T 3
∣∣2T − αη2

∣∣ |t2 − t1| + 1

12

ζ |α| η4∣∣2T − αη2
∣∣ |t2 − t1|

+1

2
ζ t1t2 |t1 − t2| + 1

6
ζ (t1 − t2)

3

≤ ζ

3

(
1

6

4T 3 + |α| η4∣∣2T − αη2
∣∣ + 2T 2

)
|t1 − t2| .

Using (3.3), we obtain

|(Aϕ) (t2) − (Aϕ) (t1)| ≤ M |t1 − t2| .

SinceA is well defined, i.e. (Aϕ) (t) ∈ CBI nt for all ϕ ∈ CBI nt (L, M) , we conclude
that A (CBI nt (L, M)) ⊂ CBI nt (L, M) . ��

Theorem 2 Let 0 < α ≤ 2T

η2
. Suppose that conditions (2.1) and (3.2)–(3.3) hold.

Then the problem (1.1 )–(1.2) has at least one solution x in CBI nt (L, M) .

Proof From Lemma 1, the problem (1.1)–(1.2) has a solution x on CBI nt (L, M) if
and only if the operator A defined by (3.1) has a fixed point.
From Lemmas 4, 5 and 6 all conditions of Schauder’s fixed point theorem are satisfied.
Consequently A has at least one fixed point on CBI nt (L, M) which is a solution of
problem (1.1)–(1.2). ��
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3.2 Uniqueness

In this section, we establish the uniqueness of solutions of the problem (1.1)–(1.2).

Theorem 3 In addition to the assumptions of Theorem 2, if we suppose that

T

6

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
n∑

i=1

ci

j=i−1∑
j=0

M j < 1, (3.4)

then the problem (1.1)–(1.2) has a unique solution in CBI nt (L, M) .

Proof Let ϕ and ψ be two distinct fixed points of the operator A. Similarly as in the
proof of Lemma 5 we have

|ϕ(t) − ψ(t)| = |(Aϕ) (t) − (Aψ) (t)|

≤ T

6

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
n∑

i=1

ci

j=i−1∑
j=0

M j ‖ϕ − ψ‖ .

It follows from (3.4) that

‖ϕ − ψ‖ < ‖ϕ − ψ‖ .

Therefore, we arrive at a contradiction. We conclude that A has a unique fixed point
which is the unique solution of problem (1.1)–(1.2). ��

3.3 Continuous dependence

In this section, we will show that the previously obtained solution depends continu-
ously on the function f .

Structural stability

Theorem 4 Suppose that the conditions of Theorem 3 hold. The unique solution of
problem (1.1)–(1.2) depends continuously on the function f .

Proof Let f1, f2 : [0, T ]×R
n −→ [0,+∞) two continuous functions with respect to

their arguments. From Theorem 3, it follows that there exist two unique corresponding
functions x1 and x2 in CBI nt (L, M) such that

x1 (t) = t

2T − αη2

∫ T

0
(T − s)2 f1

(
x [0]1 (s), x [1]1 (s), x [2]1 (s), . . . , x [n]1 (s)

)
ds

− 1

3

αt

2T − αη2

∫ η

0
(η − s)2 f1

(
x [0]1 (s), x [1]1 (s), x [2]1 (s), . . . , x [n]1 (s)

)
ds

− 1

2

∫ t

0
(t − s)2 f1

(
x [0]1 (s), x [1]1 (s), x [2]1 (s), . . . , x [n]1 (s)

)
ds,
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and

x2 (t) = t

2T − αη2

∫ T

0
(T − s)2 f2

(
x [0]2 (s), x [1]2 (s), x [2]2 (s), . . . , x [n]2 (s)

)
ds

− 1

3

αt

2T − αη2

∫ η

0
(η − s)3 f2

(
x [0]2 (s), x [1]2 (s), x [2]2 (s), . . . , x [n]2 (s)

)
ds

− 1

2

∫ t

0
(t − s)2 f2

(
x [0]2 (s), x [1]2 (s), x [2]2 (s), . . . , x [n]2 (s)

)
ds.

We have

|x2 (t) − x1 (t)| ≤ t∣∣2T − αη2
∣∣
∫ T

0
(T − s)

∣∣∣ f2
(

x [0]2 (s), x [1]2 (s), . . . , x [n]2 (s)
)

− f1
(

x [0]1 (s), x [1]1 (s), . . . , x [n]1 (s)
)∣∣∣ ds

+1

3

|α| t

2T − αη2

∫ T

0

∣∣∣(η − s)3
∣∣∣
∣∣∣ f2

(
x [0]2 (s), x [1]2 (s), . . . , x [n]2 (s)

)

− f1
(

x [0]1 (s), x [1]1 (s), . . . , x [n]1 (s)
)∣∣∣ ds

+1

2

∫ T

0
(t − s)2

∣∣∣ f2
(

x [0]2 (s), x [1]2 (s), . . . , x [n]2 (s)
)

− f1
(

x [0]1 (s), x [1]1 (s), . . . , x [n]1 (s)
)∣∣∣ ds.

But

∣∣∣ f2
(

x [0]2 (s), x [1]2 (s), x [2]2 (s), . . . , x [n]2 (s)
)

− f1
(

x [0]1 (s), x [1]1 (s), x [2]1 (s), . . . , x [n]1 (s)
)∣∣∣

=
∣∣∣ f2

(
x [0]2 (s), x [1]2 (s), x [2]2 (s), . . . , x [n]2 (s)

)

− f2
(

x [0]1 (s), x [1]1 (s), x [2]1 (s), . . . , x [n]1 (s)
)

+ f2
(

x [0]1 (s), x [1]1 (s), x [2]1 (s), . . . , x [n]1 (s)
)

− f1
(

x [0]1 (s), x [1]1 (s), x [2]1 (s), . . . , x [n]1 (s)
)∣∣∣

Using (2.1) and Lemma 3, we arrive at

∣∣∣ f2
(

x [0]2 (s), x [1]2 (s), x [2]2 (s), . . . , x [n]2 (s)
)

− f1
(

x [0]1 (s), x [1]1 (s), x [2]1 (s), . . . , x [n]1 (s)
)∣∣∣

≤ ‖ f2 − f1‖ +
n∑

i=1

ci

j=i−1∑
j=0

M j ‖x2 − x1‖ .
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Hence

‖x2 − x1‖ ≤ T

6

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
‖ f2 − f1‖

+T

6

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
n∑

i=1

ci

j=i−1∑
j=0

M j ‖x2 − x1‖ .

Therefore

‖x2 − x1‖ ≤

T

6

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)

1 − T

6

(
1
2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
∑n

i=1 ci
∑ j=i−1

j=0 M j

‖ f2 − f1‖ .

This completes the proof of the theorem. ��

4 Example

In this section we will give an example for illustrating our main results.
Consider the following boundary-value problem:

x ′′′ (t) + 1

4
+ 1

4
cos t + 1

18

(
cos2 t

)
x [1] (t)

+ 1

19

(
sin2 t

)
x [2] (t) + 1

20

(
sin2 t

) (
cos2 t

)
x [3] (t) = 0, (4.1)

x (0) = x ′′ (0) = 0, α

∫ η

0
x (t) dt = x (T ) with η ∈ (0, T ) , (4.2)

where

f (t, x, y, z) = 1

4
+ 1

4
cos t + 1

18
x

(
cos2 t

)
+ 1

19
y
(
sin2 t

)
+ 1

20
z
(
sin2 t

) (
cos2 t

)
.

We have

| f (t, y1, y2, y3) − f (t, z1, z2, z3)| ≤ 1

18
|y1 − z1| + 1

19
|y2 − z2| + 1

20
|y3 − z3| ,

then

| f (t, y1, y2, y3) − f (t, z1, z2, z3)| ≤
3∑

i=1

ci ‖yi − zi‖ ,
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with c1 = 1

18
, c2 = 1

19
and c2 = 1

20
. Furthermore, if T = 1, L = 3 and M = 4

in the definition of CBI nt (L, M), then f > 0, ρ = sups∈[0,1] | f (s, 0, 0)| = 1

2

and ζ � 4.606 1. For α = 1

4
and η = 1

5
, we have 2T = 2 �= αη2 = 1

100
,

α = 1

4
≤ 2

η2
= 25

2
and

1

6
ζ T

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
� 1.5393 ≤ L = 3,

ζ

6

(
1

2

4T 3 + |α| η4∣∣2T − αη2
∣∣ + 4T 2

)
� 3.8424 ≤ M = 4,

and

T

6

(
1

2

(
4T 3 + |α| η4)∣∣2T − αη2

∣∣ + T 2

)
n∑

i=1

ci

j=i−1∑
j=0

M j � 0.4574 < 1.

Then the problem (4.1)–(4.2) has a unique solution which depends continuously on
the function f .

5 Conclusion and remarks

In the current paper, under some sufficient conditions on the nonlinearity, we estab-
lished the existence, uniqueness and continuous dependence of a positive solution for
a class of third order iterative differential equations with integral boundary conditions.

Our approach is based on converting the equation into an integral one and applying
Schauder’s fixed point theoremcombinedwithArzela–Ascoli theorem. In otherwords,
the main idea in this work consists to convert problem (1.1)–(1.2) into an integral
equation before transforming it into a fixed point problem by pursuing the following
path:

First of all, we constructed an appropriate Banach space for making the iterative
terms x [2](t), . . . , x [n](t) well-defined and applying the Schauder’s fixed point theo-
rem. The second step is the conversion of our equation into an equivalent integral one.
Afterwards, from this last one and by using Arzela–Ascoli theorem, we succeeded in
defining a continuous operator from a compact subset to it self. Finally, we concluded
that all conditions of Schauder’s fixed point theorem was satisfied. So, if x is a fixed
point of the integral operator, then x is a solution of the integral equation, hence also
of problem (1.1)–(1.2).

Our results are more general than those of [1,3–6,9] in four aspects. Firstly, for
yielding more realistic models, the source term in problem (1.1 )–(1.2) included iter-
ative terms describing retarded interactions, while problems studied in [4–6] were
without these delays.
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Secondly, the approaches used in [1,3,4,9] relied on fixed point theory and the
determination of an explicit representation of a Green’s function and some of its
useful properties. These last ones may be quite difficult to construct, if not impossible.
Whereas we reached our desired targets by using the same theory but without needed
to use these properties.

Thirdly, we relaxed conditions on the nonlinearity in (1.1) for example, we did not
require its periodicity as in [3,9].

Fourthly, in order to make the model more realistic, we were interested in the
positivity of the solution since this last one can represent for example thickness of a
thin film of viscous fluid over a solid surface, a density, a number of individuals or a
concentration which are positive quantities.
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