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Abstract
In this article, the fixed-time synchronization for competitive neural networks (CNNs)
with Gaussian-wavelet-type activation functions and discrete delays is investigated.
Firstly, in terms of Lyapunov stability theory and inequality technique, simple synchro-
nization conditions are obtained by designing some feedback controllers. Secondly,
the activation functions adopted in CNNs are Gaussian-wavelet-type activation func-
tions for the first time, which have great preponderance in network optimization and
storage capacity. Furthermore, the settling time with upper bound of the system to
achieve fixed-time synchronization can be explicitly evaluated, which is irrelevant to
the initial value of the system. Finally, the theoretical results which we derived are
attested to be indeed feasible in terms of two numerical simulations.

Keywords Fixed-time synchronization · Competitive neural networks ·
Gaussian-wavelet-type activation functions · Discrete delays

Mathematics Subject Classification 92B20

1 Introduction

During the past decades, the research of neural networks has reached an unprecedented
upsurge because of the extensive application of neural networks in a wide range of
territories, such as pattern recognition, signal processing and associative memory [1–
5]. In particular, CNNs attract a myriad of scholar’s interest [6–8]. We understand
that lateral inhibitory neural networks with deterministic Hebbian learning laws can
simulate the dynamics of the cognitive map of the cerebral cortex without being
supervised synaptic modification. Subsequently, Cohen and Grossberg [9] proposed
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the CNNs model to simulate cell inhibition in neurobiology. Meyer-Bäse [10] put
forward the CNNs with different indices at the same time. CNNs are unsupervised
learning neural networks, which can simulate biological neural network system to
conduct information processing by means of excitability, coordination, inhibition and
competition between neurons. The input node and output node of the neural networks
are completely connected, which have the characteristics of simple structure, fast
operation speed and simple learning algorithm.

In competitive neural networks, when one neuron is excited, it will inhibit other
neurons through its branches, which can cause competition between neurons. When
more than one neuron is suppressed, the most excited neurons get rid of the inhibi-
tion of other neurons to emerge as the winner of the competition. Competitive neural
networks have two state models: one state describes the dynamical behavior of neural
network state changes, which is frequent and neural network is active, and the corre-
sponding memory model is called short-term memory (STM). Another type of state
variable describes the dynamical behavior of cell synaptic changes caused by external
stimulation, such changes are relatively slow, and the corresponding memory model
is called long-term memory (LTM). Competitive neural networks have a substantial
of applications in different industries, and these applications mainly depend on their
dynamical behavior, such as stability, multi-stability, synchronization and so on [11–
15]. In [11], the author proved the existence and uniqueness of the equilibrium point in
the CNNswhich consider the influence of time scale parameters by using the Lipschitz
method.

Activation function is an indispensable factor in the research of neural networks
which have different dynamical behaviors for different activation functions. In a great
deal of literatures, the main activation functions used are monotonically increasing
and piecewise linear functions. In [16], another kind of non-monotonic piecewise
linear activation functions which are called GWTAFs were introduced. It was proved
that GWTAFs of neural networks have more equilibrium points. In [17], GWTAFs
can prevent the system from falling into the crisis of local minimum and effectively
improve the performance of network optimization. So, neural networks with GWTAFs
have great preponderance in network optimization and storage capacity, it is necessary
to research the neural networks with GWTAFs.

Synchronization represents that the state of coupled system tends to be consistent.
In [18], researchers studied the competitive neural networks model of nonsmooth
function and proved the existence and uniqueness of system equilibrium point based
on nonsmooth analysis technology, and obtained the condition of network exponential
stability. In [19], authors researched thememristor-based recurrent networkmodel and
obtained the sufficient conditions of exponential synchronization. Until now, many
results have been derived for asymptotic synchronization [20–26]. In these papers, the
synchronization time tends to infinity. In the actual situation, due to the restriction of
time and resource, the asymptotic synchronization can not be well applied in practice.
Somany researchers shifted their attention to another kind of synchronization, namely,
finite-time synchronization. It means that the system can achieve synchronization in a
finite time [27–33].Recently, in [34], in order to save communication resources, a novel
quantized controller was designed to study the finite-time cluster synchronization of
cellular neural networks. However, one disadvantage of finite-time synchronization is
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that its settling time depends on the initial conditions of the system. It is inconvenient
in many application fields, for example, in a great deal of engineering territories,
it’s difficult to get the initial conditions. In order to settle this problem, Polyakov [35]
came upwith fixed-time synchronization, and the settling time is a constant with upper
bound irrelevant to initial value. On account of this feature, fixed-time synchronization
has been widely used in signal communication [36–41]. Recently, in [42], the fixed-
time synchronization of quaternion-valued memristive neural networks were studied,
it has more complex dynamic behavior than traditional neural networks. Till now,
there are no results about fixed-time synchronization of competitive neural networks
with GWTAFs. Inspired by the above reasons, we study the problem of fixed-time
synchronization of CNNs with Gaussian-wavelet-type activation functions. The main
contributions are summarized in the following three aspects:

(1) By designing some feedback controllers, simple synchronization conditions are
obtained;

(2) According to the correlative structure of competitive neural networks, the fixed-
time synchronization of CNNs is gained by means of Lyapunov stability theory
and inequality technique;

(3) We first study the fixed-time synchronization problem of CNNs with GWTAFs,
which have great preponderance in network optimization and storage capacity
than general activation functions.

The following is themain structure of this article. Themodel and concepts are described
in part 2. Fixed-time synchronization with different controllers is discussed in part 3.
In part 4, numerical simulation shows the validity of the conclusion. The conclusion
is described in part 5.
Notations ẋ(t) is the derivative of x(t). Anygiven vector x = (x1, x2, . . . , xm)T ∈ R

m ,
it’s norm can be defined as ‖x‖ = max1≤k≤m{|xk |}. Let the C((−∞, 0],Rm) is a
continuous mapping from (−∞, 0] to Rm in Banach space, where norm is defined as
‖φ‖ = max1≤k≤m{sups∈(−∞,0]φk(s)}, and φ(s) = (φ1(s), . . . , φm(s))T ∈ R

m .

2 Preliminaries andmodel description

The equations for CNNs with GWTAFs and discrete delays are considered as the
master system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

STM: ẋk(t) =
m∑

d=1

Dkd fd(xd(t)) +
m∑

d=1

Dτ
kd fd(xd(t − τd(t)))

− μk xk(t) + Bk

i∑

d=1

hkd(t)ωd + Ik,

LTM: ḣkd(t) = −αkhkd(t) + ωdβk fk(xk(t)),

k = 1, 2, . . . ,m, d = 1, 2, . . . , i,

(1)
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Fig. 1 Gaussian-wavelet-type activation function (2)

wherem and i represent the number of the STM states and constant external stimulus,
respectively. xk(t)denotes state vector of neuron current, andhkd(t) is synaptic transfer
efficiency;ωd is the constant external stimulus; Bk is the strength of the external stimu-
lus;Dkd andDτ

kd represent the connectionweight and connectionweightwith feedback
delay; Ik is the constant input; μk > 0, αk ≥ 0, βk ≥ 0 are constants, and τd(t) is
discrete delay, which satisfies 0 ≤ τd(t) ≤ υ, where υ = max1≤d≤m{supt∈Rτd(t)}.
fd(·) represent the GWTAFs, the following is the specific expression (Fig. 1):

fd(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ud , −∞ < t < ad ,
λ1,d t + φ1,d , ad ≤ t ≤ bd ,
λ2,d t + φ2,d , bd < t < cd ,
λ3,d t + φ3,d , cd ≤ t ≤ dd ,
Ud , dd < t < +∞,

(2)

where ad , bd , cd , dd , ud , λ1,d , λ2,d , λ3,d , φ1,d , φ2,d , φ3,d ,Ud are constants with
−∞ < ad < bd < cd < dd < ∞, λ1,d , λ3,d > 0, λ2,d < 0, ud = fd(cd),Ud =
fd(bd), d = 1, 2, . . . ,m.
Let Sk(t) = ∑i

d=1 hkd(t)ωd = ωT hk(t), where ω = (ω1, ω2, . . . , ωi )
T , hk(t) =

(hk1(t), hk2(t), . . . , hki (t))T . Suppose input stimulus ω can be normalized |ω|2 =
ω2
1 + · · · + ω2

i = 1.
It is obvious that the activation function fd(t) in (2) satisfies Lipschitz condition,

and the Lipschitz constant is γd = max{|ω1d |, |ω2d |, |ω3d |}, d = 1, 2, . . . ,m. The
simplified equation is as below:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

STM: ẋk(t) =
m∑

d=1

Dkd fd(xd(t)) +
m∑

d=1

Dτ
kd fd(xd(t − τd(t)))

− μk xk(t) + BkSk(t) + Ik,

LTM: Ṡk(t) = −αk Sk(t) + βk fk(xk(t)), k = 1, 2, . . . ,m.

(3)

Suppose system (1) meets initial conditions:

xk(t) = ϕx
k (t) = C([−υ, 0],Rm),

Sk(t) = ϕs
k(t) = C([−υ, 0],Rm), k = 1, 2, . . . ,m.

Design the slave system as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

STM: ẏk(t) =
m∑

d=1

Dkd fd(yd(t)) +
m∑

d=1

Dτ
kd fd(yd(t − τd(t)))

− μk yk(t) + Bk Rk(t) + Ik + ζk(t),

LT M : Ṙk(t) = −αk Rk(t) + βk fk(yk(t)) + νk(t), k = 1, 2, . . . ,m,

(4)

where ζk(t), νk(t) are controllers. The corresponding initial values of the system (4)
meet the conditions:

yk(t) = φ
y
k (t) = C([−υ, 0],Rm),

Rk(t) = φR
k (t) = C([−υ, 0],Rm), k = 1, . . . ,m.

The errors are defined as ek(t) = yk(t) − xk(t), zk(t) = Rk(t) − Sk(t). The error
systems can be obtained by subtracting system (4) from system (3) as follows:

{
ėk(t) = −μkek(t) + Qk(t) + Bkzk(t) + ζk(t),

żk(t) = −αk zk(t) + βk fk(ek(t)) + vk(t), k = 1, 2, . . . ,m,
(5)

where Qk(t) = ∑m
d=1{Dkd( fd(yd(t)) − fd(xd(t))) + Dτ

kd( fd(yd(t − τd(t))) −
fd(xd(t − τd(t))))}, and fk(ek(t)) = fk(yk(t)) − fk(xk(t)).
In order to prove the theoretical results, the following assumption is indispensable.

Assumption 1 Let D∗
k > 0 and D∗

k ≥ max{Dkd , Dτ
kd}, k = 1, 2, . . . ,m, d =

1, 2, . . . , i .

Lemma 1 By Assumption 1 we can get |Qk(t)| ≤ πk , where πk = ∑m
d=1 4UdD∗

k , Ud

is maximum of the activation function fd(t).

Proof Based on the Assumption 1, D∗
k ≥ max{Dkd , Dτ

kd}, k = 1, 2, . . . ,m, d =
1, 2, . . . , i, Qk(t) = ∑m

d=1{Dkd( fd(yd(t)) − fd(xd(t))) + Dτ
kd( fd(yd(t − τd(t))) −

fd(xd(t − τd(t))))}, so |Qk(t)| ≤ ∑m
d=1 D

∗
k {|( fd(yd(t))− fd(xd(t)))|+ |( fd(yd(t −

τd(t))) − fd(xd(t − τd(t))))|}. Ud is the maximum value of the activation functions,
so we conclude that |Qk(t)| ≤ ∑m

d=1 4UdD∗
k . �	
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Lemma 2 [32] If a1, a2, . . . , am ≥ 0, 0 < p ≤ 1, q > 1, we can get the result

m∑

k=1

a p
k ≥

(
m∑

k=1

ak

)p

,

m∑

k=1

aqk ≥ m1−q

(
m∑

k=1

ak

)q

.

Definition 1 [40] Let L(t) = (e1(t), e2(t), . . . , em(t), z1(t), z2(t), . . . , zm(t))T . If
there is a constant t∗(L(0)) > 0, which satisfies limt→t∗(L(0)) ‖L(t)‖ = 0 and
‖L(t)‖ ≡ 0 for ∀t > t∗(L(0)), thus master-slave systems (3)–(4) realize finite-time
synchronization, where t∗(L(0)) is the settling time.

Definition 2 [36] If master–slave systems (3)–(4) meet the following two conditions,
fixed-time synchronization can be achieved.

(a) Master–slave systems obtain finite-time synchronization;
(b) For any initial synchronization error L(0), there is a constant Tmax > 0, which

satisfies t∗(L(0)) ≤ Tmax .

Lemma 3 [35] Suppose that V (·) : R
n → R+ ∪ {0} is a continuous radically

unbounded function and satisfies the conditions:

(1) V (x) = 0 ⇔ x = 0;
(2) Any solution L(t) of error system (5) satisfies

V̇ (L(t)) ≤ −aV p(L(t) − bV q(L(t))

for some a, b > 0, 0 ≤ p ≤ 1 and q > 1. So the error system (5) reach fixed-time
stability, where Tmax = 1

a(1−p) + 1
b(q−1) .

Lemma 4 [41] Let V (·) : R
n → R+ ∪ {0} is a continuous radically unbounded

function and meets the next two conditions:

(1) V (x) = 0 ⇔ x = 0;
(2) Any solution L(t) of error system (5) meets

V̇ (L(t)) ≤ −aV p(L(t)) − bV q(L(t)),

for some a, b > 0, p = 1 − 1
2u and q = 1 + 1

2u , where u > 1. So the error
system (5) can achieve fixed-time stability, where Tmax = πu√

ab
.

3 Main results

In order to make the master–slave systems realize fixed-time synchronization, design
the corresponding feedback controller as

⎧
⎪⎨

⎪⎩

νk(t) = − j1ksign(zk(t)) − c1k zk(t) − l1ksign(zk(t))|zk(t)|p,
ζk(t) = − j2ksign(ek(t)) − c2kek(t) − l2ksign(ek(t))|ek(t)|p,

k = 1, 2, . . . ,m,

(6)
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where j2k, c1k , and c2k need satisfy some conditions, j1k, l1k and l2k are positive
constants, and p > 1.

Theorem 1 Suppose the Assumption 1 is satisfied, if j2k, c1k and c2k satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j2k > πk,

c1k > −αk + |βkγk |
2

+ |Bk |
2

,

c2k > −μk + |βkγk |
2

+ |Bk |
2

, k = 1, 2, . . . ,m.

(7)

System (3) and system (4) get fixed-time synchronization under controller (6), in addi-
tion,

Tmax = 2

ι
+ 1

κ(p − 1)
,

where

ι = √
2min

{

min
k

{ j1k},min
k

{ j2k − πk}
}

,

κ = m
1−p
2 min

{

min
k

{l1k},min
k

{l2k}
}

. (8)

Proof Construct the function:

V (t) = V1(t) + V2(t), (9)

where

V1(t) = 1

2

m∑

k=1

(zk(t))
2, V2(t) = 1

2

m∑

k=1

(ek(t))
2. (10)

According to Lipschitz condition, we can get the fk(ek(t)) ≤ γkek(t).
Then computing the derivative of V1(t),

V̇1(t) =
m∑

k=1

zk(t)żk(t)

=
m∑

k=1

zk(t)[−αk zk(t) + βk fk(ek(t)) + νk(t)]

= −
m∑

k=1

αk z
2
k(t) +

m∑

k=1

βk fk(ek(t))zk(t) +
m∑

k=1

zk(t)νk(t)

≤ −
m∑

k=1

αk z
2
k(t) +

m∑

k=1

βkγkek(t)zk(t) +
m∑

k=1

zk(t)νk(t)
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≤ −
m∑

k=1

αk z
2
k(t) +

m∑

k=1

|βkγk |
2

e2k (t) +
m∑

k=1

|βkγk |
2

z2k(t)

−
m∑

k=1

j1k |zk(t)| −
m∑

k=1

c1k z
2
k(t) −

m∑

k=1

l1k |zk(t)|p+1. (11)

Calculating the derivative of V2(t) by Lemma 1,

V̇2(t) =
m∑

k=1

ek(t)ėk(t)

=
m∑

k=1

ek(t)[−μkek(t) + Qk(t) + Bkzk(t) + ζk(t)]

= −
m∑

k=1

μke
2
k (t) +

m∑

k=1

ek(t)Qk(t) +
m∑

k=1

Bkzk(t)ek(t) +
m∑

k=1

ek(t)ζk(t)

≤ −
m∑

k=1

μke
2
k (t) +

m∑

k=1

πk |ek(t)| +
m∑

k=1

|Bk |
2

e2k (t) +
m∑

k=1

|Bk |
2

z2k(t)

−
m∑

k=1

j2k |ek(t)| −
m∑

k=1

c2ke
2
k (t) −

m∑

k=1

l2k |ek(t)|p+1. (12)

Therefore,

V̇ (t) = V̇1(t) + V̇2(t)

≤
m∑

k=1

[

−αk − c1k + |βkγk |
2

+ |Bk |
2

]

z2k(t) −
m∑

k=1

j1k |zk(t)|

+
m∑

k=1

[

−μk − c2k + |βkγk |
2

+ |Bk |
2

]

e2k (t) −
m∑

k=1

[ j2k − πk]|ek(t)|

−
m∑

k=1

l1k |zk(t)|p+1 −
m∑

k=1

l2k |ek(t)|p+1. (13)

Combining (7) with (13), followed by the corresponding result,

V̇ (t) ≤ −min
k

{ j1k}
m∑

k=1

|zk(t)| − min
k

{ j2k − πk}
m∑

k=1

|ek(t)|

− min
k

{l1k}
m∑

k=1

|zk(t)|p+1 − min
k

{l2k}
m∑

k=1

|ek(t)|p+1

≤ −√
2min

k
{ j1k}(V1(t)) 1

2 − √
2min

k
{ j2k − πk}(V2(t)) 1

2
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− m
1−p
2 2

p+1
2 min

k
{l1k}(V1(t)) p+1

2

− m
1−p
2 2

p+1
2 min

k
{l2k}(V2(t)) p+1

2 . (14)

According to Lemma 2,

V̇ (t) ≤ − ι
[
(V1(t))

1
2 + (V2(t))

1
2

]
− κ · 2 p+1

2

[
(V1(t))

p+1
2 + (V2(t))

p+1
2

]

≤ − ι [V1(t) + V2(t)]
1
2 − κ · 2 p+1

2 · 2 1−p
2 [V1(t) + V2(t)] p+1

2

= − ι · (V (t))
1
2 − 2κ · (V (t))

p+1
2 , (15)

where

ι = √
2min

{

min
k

{ j1k},min
k

{ j2k − πk}
}

,

κ = m
1−p
2 min

{

min
k

{l1k},min
k

{l2k}
}

.

The conditions in Lemma 3 are satisfied, so system (5) can obtain fixed-time synchro-
nization, where

Tmax = 1

ι(1 − 1
2 )

+ 1

2κ(
p+1
2 − 1)

= 2

ι
+ 1

κ(p − 1)
. (16)

The proof is complete. �	
Then let’s think about another controller:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

νk(t) = − c1k zk(t) − h1ksign(zk(t))|zk(t)|q
− l1ksign(zk(t))|zk(t)|p,

ζk(t) = − j2ksign(ek(t)) − c2kek(t) − h2ksign(ek(t))|ek(t)|q
− l2ksign(ek(t))|ek(t)|p, k = 1, 2, . . . ,m,

(17)

where j2k, c1k, and c2k needs satisfy some conditions, h1k, h2k, l1k and l2k are some
non-negative constants, and 0 < q < 1, p > 1.

Theorem 2 If Assumption 1 is satisfied and j2k , c1k, c2k satisfy the following condi-
tions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j2k > πk,

c1k > −αk + |βkγk |
2

+ |Bk |
2

,

c2k > −μk + |βkγk |
2

+ |Bk |
2

, k = 1, 2, . . . ,m.

(18)
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System (3) and system (4) under controller (17) get fixed-time synchronization, more-
over,

Tmax = 2

h(1 − q)
+ 1

l(p − 1)
,

where h = 2
q+1
2 min{mink{h1k},mink{h2k}}, l = m

1−p
2 min{mink{l1k},mink{l2k}}.

Proof Considering a similar functional

V (t) = V1(t) + V2(t), (19)

where

V1(t) = 1

2

m∑

k=1

(zk(t))
2, V2(t) = 1

2

m∑

k=1

(ek(t))
2. (20)

In the same way, we can get

V̇ (t) ≤ −
m∑

k=1

h1k |zk(t)|q+1 −
m∑

k=1

h2k |ek(t)|q+1

−
m∑

k=1

l1k |zk(t)|p+1 −
m∑

k=1

l2k |ek(t)|p+1

≤ −min
k

{h1k}
m∑

k=1

|zk(t)|q+1 − min
k

{h2k}
m∑

k=1

|ek(t)|q+1

− min
k

{l1k}
m∑

k=1

|zk(t)|p+1 − min
k

{l2k}
m∑

k=1

|ek(t)|p+1

≤ −2
q+1
2 min

k
{h1k}(V1(t)) q+1

2 − 2
q+1
2 min

k
{h2k}(V2(t)) q+1

2

− m
1−p
2 2

p+1
2 min

k
{l1k}(V1(t)) p+1

2

− m
1−p
2 2

p+1
2 min

k
{l2k}(V2(t)) p+1

2 . (21)

Then through Lemma 2

V̇ (t) ≤ −h
[
(V1(t))

q+1
2 + (V2(t))

q+1
2

]
− l · 2 p+1

2

[
(V1(t))

p+1
2 + (V2(t))

p+1
2

]

≤ −h [V1(t) + V2(t)]
q+1
2 − l · 2 p+1

2 · 2 1−p
2 [V1(t) + V2(t)]

p+1
2

= −h(V (t))
q+1
2 − 2l(V (t))

p+1
2 , (22)
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where h = 2
q+1
2 min{mink{h1k},mink{h2k}}, l = m

1−p
2 min{mink{l1k},mink{l2k}}.

Based on Lemma 3, The error system (5) gets fixed-time stability. In addition,

Tmax = 1

h
(
1 − q+1

2

) + 1

2l
(
p+1
2 − 1

)

= 2

h(1 − q)
+ 1

l(p − 1)
. (23)

This completes the proof. �	
Corollary 1 Assume the conditions given in Theorem 2 are always true. If p and q in
controller (17) satisfy the following expressions:

q = 1 − 1

u
, p = 1 + 1

u
,

where u > 1, then q+1
2 = 1− 1

2u ,
p+1
2 = 1+ 1

2u . According to the Lemma 4, the error
system (5) gets fixed-time stability. Moreover, Tmax can be calculated

Tmax = πu√
2hl

,

where

h = 2
q+1
2 min{mink{h1k},mink{h2k}},

l = m
1−p
2 min{mink{l1k},mink{l2k}}.

Remark 1 In controllers (6) and (17), sign(ek(t)) and sign(zk(t)) are discontinuous
functions, for this reason, it is difficult to be used in engineering. So we use the
continuous functions ek(t)

ek(t)+φ
, zk (t)
zk (t)+ϕ

to replace them, where φ > 0, ϕ > 0.

4 Numerical simulation

Example 1 Consider the CNNs with GWTAFs and discrete delays model (24) with the
following parameters: m = 2, μ1 = 0, μ2 = 2, α1 = α2 = 1, β1 = β2 = 1, B1 =
B2 = 1, D11 = 0.25, D12 = −0.4, Dτ

11 = −1.5, Dτ
12 = −0.1, D21 = −1.9,

D22 = 0.5, Dτ
21 = −0.2, Dτ

22 = −2.3, I1 = sin(t), I2 = cos(t), τ1(t) = τ2(t) = 2,

f1(t) = f2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, −∞ < t < 0,

2t + 1, 0 ≤ t ≤ 1,

−t + 4, 1 < t < 10,

4.5t − 51, 10 ≤ t ≤ 12,

3, 12 < t < ∞.

(24)
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Fig. 2 State trajectories of error system without control

The initial values of the system (1) meet the following conditions

x1(t) = −4, x2(t) = 6, S1(t) = −3.3, S2(t) = 9, t ∈ [−2, 0].

The initial values of corresponding slave system (4) are y1(t) = 2, y2(t) = 1, R1(t) =
1.5, R2(t) = 2, t ∈ [−2, 0]. The output of systems (3) and (4) without controllers is
showed in Fig. 2.

Choosing j11 = j12 = 1, c11 = 7.5, c12 = 3.5, l11 = l12 = 0.25, j21 = 4.5, j22 =
10.7, c21 = 1, c22 = 0.5, l21 = l22 = 0.25, q = 1.5 as parameters of controller (6).
System (3) and system (4) under the controller (6) get fixed-time synchronization, and
Tmax ≈ 10.93. In Fig. 3, the error system converges to 0 within Tmax . So Theorem 1
is valid.

Example 2 Consider the same model in the example 1, m = 2, μ1 = 0, μ2 =
2, D11 = 0.25, D12 = −0.14, Dτ

11 = −1.5, Dτ
12 = −0.1, D21 = −1.9, D22 =

0.5, Dτ
21 = −0.2, Dτ

22 = −2.3, B1 = B2 = 1, α1 = α2 = 1, β1 = β2 = 1, I1(t) =
sin(t), I2(t) = cos(t). f1(t) and f2(t) have the same expression in (24), τ1 = τ2 = 2.
The initial conditions of systems (3)–(4) are x1(t) = −3, x2(t) = 3, S1(t) =
−2.1, S2(t) = 6, t ∈ [−2, 0], y1(t) = 4, y2(t) = 1.5, R1(t) = 3.5, R2(t) = 2.2, t ∈
[−2, 0].

Selecting the parameters in controller (17) as follows: c11 = 0.5, c12 = 3.5, h11 =
h12 = 0.5, l11 = l12 = 0.25, j21 = 4.5, j22 = 10.7, c21 = 1, c22 = 3.5, h21 =
h22 = 0.5, l21 = l22 = 0.25, p = 1.5, q = 0.5. It is observed from Fig. 4 that the
master and slave systems (3)–(4) without controllers eventually diverge. In Fig. 5,
we see that the master-slave systems with controller (17) realize synchronization, and
Tmax ≈ 11.9.

123



Fixed-time synchronization for competitive neural… 115

0 1 2 3 4 5 6 7 8 9 10
t

-10

-8

-6

-4

-2

0

2

4

6

8

10
e1(t)

z1(t)

e2(t)

z2(t)

Fig. 3 State trajectories of error system under the controller (6)
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Fig. 4 State trajectories of error system without control

5 Conclusion

In this article, the problem of fixed-time synchronization for CNNswith GWTAFs and
discrete delays has been researched. Simple synchronization conditions are obtained
by designing some uncomplicated feedback controllers. The neural networks with
GWTAFs can optimize the neural network effectively and have more storage capacity.
The settling time of fixed-time synchronization is irrelevant to the initial values of
the system. Finally, the theoretical results which we derived are attested to be indeed
feasible by two numerical examples. Further research is mainly on fixed-time syn-
chronization of QVNNs with event-triggered control.
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Fig. 5 State trajectories of error system under the controller (17)
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