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Abstract
In this work, we investigate a prey-predator model which includes the Allee effect
phenomena in prey growth function, density dependent death rate for predators and
ratio dependent functional response. we fulfill a comprehensive bifurcation analysis,
constructing the two-parametric bifurcation diagrams which describes the effect of
density dependent death rate parameter, and also show possible phase portraits. We
have also investigated the model in the absence of Allee effect and corresponding
bifurcation diagram has been presented to show the dynamical changes in the system.
Then we compare the properties of the ratio dependent prey-predator model with
and without the Allee effect and show that Allee effect has a significant role in the
dynamics. Allee effect can preserve local extinction of populations and suppress the
stability of interior equilibrium point. Finally, all the analytical results are validated
with the help of numerical simulations.

Keywords Prey-predator model · Ratio dependent · Allee effect · Bifurcations ·
Global dynamics

Mathematics Subject Classification 34C23 · 60J25 · 92D25

1 Introduction

One of the important objectives in population dynamics is to describe the interac-
tion between predator-prey species, represented as the functional response and hence
received considerable attentions from several researchers from last few decades. Based
on different laboratory experiments, Holling [23] proposed three different types of
functional responses like Holling type I, Holling type II and Holling type III to model
the phenomena of predation, which made the classical Lotka-Volterra [30,41] sys-
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tem more realistic. Based on these functional responses, a wide variety of dynamical
systems ranging from simple two dimensional models to higher dimensional mod-
els have been investigated to understand the nature of intersection between prey and
predator species within the deterministic environment [16,17,23]. But these modeling
approaches are also unable to capture many important ecological factors like difficul-
ties in mate finding, inbreeding depression, food exploitation, predator avoidance or
defense etc. [13,40] and most important one is Allee-effect, which was first introduced
by Allee [2]. There are two types of Allee effect, one is strong Allee effect and another
is weak Allee effect. The strong Allee effect refers to the negative per capita growth
rate when population density is below a threshold value and the growth rate is positive
when the population density is above this threshold value [42,44]. When the per capita
growth rate is decreasing but remains positive, the Allee effect is called weak Allee
effect. During last few decades, several mathematical models with Allee effect phe-
nomena have been investigated and it was observed that model with Allee effect have
very rich dynamics compared to the analogous models with logistic growth function
[18,21,22,33,38,45]. Hence, we study here a prey-predator model with strong Allee
effect in prey growth function, whose dynamical analysis is known with logistic prey
growth function.

A classical Gauss type predator-prey model is given by the following system of
ODEs [17]:

dx(t)

dt
= x(t)� (x(t), K ) − �(x(t))y(t),

dy(t)

dt
= y(t) (s�(x(t)) − γ ) ,

where �(x(t)) is the functional response function, x(t) > 0 and y(t) > 0 denote,
respectively, the population densities of prey and predator species at time ‘t ′, K > 0
is the carrying capacity of the prey and γ > 0 is the death rate of the predator. The
function �(x(t), K ) represents the specific growth rate of the prey in the absence of
predator. The simplest form of the function �(x(t), K ) commonly used in mathe-
matical modeling of population dynamics is the logistic growth function which has

the expression of the form �(x(t), K ) = r
(
1 − x(t)

K

)
, where r is the maximum

relative growth rate and K is the prey carrying capacity. For different mathematical
representations of the functional response, readers are referred to [8,12,14,17,23,33].

Holling type I (or Lotka-Volterra) functional response is the basic functional
response, which is passing through the origin and unbounded and it is used to model
the behavior of passive predators such as spiders. But, the more reasonable func-
tional response will be nonlinear and bounded. In case of Holling type II functional
response, the predator grows at a maximum relative growth rate α at high prey popula-
tion density, whereas at low prey densities � approximates the Lotka-Volterra model,
asymptotically (as � → αx

m when prey density x is at very low level) i.e. predators
using this type of functional response cause maximum mortality at low prey density.
On the other hand, Holling type III represents a sigmoid growth curve, where it’s
behavior at low prey population densities becomes quadratic instead of linear, in the
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number of prey (� → αx2
m when prey density x is at very low level). In other words,

the number of prey attacked per predator increases at an increasing rate at low prey
densities, but at a decreasing rate at higher densities until it levels off. If the predators
are more efficient at higher prey densities and less efficient at lower prey densities,
then the dynamics of the ecosystem is better described by the Holling type III func-
tional response. The Holling type III functional response is useful to model vertebrate
predators rather than insects [3] or microbes [11], which are often modeled by the
Holling type II response. But it is observed in various studies [9,24,25,28] that there
are several circumstances, especially when predators have to search, share, and strive
for food, the above functional responses will not be appropriate to model the dynamics
of predator-prey interaction and in this case the more suitable functional response is
ratio-dependent functional response which is a particular case of so-called predator-
dependent functional responses. For this type of functional response, the per capita
growth rate for predator should be a function of the ratio of prey to predator abundance.
The ratio-dependent functional response was first introduced by Arditi and Ginzburg
in [5]. They used the graphical method to analyze their model and concluded that
ratio-dependent functional response is a simple way of accounting many types of het-
erogeneity that happens in large-scale ecological systems, while the prey-dependent
form may be more befitting for homogeneous system like chemostats and this was
proved through laboratory experiments also [4,19].

Several researchers have studied ratio-dependent functional response in mathe-
matical modelling [6,9,10,15,20,24,25,34,35,38,43]. In 1998, Beretta and Kuang [9]
showed that the ratio-dependent models are capable of producing richer and more
reasonable or acceptable dynamics and considered time delay. In 2001, authors [10]
presented a complete parametric analysis of stability properties and dynamic regimes
of an ODE model in which the functional response is a function of the ratio of prey
and predator abundances. They showed the existence of eight qualitatively differ-
ent types of system behaviors realized for various parameter values and they also first
demonstrated the complicated analysis of origin in an ecological model. In [6], authors
considered spatiotemporal pattern formation in a ratio-dependent predator-prey system
and showed that the system can develop patterns both inside and outside of the Turing
parameter domain. During 2013, Sen et al. [38] showed that the system exhibits very
rich dynamics around non-trivial equilibrium points and system has at most two inte-
rior equilibrium points. In 2015, Pallav et al. [35] studied phenomenon of bi-stability,
the existence of separatrix curves and several bifurcations such as Hopf bifurcation,
saddle-node bifurcation, homoclinic bifurcation and Bogdanov-Takens bifurcation. In
most of the cases ratio dependent term is linear but few researchers considered ratio-
dependent predator-prey model with Holling type III functional response. In 2004,
Wang and Li [43] established the existence of positive periodic solutions for a delayed
ratio-dependent predator-prey model with Holling type III functional response and the
permanence of the system was also considered. In [15], Fan and Li established the
condition for the permanence in a delayed discrete predator-prey model with Holling
type III functional response.

We consider here continuous time predator-prey model with Holling type III func-
tional response. On the other hand there are very few works available in the literature
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that include the role of density dependent death rate for predators to the system dynam-
ics [7,20,27,32,36,39]. In the past, researchers believed that the density can not affect
the growth of a population but the competition among the same species in several nat-
ural process suggests the other way. In 2009, Haque [20] considered ratio-dependent
predator-prey model with density dependent death rate for predators and found inter-
esting results, they found paradox of enrichment can happen to this system under
certain parameter values. As far my knowledge is concerned, nobody has investigated
a ratio-dependent prey-predator model with Holling type III functional response and
considering both strong Allee effect phenomena in prey growth function and density
dependent death rate for predator population. Keeping in mind that, in this work we
consider the same model to investigate the influence of Allee effect parameter and
density dependent death rate parameter on the dynamics of the system by analyzing
the complete stability analysis of the system and global dynamics of the system by
performing an extensive bifurcation analysis under several parametric restrictions.
Clearly, our work is the extension of the work done in [23,34,35,38]. We show that
the conversion rate of prey and death rate of predator have an important role in the
dynamics of the system. We also investigate the model without Allee effect and com-
pare the dynamics of the system with Allee model. We show bistability for both Allee
model and without Allee model but two coexistence stable steady state is possible for
without Allee model at the same time. We find two Bogdanov-Takens bifurcation, two
Bautin bifurcation in without Allee model. We show that two transcritical bifurcation
curves make the model more complicated. When conversion rate and density inde-
pendent death rate of predator are equal, stable coexistence state of both the species
occur, it can be verify from one parameter bifurcation diagram. In this type of prey-
predator model it is very rear to see such complex bifurcation diagram for without
Allee model. We show that how stability of origin depends upon the conversion rate
of prey, when Allee effect is not present in the system. We show that, Allee effect
changes the complicated dynamics of the system to a simple form.

The present work is organized as follows: in Sect. 2, we discuss the basic model
with dimensionless variables and parameters and study some basic properties. In Sect.
3, we study the existence and stability of all possible equilibrium points that can
occur in the system. Also, we have performed an extensive bifurcation analysis of
the system in Sect. 4. It has been observed that the model possesses several types of
local bifurcations, namely, saddle-node bifurcation andHopf-bifurcation, which are of
co-dimension one and also the system undergoes one co-dimension two bifurcation,
namely, Bogdanov-Takens bifurcation. In Sect. 5, we discuss the global dynamics
of the system which includes all possible phase portraits of the system based on the
schematic bifurcation diagram. Here, we also proved the existence of one global bifur-
cation, namely homoclinic bifurcation. In this section, we present another bifurcation
diagram with respect to Allee parameter. The system without Allee effect is investi-
gated in Sect. 6. In this section, we present one parameter bifurcation diagram to check
the effect of conversion rate, we also compare the dynamics of both the systems with
and without Allee effect. In Sect. 7, the chapter is concluded with a brief discussion.
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2 Development of themodel

In 1989, the general ratio-dependent prey-predator model suggested by Arditi and
Ginzburg [5], is

dx(t)

dt
= r x�(x) − g

(
x

y

)
y,

dy(t)

dt
= g

(
x

y

)
y − qy,

where the function r x�(x) is the prey growth in the absence of predators, predator’s

death rate is represented by qy in the absence of prey and g
(
x
y

)
is the ratio-dependent

function. We consider more specific form of this model in the present work by con-
sidering strong Allee effect in the prey growth, density dependent death rate for the

predator and g
(
x
y

)
= x2

x2+my2
. So, we will analyze the following system :

dx

dt
= r x

(
1 − x

k

)
(x − b) − αx2y

x2 + my2
, (1)

dy

dt
= βx2y

x2 + my2
− γ y − δy2, (2)

subjected to the initial conditions x(0), y(0) ≥ 0. Here x and y represent prey and
predator population density, respectively. The parameters of the system are positive
and represented as r is prey intrinsic growth rate, γ is death rate of predator, k is
the prey carrying capacity, b is Allee threshold, m is the interference coefficient of
predator, α is consumption rate, β is the conversion rate of prey and δ is the predator
intra species competition rate. Allee parameter b is defined as 0 < b < k.
We transform the system (x, y, t) → (u, v, T ) to a dimensionless form with less
number of independent parameters. We use the transformation x = ku, y = βkv

α
,

t = T
rb to get the following form:

du

dT
= u(1 − u)

( u

A
− 1

)
− Bu2v

u2 + Cv2
= F1(u, v), (3)

dv

dT
= Bu2v

u2 + Cv2
− Dv − Ev2 = F2(u, v), (4)

where A = b
k ,B = β

rb ,C = mβ2

α2 , D = γ
rb ,E = βδk

αrb .

2.1 Positivity and boundedness of solution

Any solution starting from the interior of the first quadrant of uv-plane always remain
in the first quadrant. So, solution is positive and bounded, proof is similar from [38].
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Fig. 1 Possible number of interior equilibrium points changes from zero to two for different values of E .
Red coloured curve is the first nullcline and purple coloured line is the asymptote of the second nullcline.
Second nullcline is plotted for three different values of E , namely E = 0.014 (orange coloured, no interior
equilibrium), E = 0.0190045185 (blue coloured, saddle-node bifurcation), E = 0.025 (green coloured,
two interior equilibrium) and other parameters are fixed at A = 0.3, B = 0.15,C = 0.01, D = 0.1

3 Equilibrium points and local stability

Here, we examine the existence of possible number of equilibria of the system and
their local stability.

3.1 Equilibrium points

The system (3)–(4) has three axial equilibrium points E0(0, 0), E1(A, 0) and E2(1, 0)
and the interior equilibrium points are the points of the intersection of the following
two non-trivial nullclines:

(1 − u)
( u

A
− 1

)
− Buv

u2 + Cv2
= 0, (5)

Bu2

u2 + Cv2
− D − Ev = 0. (6)

A portion of curve (5) lies in R2+ for u ∈ [A, 1] and it is a continuous smooth curve
joining two points (A, 0) and (1, 0) and having a local maximum at um such that
A < um < 1 (0 < A < 1). The second nullcine (6) intersects the positive u-
axis at (0, 0) and then increases monotonically and bounded above by its horizontal
asymptote v = B−D

E (see Fig. 1). This observation is true as we assume the restriction
B > D. But if we consider B < D then nullcline (6) does not have any branch in the
positive quadrant of the uv-plane and so the system does not have any feasible interior
equilibrium point.

Theorem 3.1 Let us assume B > D holds. Then the system (3)–(4) admits either no
or two interior equilibrium points.
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It is difficult to derive the analytical conditions to determine the number of interior
equilibrium points. However, the possible number of feasible interior equilibrium
points can be explained from the relative positions and shapes of non-trivial nullclines
as presented at Fig. 1. The number of interior equilibrium points can changes from
zero to two if we gradually increase the value of the parameter E keeping all other
parameters fixed. We assume the u-components of the interior equilibria satisfy the
ordering 0 < u2∗ < u1∗ < 1 whenever they exist. In Fig. 1, we have depicted
the scenario of changing the number of interior equilibrium points from zero to two
with the increasing magnitude of E . In this case we denote two interior equilibrium
points,whenever they exist, by E1∗(u1∗, v1∗), E2∗(u2∗, v2∗) respectively and we find
a threshold value of E , which we denote by ESN , where E1∗ and E2∗ coincide and
one saddle node bifurcation occurs. We study the saddle-node bifurcation in “Local-
bifurcations” section in details.

3.2 Local asymptotic stability

Proposition 1 (a) E1(A, 0) is unstable point if B > D and saddle point if B < D.
(b) E2(1, 0) is saddle point if B > D and stable point if B < D.

Proof The Jacobian matrix of the system (3)–(4) at any point (u, v) is given by,

J =
⎡
⎣ (1 − u)( u

A − 1) − u( u
A − 1) + u

A (1 − u) − 2BCuv3

(u2+Cv2)2
−Bu2(u2−Cv2)

(u2+Cv2)2

2BCuv3

(u2+Cv2)2
Bu2(u2−Cv2)

(u2+Cv2)2
− D − 2Ev

⎤
⎦ .

Taking T11(u, v) = (1 − u)( u
A − 1) − u( u

A − 1) + u
A (1 − u), a22(u, v) = 2BCuv3

(u2+Cv2)2
,

a12(u, v) = Bu2(u2−Cv2)

(u2+Cv2)2
, Jacobian matrix takes the form as following

J =
[
T11(u, v) − a22(u, v) −a12(u, v)

a22(u, v) a12(u, v) − D − 2Ev

]
.

Evaluating the Jacobian matrix at E1 and E2 we find,

JE1 =
[
1 − A 0
−B B − D

]
, JE2 =

[
1 − 1

A 0
−B B − D

]

respectively. As A < 1, E1(A, 0) is a unstable point if B > D and a saddle point if
B < D. E2(1, 0) is a saddle point if B > D and a stable point if B < D. ��
Theorem 3.2 The origin E0(0, 0) in (3)–(4) is locally asymptotically stable.

The Jacobian matrix at (0, 0) have some undefined terms. So we use Blow-up method
to determine the stability of equilibrium point (0, 0). Here we use the horizontal
Blow-up technique, given by the function χ(p, q) = (p, pq) = (u, v). Proceeding
in a similar fashion like Theorem 3.2 of [1] it can be easily proved that E0(0, 0) is
always locally asymptotically stable.
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Fig. 2 Green coloured prey nullcline and blue coloured predator nullcline intersect at two interior equilib-
rium points. Sign of non-trivial nullclines are described in different portions

Proposition 2 Assume that B > D holds.

(a) E1∗ is locally asymptotically stable (unstable) if T r JE1∗ < 0 (T r JE1∗ > 0).
(b) E2∗ is a saddle point whenever it exists.

Proof Let F1(u, v) = u f1(u, v) and F2(u, v) = v f2(u, v) with f1(u, v) = (1 −
u)( u

A − 1) − Buv
u2+Cv2

and f2(u, v) = Bu2

u2+Cv2
− D − Ev. Then we can write,

JEi∗ =
(
F1u F1v
F2u F2v

)
=

(
u f1u u f1v
v f2u v f2v

)
,

where F1u = dF1
du and similar for others.

Using the concept of direction field for E2∗ we find,

Sign(JE2∗) = Sign

(
u f1u u f1v
v f2u v f2v

)
=

(+ −
+ −

)
.

Note that f1(u, v) > 0 for points below the nontrivial prey nullcline and it is positive
above it. Hence when we move from left of the equilibria E2∗ to right sign changes
from negative to positive, i.e., f1(u2∗ − 	u

2 , v2∗) < 0 and f1(u2∗ + 	u
2 , v2∗) > 0,

which imply that ∂ f1
∂u |E2∗ > 0. Here sign of u2∗ is positive and hence sign of u2∗ ∂ f1

∂u |E2∗
is positive. Similarly we can found the signs of the other terms of the Jacobian matrix.

We provide the graphical representation in Fig. 2. But in this case dv f1

du |E2∗ > dv f2

du |E2∗ ,

which implies Det(JE2∗) < 0, so E2∗, is always a saddle point. dv f1

du denotes the slope
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of the tangent of the curve f1 = 0 and dv( f2)

du denotes the slope of the tangent of the
curve f2 = 0.
For the equilibrium point E1∗, we find

Sign(JE1∗) = Sign

(
u f1u u f1v
v f2u v f2v

)
=

(+ −
+ −

)
.

We have dv f1

du |E1∗ < dv f2

du |E1∗ , which implies Det(JE1∗) > 0, so E1∗ is stable if
Tr JE1∗ < 0 and unstable if Tr JE1∗ > 0. ��

4 Local bifurcations

Here, we investigate that system (3)–(4) exhibits several type of local bifurcations,
namely saddle-node bifurcation and Hopf-bifurcation which are of co-dimension one
and the system also undergoes co-dimension two bifurcation namely, Bogdanov-Taken
bifurcation. Throughout this section we assume that B > D which is necessary for
the existence of interior equilibrium points.

4.1 Saddle-node bifurcation

As we discussed above a saddle-node bifurcation occurs in the system (3)–(4)
with respect to the parameter E . Two interior equilibrium points E1∗(u1∗, v1∗)
and E2∗(u2∗, v2∗) coincide at a single equilibrium point E∗

SN (usn∗, vsn∗) i.e. two
non-trivial nullclines of system (3)–(4) touches each other at E∗

SN (usn∗, vsn∗) at
threshold value of ESN . As F1(u, v) = u f1(u, v) and F2(u, v) = v f2(u, v). Clearly
dv( f1)
du |E∗

SN
= dv( f2)

du |E∗
SN

(Where dv( f1)
du |E∗

SN
and dv( f2)

du |E∗
SN

denote the slope of

f1(u, v) = 0 and f2(u, v) = 0 respectively at E∗
SN ), since

dv( f1)
du |E∗

SN
= ∂F1/∂u

∂F1/∂v
|E∗

SN

and dv( f2)
du |E∗

SN
= ∂F2/∂u

∂F2/∂v
|E∗

SN
. Therefore det JE∗

SN
= 0. Hence one of the eigenvalue

of JE∗
SN

is zero with multiplicity one. Now we check the transversality conditions for

saddle-node bifurcation [29]. Let V and W be the eigenvectors of JE∗
SN

and
[
JE∗

SN

]T

corresponding to zero eigenvalue respectively.
First transversality condition for saddle node bifurcation

WT FE (E∗
SN ; ESN ) = −v2sn∗

a12(usn∗, vsn∗)T11(usn∗, vsn∗)
a22(usn∗, vsn∗)(D + 2ESNvsn∗)

.

Second transversality condition

WT D2F(E∗
SN ; ESN )(V , V ) = I0 + T11Svsn∗

a22(usn∗, vsn∗)
.

[(
T11(usn∗, vsn∗)
D + 2ESNvsn∗

)
usn∗ − vsn∗

]2

−2ESNa12(usn∗, vsn∗)
a22(usn∗, vsn∗)

(
T11(usn∗, vsn∗)
D + 2ESNvsn∗

)3

.

123



748 P. S. Mandal et al.

Detail calculation is given in “Appendix 1”. Since it is not possible to find out
the explicit expression of E∗

SN (usn∗, vsn∗) analytically, we check the occurrence of
saddle-node bifurcation through a numerical example. Here we verify the saddle node
bifurcation for the choice of parameters value. For the parameters value A = 0.3,
B = 0.15, C = 0.01, D = 0.1 and E = 0.2 system (3)–(4) has two interior equilib-
rium points E2∗(0.5678, 1.5726), E1∗(0.8281, 1.7449). We decrease the parameter E
and at threshold value ESN = 0.019004518564213 two interior equilibrium coincides
i.e. E1∗(usn∗, usn∗) = E2∗(usn∗, vsn∗) = (0.696801, 2.019398). Further decreas-
ing the parameter E system has no interior equilibrium points. First transversality
condition WT FE (E∗

SN ; ESN ) = −7.9713( 	= 0) and second transversality condition
WT D2F(E∗

SN ; ESN )(V , V ) = −5.4217( 	= 0). We also get det((usn∗, vsn∗))]ESN =
0.
Ecologically, this bifurcation results the extinction for both the species as in this case
origin is the only stable equilibrium point. Coexistence of both the species is observed
for low conversion rate and the extinction occurs when the conversion rate is very
high.

4.2 Hopf bifurcation

We note that E2∗ is always a saddle point when it exists and stability of E1∗ can change
through Hopf-bifurcation, stated in the following theorem

Theorem 4.1 Stability of E1∗ gets changed through Hopf-bifurcation at the threshold
B = BH = (u21∗+Cv21∗)2

u1∗(u31∗−Cu1∗v21∗−2Cv31∗)
(T11(u1∗, v1∗) − D − 2Ev1∗) if u1∗ 	= 0 and

u31∗ 	= Cv21∗(u1∗ − 2v1∗).
Proof For B = BH clearly TrJ (u1∗, v1∗) = 0. Jacobian matrix evaluated at equi-
librium point E1∗ has a pair of purely imaginary eigenvalues. Now we check the
transversality condition d

dB {Re(λ)}|B=BH 	= 0, where λ is an eigenvalue of the Jaco-
bian matrix J (u2∗, v2∗) evaluated at B = BH .
Eigenvalue for the Jacobian matrix is given by

λ = TrJ (u1∗, v1∗) ±
√
Tr2 J (u1∗, v1∗) − 4 det J (u1∗, v1∗)

2

Using the condition for Hopf-bifurcation i.e., trJE1∗(u1∗, v1∗) = 0, we get

λ = ±√− det J (u1∗, v1∗)

From above λ is imaginary if det J (u1∗, v1∗) > 0 and λ is real if det J (u1∗, v1∗) < 0.
Now taking λ is real and we calculate the expression as following

d

dB
{Re(λ)}|B=BH = d

dB

[√
det J (u1∗, v1∗)

]

= 1

2

d
dB

[
T11(u1∗, v1∗)a12(u1∗, v1∗) − (T11(u1∗, v1∗) − a22(u1∗, v1∗))(D + 2Ev1∗)

]
√

(T11(u1∗, v1∗)a12(u1∗, v1∗) − (T11(u1∗, v1∗) − a22(u1∗, v1∗))(D + 2Ev1∗))
,
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= T11(u1∗, v1∗)u21∗(u21∗ − Cv21∗) + 2Cu1∗v31∗(D + 2Ev1∗)
2(u21∗ + Cv21∗)2

√
(T11(u1∗, v1∗)a12(u1∗, v1∗) − (T11(u1∗, v1∗) − a22(u1∗, v1∗))(D + 2Ev1∗))

,

=
√

2Cu1∗v31∗ − u21∗(u21∗ − Cv21∗)
T 2
11(u1∗, v1∗)u21∗(u21∗ − Cv21∗) − 2Cu1∗v31∗(D + 2Ev1∗)2

[

T11(u1∗, v1∗)u21∗(u21∗ − Cv21∗) + 2Cu1∗v31∗(D + 2Ev1∗)
2(u21∗ + Cv21∗)2

]
.

Which is clearly non-zero using the conditions given in the statement of the theorem.
��

We determine the stability of Hopf-bifurcating limit cycle by finding the first lya-
punov number. To do so we translate the equilibrium point E1∗(u1∗, v1∗) to origin
with new coordinate by setting x = u − u1∗, y = v − v1∗ and we get first lyapunov
number l1. If l1 > 0 then Hopf-bifurcating limit cycle is unstable and the correspond-
ing Hopf-bifurcation is called subcritical. If l1 < 0 then the Hopf-bifurcating limit
cycle is stable and the Hopf-bifurcation is called supercritical. Detail calculation is
given in “Appendix 2”.

Here we verify the hopf-bifurcation condition for the choice of parameters value
numerically. We fixed the parameters value at A = 0.3, C = 0.01, D = 0.1,
E = 0.019 and threshold value of BH = 0.1499372509. We found the first Lyapunov
coefficient is 7.109 > 0, so the system undergoes a subcritical Hopf-bifurcation. This
set of parameters value are satisfied the Hopf bifurcation condition mentioned in the-
orem (4.1) i.e. u31∗ −Cv21∗(u1∗ − 2v1∗) = 0.15948( 	= 0) and satisfy the transversality
condition d

dB {Re(λ)}|B=BH = 0.14994( 	= 0). Also we get TrJ (u1∗, v1∗)BH = 0 and
det J (u1∗, v1∗)BH = 0.0035 is positive.
Ecologically, unstable limit cycle arising through subcritical Hopf-bifurcation is the
boundary of the basin of attraction of the stable equilibrium point. That is, the unstable
limit cycle acts as a separatrix between the domain of attraction of coexistence state
and extinction state of both populations. On the other hand, the presence of stable limit
cycle through supercritical Hopf-bifurcation indicates that both the prey and predator
populations have oscillatory coexistence.

4.3 Bogdanov-Takens bifurcation

Now saddle-node curve and Hopf-curve meet at Bogdanov-Takens bifurcation point.
In this subsection, we show that the system (3)–(4) undergoes a Bogdanov-Takens
bifurcation of co-dimension two. For this bifurcation, the Jacobian matrix evalu-
ated at ESN = (usn∗, vsn∗) has a zero eigenvalue with algebraic multiplicity two.
The parametric condition for this is given by det(J (u, v))|(E∗

SN ;BBT ;EBT ) = 0 and
Tr(J (u, v))|(E∗

SN ;BBT ;EBT ) = 0, where (BBT , EBT ) is the B-T bifurcation point.
Hence we find the expression for E = EBT and B = BBT as follow

EBT = T11(usn∗, vsn∗)(a12(usn∗, vsn∗) − D) + Da22(usn∗, vsn∗)
2vsn∗(T11(usn∗, vsn∗) − a22(usn∗, vsn∗))
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BBT = (u2sn∗ + Cv2sn∗)2

usn∗(u3sn∗ − Cusn∗v2sn∗ − 2Cv3sn∗)
(T11(usn∗, vsn∗) − D − 2EBT vsn∗) .

(7)

wehave to check the transversality conditions forBogdanov-Takens bifurcation and for
this we consider the neighbourhood of BT point and a perturbation to the parameters
B and E around their BT-bifurcation threshold given by (B, E) → (BBT +λ1, EBT +
λ2), where |λ1|, |λ2| � 1. Therefore the system (3)–(4) become

du

dT
= u(1 − u)

( u

A
− 1

)
− (BBT + λ1)u2v

u2 + Cv2
≡ F1

0 (u, v)

dv

dT
= (BBT + λ1)u2v

u2 + Cv2
− Dv − (EBT + λ2)v

2 ≡ F2
0 (u, v) (8)

We transform the equilibrium point E∗
SN to origin by x = u − usn∗, y = v − vsn∗ and

we check the condition of nondegeneracy. Detail calculation is given in “Appendix 3”.
Hereweverify theBogdanov-Takens bifurcation conditions for the choice of param-

eters value numerically. We choose parameters value A = 0.3, C = 0.01, D = 0.11
and threshold value of BBT = 0.2925, EBT = 0.092825707, E(usn∗, vsn∗) =
(0.7177925570, 0.7177925570) satisfy the non degeneracy condition describe in
“Appendix 3”. We check the value of the expression η20(0) = 2.9146( 	= 0)
and ξ20(0) + η11(0) = − 4.6983( 	= 0). Also TrJ (usn∗, vsn∗)(EBT ,BBT ) = 0 and
det J (usn∗, vsn∗)(EBT ,BBT ) = 0.

5 Global dynamical properties

In Sect. (4), we have described some local bifurcations under various parametric
restrictions associated with the system (3)–(4). We observed that parameters B and E
have important significance in the study of bifurcation theory for considered model.
Here we plot a parametric bifurcation diagram in B − E plane to determine how
bifurcation curves breaks the positive quadrant of whole B − E plane into different
subregions and the system (3)–(4) experiences qualitatively different dynamic behav-
ior in different subregions. System (3)–(4) exhibits local bifurcations (saddle node
bifurcation, Hopf bifurcation and B − T bifurcation) and global bifurcation (homo-
clinic). The occurrence of homoclinic bifurcation indicates that the stable limit cycle
disappears. The whole B − E plane is divided into five different subregions R1, R2,
R3, R4 and R5 by local and global bifurcation curves. Schematic bifurcation diagram
corresponding to the system (3)–(4) is presented in Fig. 3. System (3)–(4) has no
interior equilibrium point when (B, E) ∈ R1. Below the BT point, we decrease the
magnitude of parameter B in such a way that (B, E) enters into the region R2 and the
system exhibits two interior equilibrium points. At threshold value ESN where two
interior equilibrium point emerges, a saddle node bifurcation appears and the saddle
node bifurcation curve is represented by blue colour curve in Fig. 3. At the threshold
value B = BH , Hopf bifurcation occurs and the Hopf-bifurcation curve is represented
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Fig. 3 Two parametric bifurcation diagram in B − E plane

by green colour curve in Fig. 3. Thenwe reach at the region R3 after crossing theHopf-
bifurcation curve. Hopf-bifurcation curve and saddle node bifurcation curve meet at
the point BT , where BT is the Bogdanov-Takens bifurcation point. Again crossing the
homoclinic bifurcation curve we enter into the region R4 , the homoclinic bifurcation
curve emerges from BT point, represented by the red colour curve in Fig. 3. Further
decreasing the value of parameter B under the restriction B < D we reach at the
region R5, where the system admits no interior equilibrium point .

Now we discuss the phase portraits for a particular choice of parameter set given
by A, C , D and varying B and E to understand the stability and bifurcation analysis
very well. We fixed the parameters values A = 0.3, C = 0.01, D = 0.11. Values of
B and E will be chosen in such a way that the point (B, E) belongs to each of the
five different domains presented in the schematic bifurcation diagram Fig. 3. Phase
portraits corresponding to each domain are presented in Fig. 4. Different parameter
values for B and E for different domains are given in the caption of the Fig. 4. In
all the phase portraits, stable equilibrium points are marked with red dotted circle,
saddle equilibrium points are marked with black open circle and unstable equilibrium
points aremarkedwith green dotted circle. In region R1, system (3)–(4) has no interior
equilibrium point and equilibrium point E0 is attractor, E1, E2 are repeller and saddle
points, respectively. Hence E0 = (0, 0) is globally asymptotically stable here and
all the trajectories starting from any initial condition will be attracted towards the
origin which is evident from Fig. 4a. In domain R2, two interior equilibrium points
E1∗(u1∗, v1∗) and E2∗(u2∗, v2∗) exist. E2∗(u2∗, v2∗) is saddle and E1∗(u1∗, v1∗) is
unstable. Boundary equilibrium points have same nature like R1. The stable manifold
of saddle equilibrium is shown by red colour curve in Fig. 4b. In domain R3, the
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Fig. 4 Phase portraits for fixed parameter value A = 0.3, C = 0.01, D = 0.11 and varying B and E . a
B = 0.118, E = 0.0001 chosen from region R1, b B = 0.14, E = 0.01255 chosen from region R2, c
B = 0.13984, E = 0.01462 chosen from region R3, d enlarge version of c, e B = 0.15, E = 0.16 chosen
from region R4, f B = 0.1, E = 0.16 chosen from region R5

unstable interior equilibrium point changes its stability through Hopf-bifurcation and
it is surrounded by an unstable limit cycle. Trajectories starting from the inside of limit
cycle will converge to the stable equilibrium, otherwise converge to the origin. Hence,
unstable limit cycle acts as an separtrix in domain R3 (See Fig. 4c). Larger version
of limit cycle is shown in Fig. 4d. We reach in the domain R4 through homoclinic
bifurcation. Here, two interior equilibrium points exist. One is stable and another
is the saddle. Boundary equilibrium points exist and they have the same stability
properties like domain R1, R2 and R3. The red coloured curve acts as a separtrix
between the domain of attraction of origin and stable interior equilibrium point i.e
the trajectories starting right side of the separtrix will be attracted towards the stable
interior equilibrium and trajectories starting left side of the separtrix will be attracted
towards the origin (See Fig. 4e). In this domain stable coexistence of both populations
is possible. In the domain R5, no interior equilibrium point exists. Equilibrium points
E0 and E2 are attractor and equilibrium point E1 is a saddle point. The stable manifold
of E1 is the separtrix between the domain of attraction of E0 and E2 which is evident
from Fig. 4f.

5.1 Impact of Allee parameter in dynamics of system (3)–(4)

We have considered conversion rate of prey and death rate of predator as bifurcation
parameters and have plotted the two parametric bifurcation diagram in B− E plane in
Fig. 3 to determine all possible bifurcations. Now we are interested to check the role
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Fig. 5 Two parametric bifurcation diagram in A− E plane. BT is the Bogdanov-Takens bifurcation point

Table 1 Equilibrium points and their stability for several domain of Fig. 3

Region Interior equilibrium points Nature of the phase portrait

R1 Nil E0 is locally asymptotically stable, equilibrium point

E1 is unstable and equilibrium point E2 is saddle

R2 E1∗, E2∗ exist E2∗ is saddle and E1∗ is unstable,

E0 is locally asymptotically stable, equilibrium point

E1 is unstable and equilibrium point E2 is saddle

R3 E1∗, E2∗ exist E2∗ is saddle and E1∗ is stable bounded by unstable limit

cycle and E0 is locally asymptotically stable equilibrium point

E1 is unstable and equilibrium point E2 is saddle

R4 E1∗, E2∗ exist E2∗ is saddle and E1∗ is stable,

E0 is locally asymptotically stable, equilibrium point

E1 is unstable and equilibrium point E2 is saddle

R5 Nil E0 is locally asymptotically stable, equilibrium point

E1 is saddle and equilibrium point E2 is stable

of Allee parameter in the dynamics of the system (3)–(4). We consider Allee effect
parameter as one of bifurcation parameter, another one is density dependent death
rate and plot two parametric bifurcation diagram in A − E plane in Fig. 5. There are
similarities in Figs. 3 and 5. Several bifurcation curves breaks the positive quadrant
of whole A − E plane into four different sub regions. Saddle node bifurcation curve
is represented by blue coloured curve, hopf-bifurcation curve is represented by green
coloured curve and red coloured curve is the homoclinic bifurcation curve in Fig. 5.
Existence and stability of equilibrium points are same as Fig. 3 (Table 1).
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6 Systemwithout Allee effect

Here we investigate the system (3)–(4) without Allee effect,

du

dT
= u(1 − u) − Bu2v

u2 + Cv2
, (9)

dv

dT
= Bu2v

u2 + Cv2
− Dv − Ev2, (10)

where the biological meanings of the parameters are same as above. Themodel has the
following two boundary equilibrium points: E0na(0, 0) and E1na(1, 0). The interior
equilibrium points are the non-trivial intersection points of two nullclines (9) and (10)
and the number of interior equilibria can be zero, one, two or three. Fig. 6 shows the
possible number of interior equilibrium points for a particular set of parameters. We
denote interior equilibrium point by E∗

ina(u
∗
ina, v

∗
ina) (i = 1, 2, 3) and we assume

the u-components of the interior equilibria satisfy the ordering 0 < u∗
1na < u∗

2na <

u∗
3na < 1 whenever they exist.

Here we plot a parametric bifurcation diagram in B − E plane (see Fig. 7). The
system (9)–(10) experiences qualitatively different dynamic behavior in different sub-
regions. The eigenvalues of the Jacobian matrix of the system (9)–(10) at E1na(1, 0)
are −1 and B − D. At B = D, E1na(1, 0) changes its stability and a transcritical
bifurcation occurs. Ecologically, when conversion rate is equal to density indepen-
dent death rate of predator, one coexistence state of both species is observed. When
B < D, E1na(1, 0) is stable otherwise it is unstable. Stability analysis of E0na(0, 0) is
described in “Appendix 4”. Among three interior equilibrium points, E∗

2na is always
saddle point and others two can change their stability through Hopf-bifurcation. We
can check it numerically through Table 2.

Figure 7 shows that oneHopf-bifurcation curve, two saddle-nodebifurcation curves,
two transcritical bifurcation curves and one Homoclinic bifurcation curve divide first
quadrant of B − E plane into 9 subregions. Two Bogdanov-Takens bifurcation points

Fig. 6 Possible number of interior equilibrium points changes from zero to three for different values of
B and E and other parameters are fixed at C = 0.01, D = 0.1. Red coloured curve is the first nullcline
and green and orange coloured curved are second nullcline. a Interior equilibrium points change from zero
to two through saddle-node bifurcation. B = 0.21, E = 0.06 (orange coloured, no interior equilibrium)
and B = 0.21, E = 0.08 (green coloured, two interior equilibrium), b One interior equilibrium point for
B = 0.15, E = 0.08 c Three interior equilibrium points for B = 0.199, E = 0.09
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Fig. 7 Two parametric bifurcation diagram in B − E plane of the system (9)–(10)

Table 2 Stability of the interior equilibrium points for fixed parameter C = 0.01, D = 0.1

Interior equilibrium
points

Parameter value Eigenvalues Stability

E∗
1na B = 0.199 λ1 = −0.733763880850527e− 2 Stable

E=0.06 λ2 = −0.629988805914947e− 1

E∗
1na B = 0.197 λ1 = 0.74487494e − 2 +

0.285267549264942e − 1 ∗ I
Unstable

E=0.06 λ2 = 0.74487494e − 2 −
0.285267549264942e − 1 ∗ I

E∗
3na B = 0.215 λ1 = −0.3906688135e − 1 +

0.802523725240669e − 1 ∗ I
Stable

E=0.08 λ2 = −0.3906688135e − 1 −
0.802523725240669e − 1 ∗ I

E∗
3na B = 0.215 λ1 = 0.4559824e − 3 +

0.325372491832114e − 1 ∗ I
Unstable

E=0.079 λ2 = 0.4559824e − 3 −
0.325372491832114e − 1 ∗ I

E∗
2na B = 0.215 λ1 = 0.0471295768889850 Saddle

E=0.079 λ2 = −0.217552473889850e− 1

and two Bautin bifurcation points are also exist in the diagram. Corresponding phase
portraits are shown in Fig. 8. Two vertical lines, orange coloured curve and cyan
blue coloured curve are two transcritical bifurcation curves. Red coloured curve is the
Hopf-bifurcation curve and black coloured curve is the homoclinic bifurcation curve.
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Fig. 8 Phase portrait for fixed C = 0.01, D = 0.1 and varying B and E . a B = 0.01, E = 0.01 (domain
R1); b B = 0.15, E = 0.1 (domain R2); c B = 0.197, E = 0.06 (domain R3); d B = 0.198, E =
0.07 (domain R4); e B = 0.183, E = 0.022 (domain R5); f B = 0.21, E = 0.11 (domain R6); g
B = 0.215, E = 0.0791 (domain R7); h B = 0.215, E = 0.079 (domain R8); i B = 0.21, E = 0.01
(domain R9)

Two saddle node bifurcation curves are green and blue coloured curves. In domain R1,
E1na is the global stable point and no interior equilibrium points exist (see Fig. 8a). In
domain R2, E1na changes its stability and one stable interior equilibrium point E∗

3na
appears through transcritical bifurcation (see Fig. 8b). E∗

1na and E∗
2na appear through

saddle-node bifurcation in domain R3 and E∗
1na is unstable in this domain and bound-

ary equilibrium points have same nature like R2 (see Fig. 8c). E∗
1na changes its stability

through Hopf-bifurcation and become stable in domain R4 (see Fig. 8d). In R5, E∗
3na

exists and no equilibrium points are stable (see Fig. 8e). Interior equilibrium point
E∗
1na disappears through another transcritical bifurcation and E∗

3na , E0na are stable
in domain R6 (see Fig. 8f). In domain R7, E∗

3na is stable surrounded by an unstable
limit cycle and boundary equilibrium points have same nature like R6 (see Fig. 8g).
E∗
3na changes its stability through another Hopf-bifurcation and become unstable in

domain R8 (see Fig. 8h). Interior equilibrium points E∗
2na and E∗

3na disappear through
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another saddle-node bifurcation and E0na becomes globally stable equilibrium point
in domain R9 (see Fig. 8i). Existence and stability of the equilibrium points are
summarized at Table 2. Ifwefixed parametersC = 0.01, D = 0.1, then theBogdanov-
Takens bifurcation (BT ) points are (BBT 1, EBT 1) = (0.21874235, 0.084215634)
and (BBT 2, EBT 2) = (0.19889577, 0.10111344). GH is the Bautin bifurcation point
where first lyapunov coefficient is zero and the threshold are (BGH1, EGH1) =
(0.18843566, 0.045024366) and (BGH2, EGH2) = (0.18950869, 0.021593124).

6.1 Effect of density dependent predation rate

In this subsection, we present one parameter bifurcation diagram with respect to the
density dependent predation rate to investigate the dynamical changes of our system
(3)–(4) and (9)–(10). We varying the conversion rate B and fixed other parameters at
C = 0.01, D = 0.1, A = 0.3 and (a), (b) E = 0.025; (c), (d) E = 0.05 (Fig. 9).
Figure 9a,b for system (3)–(4) and Fig. 9c, d for system (9)–(10). In Fig. 9a and b, at
most two interior equilibrium points exist on the right side of the black dotted vertical
line B = D, one is stable and another one is unstable. Stable equilibrium point is
represented by blue solid curve and unstable equilibrium point is represented by red
dotted curve, two curve meet at hopf bifurcation point H . This two equilibrium points
disappear through saddle-node bifurcation point LP . In Fig. 9c and d, at most three
interior equilibrium points exist. Stable equilibrium point is represented by blue solid
curve and unstable equilibrium point is represented by red dotted curve. Axial equi-
librium point (1, 0) changes its stability through orange coloured vertical trancritical
bifurcation curve and one stable interior equlibrium point appears. Trivial equilib-
rium point (0, 0) changes its stability through cyan blue coloured vertical trancritical
bifurcation curve and one interior equlibrium point disappears. The system undergoes
two hopf-bifurcations (denoted by ‘H’) and two saddle-node bifurcations (denoted by
‘LP’).

6.2 Comparison between Alleemodel and without Allee model

In this subsection, we have made the significant comparison of prey-predator model
(3)–(4) with themodel (9)–(10). In themodel (3)–(4), we have considered strongAllee
effect in prey growth but we have considered only logistic growth function for prey
in the model (9)–(10). We observed that the Allee effect can simplify the dynamics
of this type of prey-predator model. Comparing the dynamics of both the models we
find the following differences:

1. System (3)–(4) has three axial equilibria and atmost two interior equilibriawhereas
system (9)–(10) has two axial equilibria and at most three interior equilibria.

2. System (3)–(4) has axial equilibria (0, 0), (A, 0) and (1, 0). (0, 0) is always stable
and (1, 0) is stable when B < D. So it is possible that two axial equilibrium
points locally asymptotically stable at the same time when B < D. On the other
hand system (9)–(10) has axial equilibria (0, 0), (1, 0). Both the axial equilibrium
points changes its stability through transcritical bifurcation and it is possible that
no axial equilibrium point is stable in a certain time.
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Fig. 9 One parameter bifurcation diagram in B − u and B − v plane represents the stability of equilibrium
points. a, b for system (3)–(4) and c, d for system (9)–(10). Red Dotted line: unstable equilibria, blue solid
line: stable equilibria, solid vertical line: transcritical bifurcation curves, LP: saddle-node bifurcation, H :
Hopf bifurcation. Fixed parameters at C = 0.01, D = 0.1, A = 0.3 and a, b E = 0.025; c, d E = 0.05

3. System (3)–(4) has at most two interior equilibria, one is saddle and another one
equilibrium point changes its stability through Hopf-bifurcation. The system (9)–
(10) has atmost three interior equilibriumpoints, one is saddle and two equilibrium
points changes its stability through Hopf-bifurcation. Bistability is possible in this
case, two interior equilibrium points are locally asymptotically stable in some
regions (see Fig. 8d).

4. When conversion rate is very low, (1, 0) is globally stable (see Fig. 8a) for the
system (9)–(10) but in this case (0, 0), (1, 0) are both locally asymptotically stable
(see Fig. 4f) for the system (3)–(4). When conversion rate is very high, origin is
globally stable for both the systems.

5. No transcritical bifurcation occurs for the system (3)–(4) and one saddle-node
bifurcation curve, one hopf-bifurcation curve, one homoclinic bifurcation curve
meet at Bogdanov-Takens bifurcation point BT . The system (9)–(10) undergoes
two transcritical bifurcations, two hopf-bifurcations, two saddle-node bifurcations
and also homoclinic bifurcation. In this case we also get two Bogdanov-Takens
bifurcation points.

6. In (3)–(4), Hopf-bifurcation is always subcritical. In (9)–(10), Hopf-bifurcation is
subcritical as well as supercritical, we get two Bautin bifurcation points GH .
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7 Discussion

In Allee effect model, coexistence state of prey and predator populations depends
upon the conversion rate of prey and death rate of predator. When the conversion rate
of prey is greater than the death rate of predator then coexistence state of both prey
and predator populations is not possible. In this case, bistability occurs but the system
goes to extinction for small initial prey density and stable state of prey is possible for
large initial prey density. Origin is always an attractor and the basin of attraction of the
origin depends upon the existence and stability of other equilibrium points. Both prey
and predator populations in the systemmay coexist when the conversion rate of prey is
less than the death rate of predator. It is quite difficult to find the explicit expressions
for the coexistence state of prey and predator populations but detailed bifurcation
analysis gives us the parametric restrictions to verify their existence and stability both.
The summarized result are provided at Table 1. At most one of the interior equilibrium
points is stable out of two interior equilibrium points.When the conversion rate of prey
is very high then prey and predator populations do not coexist and the system goes to
extinction for any prey density. From the phase portrait in Fig. 4, it is clear that the
domain of attraction of attractor is depend upon the magnitude of model parameters. It
is also observed that oscillatory coexistence is possible for both populations. Unstable
limit cycle acts as boundary of attracting set of the stable interior equilibrium points.
Local bifurcation curves in bifurcation diagram describe the change in the existence
and stability properties of equilibrium points whereas global bifurcation curve shows
considerable amount of effect in system dynamics. When the parameters enters from
region R3 to region R4 (see Fig. 3) then homoclinic bifurcation occurs and basin of

Table 3 Equilibrium points and their stability for several domain of Fig. 7

Region Interior equilibrium points Nature of the phase portrait

R1 Nil E1na is locally asymptotically stable and equilibrium
point E0na is saddle

R2 E∗
3na exists E0na , E1na are saddle and E∗

3na is locally
asymptotically stable

R3 E∗
1na , E

∗
2na , E

∗
3na exist E0na , E1na , E

∗
2na are saddle,E∗

3na is locally
asymptotically stable and E∗

1na is unstable

R4 E∗
1na , E

∗
2na , E

∗
3na exist E0na , E1na are saddle and E∗

1na , E
∗
3na are locally

asymptotically stable

R5 E∗
3na exists E0na , E1na are saddle and E∗

3na is unstable

R6 E∗
2na , E

∗
3na exist E1na , E

∗
2na are saddle and E0na , E

∗
3na are locally

asymptotically stable

R7 E∗
2na , E

∗
3na exist E1na , E

∗
2na are saddle, E0na is stable and E∗

3na is
stable surrounded by an unstable limit cycle

R8 E∗
2na , E

∗
3na exist E1na , E

∗
2na are saddle, E∗

3na is unstable and E0na is
locally asymptotically stable

R9 Nil E0na is locally asymptotically stable and equilibrium
point E1na is saddle
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attraction of E1∗ changes significantly. The complete bifurcation analysis is described
at global dynamics section.
The dynamics of the system is more complicated when Allee effect is not present
in the system which is not common in prey-predator models studied before [27,38].
Origin is not always asymptotically stable point, which depends upon the conversion
rate of prey. When conversion rate of prey is very high then origin is globally stable
and it loose’s its stability for low conversion rate of prey (see Figs. 10, 11). When
conversion rate is very low, (1, 0) is globally stable, i.e., predator can not survive
but when conversion rate is equal to density independent death rate of predator, both
the species can survive. The effect of conversion rate for both the species have been
described in Sect. 6.1. We get more than one interior equilibrium points when density
dependent death rate of predator is high and at most two of them are stable. Therefore,
the stability of one interior equilibrium point is suppressed due to the Allee effect. It is
also possible that no stable steady state for both the populations in the model without
Allee effect (Fig. 8e). The summarized result of existence and stability of equilibrium
points is provided at Table 3. All corresponding phase portraits are given in Fig. 8.With
this comparison it is clear that Allee effect has a significant role in the dynamics of a
prey-predator model with ratio dependent functional response and density dependent
death rate of predator. Local extinction of populations in the prey-predator model can
be preserved by the Allee effect. In the absence of Allee effect, stable limit cycle
around unstable interior equilibrium point corresponding to the prey-predator model
may occur. Comparison is given at Sect. 6.2.
Further generalization of this model can be studied in future. Environmental noise
into the modelling approach is very important components for ecosystems, because
parameters involved in the system always fluctuate in reality. In future, we can study
the effect of environmental fluctuations in the given ecological model by extending
the model into a stochastic differential equation model. Another important factor is
time delay, which is a common nonlinearity. It is widely known that in reality time
delays occur in almost every biological situation, so that we can not ignore them. It can
stabilize or destabilize the coexistence steady-state. Hence, we can study the proposed
prey-predator model with time delay also.

Acknowledgements Partha Sarathi Mandal and Koushik Garain’s research are supported by SERB, DST
project [grant: YSS/2015/001548]. Udai Kumar and Rakhi Sharma are supported by fellowship from
MHRD, Government of India.

A Appendix 1

Transversality conditions for saddle-node bifurcation: LetV andW be the eigenvectors

of JE∗
SN

and
[
JE∗

SN

]T
corresponding to zero eigenvalue respectively.

V =
[

v1
v2

]
, W =

[
w1
w2

]
.
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Then V should satisfy the following matrix equation

[
T11(usn∗, vsn∗) − a22(usn∗, vsn∗) −a12(usn∗, vsn∗)

a22(usn∗, vsn∗) a12(usn∗, vsn∗) − D − 2ESNvsn∗

] [
v1
v2

]
=

[
0
0

]
,

where T11(usn∗, vsn∗) = (1 − usn∗)( usn∗
A − 1) − usn∗( usn∗

A − 1) + usn∗
A (1 − usn∗),

a12(usn∗, vsn∗) = Bu2sn∗(u2sn∗−Cv2sn∗)
(u2sn∗+Cv2sn∗)2

, a22(usn∗, vsn∗) = 2BCusn∗v3sn∗
(u2sn∗+Cv2sn∗)2

. Multiplying the

second row by T11 − a22, first row by a22 and substracting the first row from above
matrix, we get

⎡
⎢⎢⎢⎢⎣

T11(usn∗, vsn∗)−a22(usn∗, vsn∗) −a12(usn∗, vsn∗)
0 (T11(usn∗, vsn∗)

−a22(usn∗, vsn∗))(a12(usn∗, vsn∗)
−D − 2ESNvsn∗)

+a12(usn∗, vsn∗)a22(usn∗, vsn∗)

⎤
⎥⎥⎥⎥⎦

[
v1
v2

]
=

[
0
0

]
.

To get the eigenvector the term (T11(usn∗, vsn∗) − a22(usn∗, vsn∗))(a12(usn∗, vsn∗) −
D − 2ESNvsn∗) + a12(usn∗, vsn∗)a22(usn∗, vsn∗) = 0, which implies

(a12(usn∗, vsn∗) − D − 2ESNvsn∗) = −a22(D−2ESN vsn∗)
T11(usn∗, vsn∗)

(11)

and from above matrix equation, we have

a22(usn∗, vsn∗)v1 + (a12(usn∗, vsn∗) − D − 2ESNvsn∗)v2 = 0. (12)

Using Eqs. (11) and (12), we get

V =
[
1,

T11(usn∗, vsn∗)
D + 2ESNvsn∗

]T
.

Proceeding in a similar way the eigenvector of [JE∗
SN

]T is given by,

W =
[

− 1,
a12(usn∗, vsn∗)T11(usn∗, vsn∗)
a22(usn∗, vsn∗)(D + 2ESNvsn∗)

]T

Let F(u, v) = (F1(u, v), F2(u, v))T . Then FE (u, v) = (F1E (u, v), F2E (u, v))T .
We can find from system (3)–(4), F1E |(E∗

SN ;ESN ) = dF1
dE |(E∗

SN ;ESN ) = 0 and

F2E |(E∗
SN ;ESN ) = dF2

dE |(E∗
SN ;ESN ) = −v2sn∗ and the first transversality condition for

saddle node bifurcation becomes
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WT FE (u, v)

∣∣∣[E∗
SN ;ESN ] =

[
−1 a12(usn∗,vsn∗)T11(usn∗,vsn∗)

a22(usn∗,vsn∗)(D+2ESN vsn∗)

] [
0

−v2sn∗

]

= −v2sn∗
a12(usn∗, vsn∗)T11(usn∗, vsn∗)
a22(usn∗, vsn∗)(D + 2ESNvsn∗)

.

Now for second transversality condition,

D2F(u, v)(V , V ) =
2∑

i, j=1

∂2F(u, v)

∂ui∂u j
viv j , where (u, v) = (u1, u2)(say). Then,

D2
(
F1(u, v)

F2(u, v)

)
(V , V ) =

⎛
⎜⎜⎜⎜⎜⎝

2∑
i, j=1

∂2F1(u, v)

∂ui∂u j
viv j

2∑
i, j=1

∂2F2(u, v)

∂ui∂u j
viv j

⎞
⎟⎟⎟⎟⎟⎠

=
(
F1u21

v21 + 2F1u1u2v1v2 + F1u22
v22

F2u21
v21 + 2F2u1u2v1v2 + F2u22

v22

)
,

where V = (v1, v2)
T , F1ui u j = ∂2F1

∂ui ∂u j
for i, j = 1, 2 and similarly for F2.

Using the equilibrium relation from Eq. (6), we get

D2F(E∗
SN ; ESN )(V , V )

=
⎛
⎜⎝

I0−v3sn∗S+2Susn∗v2sn∗
(
T11(usn∗,vsn∗)
D+2ESN vsn∗

)
− Su2sn∗vsn∗

(
T11(usn∗,vsn∗)
D+2ESN vsn∗

)2

v3sn∗S−2Susn∗v2sn∗
(
T11(usn∗,vsn∗)
D+2ESN vsn∗

)
+ (Su2sn∗vsn∗ − 2ESN )

(
T11(usn∗,vsn∗)
D+2ESN vsn∗

)2

⎞
⎟⎠ ,

where I0 = − 6usn∗
A + 2(1+A)

A , S = 2BC(Cv2sn∗−3u2sn∗)
(u2sn∗+Cv2sn∗)3

. We find the expression

WT D2 F (E∗
SN ; ESN )(V , V )

= I0 + T11Svsn∗
a22(usn∗, vsn∗)

.

[(
T11(usn∗, vsn∗)
D + 2ESNvsn∗

)
usn∗ − vsn∗

]2

− 2ESNa12(usn∗, vsn∗)
a22(usn∗, vsn∗)

(
T11(usn∗, vsn∗)
D + 2ESNvsn∗

)3

.

B Appendix 2

We calculate the first lyapunov number for stability of Hopf-bifurcation.
We translate the equilibrium point E1∗(u1∗, v1∗) to origin with new coordinate By
setting x = u − u1∗, y = v − v1∗. Then new system in coordinate (x, y) has power
series expansion as given below
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ẋ = ax + by + (a20x
2 + a11xy + a02y

2) + (a30x
3 + a12x

2y + a21xy
2)

+Q1(|x, y|4),
ẏ = cx + dy + (b20x

2 + b11xy + b02y
2) + (b30x

3 + b21x
2y + b12xy

2)

+Q2(|x, y|4).

Where

a =
[∂F1(u, v)

∂u

]∣∣∣
(E1∗;BH )

= −3u21∗
A

+ 2u1∗
(
1

A
+ 1

)
− 1 − 2BHCu1∗v31∗

(u21∗ + Cv21∗)2
,

b =
[∂F1(u, v)

∂v

]∣∣∣
(E1∗;BH )

= − BHu21∗(u21∗ − Cv21∗)
(u21∗ + Cv21∗)2

,

c =
[∂F2(u, v)

∂u

]∣∣∣
(E1∗;BH )

= 2BHCu1∗v31∗
(u21∗ + Cv21∗)2

,

d =
[∂F2(u, v)

∂v

]∣∣∣
(E1∗;BH )

= BHu21∗(u21∗ − Cv21∗)
(u21∗ + Cv21∗)2

− D − 2Ev1∗,

a20 = 1

2

[∂2F1(u, v)

∂u2

]∣∣∣
(E1∗;BH )

= −3u1∗
A

+
(
1

A
+ 1

)
− BHCv31∗(Cv21∗ − 3u21∗)

(u21∗ + Cv21∗)3
,

a11 =
[∂2F1(u, v)

∂u∂v

]∣∣∣
((E1∗;BH )

= 2BHCu1∗v21∗(Cv21∗ − 3u21∗)
(u21∗ + Cv21∗)3

,

a02 = 1

2

[∂2F1(u, v)

∂v2

]∣∣∣
(E1∗;BH )

= −BHCu21∗v1∗(Cv21∗ − 3u21∗)
(u21∗ + Cv21∗)3

,

a30 = 1

6

[∂3F1(u, v)

∂u3

]∣∣∣
(E1∗;BH )

= − 1

A
− BHCu1∗v31∗(u21∗ − Cv21∗)

3(u21∗ + Cv21∗)4
,

a21 = 1

2

[∂3F1(u, v)

∂u2∂v

]∣∣∣
(E1∗;BH )

= − BHCv21∗(9u41∗ − 14Cu21∗v21∗ + C2v41∗)
(u21∗ + Cv21∗)4

,

a12 = 1

2

[∂3F1(u, v)

∂u∂v2

]∣∣∣
(E1∗;BH )

= BHCv1∗(6u51∗ − 16Cu31∗v21∗ + 2C2u1∗v41∗)
(u21∗ + Cv21∗)4

,

a03 = 1

6

[∂3F1(u, v)

∂v3

]∣∣∣
(E1∗;BH )

= −BHCu21∗(6Cu21∗v21∗ − C2v41∗ − u41∗)
(u21∗ + Cv21∗)4

,

b20 = 1

2

[∂2F2(u, v)

∂u2

]∣∣∣
(E1∗;BH )

= BHCv31∗(Cv21∗ − 3u21∗)
(u21∗ + Cv21∗)3

,

b11 =
[∂2F2(u, v)

∂u∂v

]∣∣∣
(E1∗;BH )

= −2BHCu1∗v21∗(Cv21∗ − 3u21∗)
(u21∗ + Cv21∗)3

,

b02 = 1

2

[∂2F2(u, v)

∂v2

]∣∣∣
(E1∗;BH )

= BHCu21∗v1∗(Cv21∗ − 3u21∗)
(u21∗ + Cv21∗)3

− E,
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b30 = 1

6

[∂3F2(u, v)

∂u3

]∣∣∣
(E1∗;BH )

= − 1

A
+ 4BHCu1∗v31∗(Cv21∗ − u21∗)

(u21∗ + Cv21∗)4
,

b21 = 1

2

[∂3F2(u, v)

∂u2∂v

]∣∣∣
(E1∗;BH )

= − BHCv21∗(9u41∗ − 14Cu21∗v21∗ + C2v41∗)
(u21∗ + Cv21∗)4

,

b12 = 1

2

[∂3F2(u, v)

∂u∂v2

]∣∣∣
(E1∗;BH )

= BHCv1∗(6u51∗ − 16Cu31∗v21∗ + 2C2u1∗v41∗)
(u21∗ + Cv21∗)4

,

b03 = 1

6

[∂3F2(u, v)

∂v3

]∣∣∣
(E1∗;BH )

= BHCu21∗(6Cu21∗v1∗ − C2v41∗ − u41∗)
(u21∗ + Cv21∗)4

.

We can calculate Lypunov first coefficient by using (13) as given below

l1 = −3π

2bD
3
2
1

[
ac(a211 + a11b02 + a02b11) + ab(b211 + a20b11 + a11b02)

+ c2(a11a02 + 2a02b02)

− 2ac(b202 − a20a02) − 2ab(a220 − b20b02) − b2(2a20b20 + b11b20) + (bc − 2a2)

(b11b02 − a11a20) − (a2 + bc){3(cb03−ba30) + 2a(a21 + b12) + (ca12 − bb21)}
]
,

where D1 = ad − bc. we get the expression for Lypunov first coefficient as:

l1 = 3π

2bD
3
2
1

L.

where

L = [
ac(a211 + a11b02 + a02b11) + ab(b211 + a20b11 + a11b02) + c2(a11a02 + 2a02b02)

−2ac(b202 − a20a02) − 2ab(a220 − b20b02) − b2(2a20b20 + b11b20) + (bc − 2a2)

(b11b02 − a11a20) − (a2 + bc){3(cb03−ba30) + 2a(a21 + b12) + (ca12 − bb21)}
]
.

The limit cycle is unstable for l1 > 0 and stable if l1 < 0. Therefore, the Hopf-
bifurcation is subcritical if l1 > 0 and supercritical if l1 < 0.

C Appendix 3

Transversality conditions for Bogdanov-Takens bifurcation : We transform the equi-
librium point E∗

SN to origin by x = u − usn∗, y = v − vsn∗ and we get

ẋ1 = a′x1 + b′x2 − 2λ1Cusn∗v3sn∗x1
(u2sn∗ + Cv2sn∗)2

− λ1u2sn∗(u2sn∗ − Cv2sn∗)x2
(u2sn∗ + Cv2sn∗)2

+ p11
2

x21 + p12x1x2 + p22
2

x22 + ...,
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ẋ2 = c′x1 + d ′x2 + 2λ1Cusn∗v3sn∗x1
(u2sn∗ + Cv2sn∗)2

+
(

λ1u2sn∗(u2sn∗ − Cv2sn∗)
(u2sn∗ + Cv2sn∗)2

− 2λ2vsn∗
)
x2

+ q11
2

x21 + q12x1x2 + q22
2

x22 + ....,

where a′, b′, c′ ,d ′ are the element of the Jacobian matrix evaluated at an equilibrium
point E∗

SN and p11, p12, p22, q11, q12, q22 are as follow

a′ =
[∂F1

0 (u, v)

∂u

]∣∣∣
(E∗

SN ;BBT ;EBT )
= −3u2sn∗

A
+ 2usn∗

(
1

A
+ 1

)

−1 − 2BBTCusn∗v3sn∗
(u2sn∗ + Cv2sn∗)2

,

b′ =
[∂F1

0 (u, v)

∂v

]∣∣∣
(E∗

SN ;BBT ;EBT )
= − BBT u2sn∗(u2sn∗ − Cv2sn∗)

(u2sn∗ + Cv2sn∗)2
,

c′ =
[∂F2

0 (u, v)

∂u

]∣∣∣
(E∗

SN ;BBT ;EBT )
= 2BBTCusn∗v3sn∗

(u2sn∗ + Cv2sn∗)2
,

d ′ =
[∂F2

0 (u, v)

∂v

]∣∣∣
(E∗

SN ;BBT ;EBT )
= BBT u2sn∗(u2sn∗ − Cv2sn∗)

(u21∗ + Cv2sn∗)2
− D − 2EBT vsn∗,

p11 =
[∂2F1

0 (u, v)

∂u2

]∣∣∣
(E∗

SN ;BBT ;EBT )
= −6usn∗

A
+ 2

(
1

A
+ 1

)

−2BBTCv3sn∗(Cv2sn∗ − 3u2sn∗)
(u2sn∗ + Cv2sn∗)3

,

p12 =
[∂2F1

0 (u, v)

∂u∂v

]∣∣∣
(E∗

SN ;BBT ;EBT )
= 2BBTCusn∗v2sn∗(Cv2sn∗ − 3u2sn∗)

(u2sn∗ + Cv2sn∗)3
,

p22 =
[∂2F1

0 (u, v)

∂v2

]∣∣∣
(E∗

SN ;BBT ;EBT )
= −2BBTCu2sn∗vsn∗(Cv2sn∗ − 3u2sn∗)

(u2sn∗ + Cv2sn∗)3
,

q11 =
[∂2F2

0 (u, v)

∂u2

]∣∣∣
(E∗

SN ;BBT ;EBT )
= 2BBTCv3sn∗(Cv2sn∗ − 3u2sn∗)

(u2sn∗ + Cv2sn∗)3
,

q12 =
[∂2F2

0 (u, v)

∂u∂v

]∣∣∣
(E∗

SN ;BBT ;EBT )
= −2BBTCusn∗v2sn∗(Cv2sn∗ − 3u2sn∗)

(u2sn∗ + Cv2sn∗)3
,

q22 =
[∂2F2

0 (u, v)

∂v2

]∣∣∣
(E∗

SN ;BBT ;EBT )
= 2BBTCu2sn∗vsn∗(Cv2sn∗ − 3u2sn∗)

(u2sn∗ + Cv2sn∗)3
− 2EBT .

Now we use affine transformation y1 = x , y2 = a′x + b′y in (13) to get the new
transformed system in (y1, y2) as:

ẏ1 = y2 + usn∗λ1(a′usn∗(u2sn∗ − Cv2sn∗) − 2b′Cv3sn∗)
b′(u2sn∗ + Cv2sn∗)

y1

−u2sn∗λ1(u2sn∗ − Cv2sn∗)
b′(u2sn∗ + Cv2sn∗)

y2 +
( p11

2
− a′ p12

b′
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+a′2 p22
2b′2

)
y21 +

( p12
b′ − a′ p22

b′2
)
y1y2 + p22

2b′2 y
2
2 .

ẏ2 = (b′c′ − a′d ′)y1 + (a′ + d ′)y2

+
( (a′ − b′)(a′λ1u2sn∗(u2sn∗ − Cv2sn∗) − 2λ1b′Cusn∗v3sn∗)

b′(u2sn∗ + Cv2sn∗)

+2a′λ2vsn∗
)
y1 −

(
2λ2vsn∗ + (a′ − b′)λ1u2sn∗(u2sn∗ − Cv2sn∗)

b′(u2sn∗ + Cv2sn∗)

)
y2

+
( 1

b′ (a
′ p12 + b′q12)

− a′

b′2 (a′ p22 + b′q22)
)
y1y2 +

(1
2
(a′ p11 + b′q11)

−a′

b′ (a
′ p12 + b′q12) + a′2

2b′2 (a′ p22

+b′q22)
)
y21 +

(a′ p22 + b′q22
2b′2

)
y22 .

which can be written as

ẏ1 = y2 + ξ00(λ) + ξ10(λ)y1 + ξ01(λ)y2 + 1

2
ξ20(λ)y21 + ξ11(λ)y1y2

+1

2
ξ02(λ)y22 + O1(y1y2).

ẏ2 = η00(λ) + η10(λ)y1 + η01(λ)y2 + 1

2
η20(λ)y21 + η11(λ)y1y2

+1

2
η02(λ)y22 + O2(y1y2).

where λ = (λ1, λ2)

ξ00(λ) = 0, ξ10(λ) = usn∗λ1(a′usn∗(u2sn∗ − Cv2sn∗) − 2b′Cv3sn∗)
b′(u2sn∗ + Cv2sn∗)

,

ξ01(λ) = −u2sn∗λ1(u2sn∗ − Cv2sn∗)
b′(u2sn∗ + Cv2sn∗)

ξ20(λ) = 2
( p11

2
− a′ p12

b′ + a′2 p22
2b′2

)
, ξ11(λ) =

( p12
b′ − a′ p22

b′2
)
,

ξ02(λ) = p22
b′2 , η00(λ) = 0,

η10(λ) = (b′c′ − a′d ′)

+
(

(a′ − b′){a′λ1u2sn∗(u2sn∗ − Cv2sn∗) − 2λ1b′Cusn∗v3sn∗}
b′(u2sn∗ + Cv2sn∗)

+ 2a′λ2vsn∗
)
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η01(λ) = (a′ + d ′) −
(
2λ2vsn∗ + (a′ − b′)λ1u2sn∗(u2sn∗ − Cv2sn∗)

b′(u2sn∗ + Cv2sn∗)

)

η20(λ) = 2
(1
2
(a′ p11 + b′q11) − a′

b′ (a
′ p12 + b′q12) + a′2

2b′2 (a′ p22 + b′q22)
)

η11(λ) =
( 1

b′ (a
′ p12 + b′q12) − a′

b′2 (a′ p22 + b′q22)
)
, η02(λ) = 2

(a′ p22 + b′q22
2b′2

)

Now

ξ20(0) = 2
( p11

2
− a′ p12

b′ + a′2 p22
2b′2

)
λ=0

,

η11(0) =
( 1

b′ (a
′ p12 + b′q12) − a′

b′2 (a′ p22 + b′q22)
)

λ=0
,

η20(0) = 2
(1
2
(a′ p11 + b′q11) − a′

b′ (a
′ p12 + b′q12) + a′2

2b′2 (a′ p22 + b′q22)
)

λ=0
.

(13)

To check the non degeneracy conditions of Bogdanov-Takens bifurcation we have to
check the following quantities:

(i)

[
a′ b′
c′ d ′

]
	= 02×2, (i i)ξ20(0) + η11(0) 	= 0, (i i)η20(0) 	= 0.

The first condition is clearly satisfied. Also

ξ20(0) + η11(0) = 2
( p11

2
− a′ p12

b′ + a′2 p22
2b′2

)

+
( 1

b′ (a
′ p12 + b′q12) − a′

b′2 (a′ p22 + b′q22)
)

D Appendix 4

Here we discuss the stability of the axial equilibrium point E0(0, 0) of the model
(9)–(10). Now we transform the variables to new variables by replacing p = v

u and
we get the following system

du

dT
= u(1 − u) − Bpu

1 + Cp2
, (14)

dp

dT
= Bp

1 + Cp2
+ Bp2

1 + Cp2
− Dp − Ep2u − (1 − u)p. (15)

We are interested here of the axial equilibrium points on the p-axis only. Axial equi-
librium points on the p-axis are (0, 0) and (0, μ1,2), where μ1,2 are the two roots of
the quadratic equation
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Fig. 10 Bifurcation diagram in B − E plane of the axial equilibrium point E0(0, 0)

B

1 + Cp2
+ Bp

1 + Cp2
− D − 1 = 0

⇒ p = B ± √
B2 + 4C(1 + D)(B − D − 1)

2C(1 + D)

So μ1 = B+
√

B2+4C(1+D)(B−D−1)
2C(1+D)

and μ2 = B−
√

B2+4C(1+D)(B−D−1)
2C(1+D)

. Eigenvalues
of the Jacobianmatrix evaluated at (0, 0) is 1 and B−(1+D). Eigenvalues evaluated at

(0, μ1,2) are − Bμ1,2

1+Cμ2
1,2

and −D− 1+ B(1−Cμ2
1,2+2μ1,2)

(1+Cμ2
1,2)

2 . Now we discuss the different
cases

(i) If (B − D − 1) < 0 and B2 + 4C(1 + D)(B − D − 1) < 0, then (0, μ1,2) do
not exist and (0, 0) is saddle point.

(ii) If (B − D − 1) < 0 and B2 + 4C(1+ D)(B − D − 1) > 0, then (0, μ1,2) exist.
(0, 0) is saddle point and (0, μ1,2) are stable points.

(iii) If (B − D − 1) > 0 then B2 + 4C(1 + D)(B − D − 1) > B2 > 0. (0, 0) is
unstable and only (0, μ1) exists.

We construct a bifurcation diagram on B − E plane (see Fig. 10), which describes the
above results and also the stability nature of origin. Two curves (B − D − 1) = 0 and
B2+4C(1+D)(B−D−1) = 0 divide the bifurcation diagram into three subregions
and corresponding phase portraits are also shown in Fig. 11.
Hence, by blowing-down back (14)–(15), the line u = 0 is collapsed to the origin of
the system (9)–(10). When (0, μ1,2) are stable, then invariant attracting curve is also
mapped to an curve in the first quadrant which passes through the origin. So, the axial
equilibrium point E0(0, 0) of the model (9)–(10) is stable at that region.
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Fig. 11 Stability of E0(0, 0) corresponding to Fig.10. a for region A1, b for region A2, (c) for region A3
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