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Abstract
The objective of this paper is to present novel algorithms for solving the multiple
attribute decision-making problems under the neutrosophic set environment. Single-
valued and interval neutrosophic sets are the important mechanisms for directing the
decision-making queries with unknown and indeterminant data by employing a degree
of “acceptance”, “indeterminacy”, and “non-acceptance” in quantitative terms. Also,
to describe the behavior of the decision-maker objectively (in terms of probability) and
subjectively (in terms of weights), a concept of probabilistic information plays a domi-
nant role in the investigation.Keeping these features inmind, this paper presents several
probabilistic and immediate probability-based averaging and geometric aggregation
operators for the collection of the single-valued and interval neutrosophic sets. The
advantage of these proposed operators is that it simultaneously combines the objective
and subjective behavior of the decision-maker during the process. The various salient
features of the proposed operators are studied. Later, we develop two new algorithms
based on the aggregation operators to solve multiple attribute decision-making prob-
lems with single-valued and interval neutrosophic sets features. A numerical example
related to the demonetization is given to demonstrate the presented approaches, and
the advantages, as well as comparative analysis, are given to shows its influence over
existing approaches.
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620 H. Garg, Nancy

1 Introduction

Multiple attribute decision making (MADM) refers to the process of finding optimal
alternatives in complex scenarios via synthetically evaluating the values of multiple
criteria of all alternatives provided by a group of domain experts [1,2]. In this process,
there are two critical tasks. The first one is to describe the environmentwhere the values
of different criteria are measured effectively, while the second task is to aggregate the
described information. However, in any case, because of the absence of learning and
other factors, it is extremely troublesome- if not difficult express the data absolutely. To
express the uncertainties in the data, a theory of fuzzy set (FS) [3] and its extension such
as intuitionistic fuzzy set (IFS) [4], cubic intuitionistic fuzzy set [5], interval-valued IFS
[6], linguistic interval-valued IFS [1], are used by the researchers. In all these theories,
an object is evaluated in terms of theirmembership grade ς and non-membership grade
υ such that ς + υ ≤ 1 for ς, υ ∈ [0, 1]. After their existence, several researchers
have defined the basic operational laws [7,8], distance or similarity measures [9,10],
aggregation operators [11,12] to solve MADM problems. In modern life, the complex
system requires the uncertainties in views of indeterminacy and hence the present sets,
FS or IFS, are incapable to deal with the information correctly. To consider it, in 1998,
Smarandache [13] presented neutrosophic set (NS) by involving the three independent
functions namely “acceptance”, “indeterminacy” and “non-acceptance” which are the
standard or non-standard real subsets of ]−0, 1+[. However, for software engineering
proposals and in a practical decision-making problems, the classical unit interval [0, 1]
is used. Thus, Wang et al. [14] enriches the NS to single-valued NS (SVNS) while
Wang et al. [15] enriches NS to interval neutrosophic set (INS) in which ranges of the
independent degrees are taken as [0, 1] instead of ]−0, 1+[.

After the appearance of SVNS and INS, researchers have investigated the various
kinds of applications which are categorized into two major aspects. The first and the
important aspect is the basic operational laws. To address it, Ye [16] defined the sub-
traction and division operations between the two or more single-valued neutrosophic
numbers (SVNNs). Rani and Garg [17] presented their modified operational laws for
SVNNs. However, to order the given SVNSs, Peng et al. [18] defined the score func-
tion, while Nancy and Garg [19] presented its improved score function. The second
task is to aggregate the described criterion information, by using suitable aggregation
operators, to generate a ranking of all alternatives. For example, Ye [20] developed
some weighted average and geometric aggregation operators for SVNNs. Zhang et al.
[21] developed some weighted aggregation operators for interval neutrosophic num-
bers (INNs). Aiwu et al. [22] presented the generalized weighted aggregation operator
for INNs. Nancy and Garg [23] developed weighted operators by using Frank t-norm
operations for solving theMADMproblems with SVNS information. Garg and Nancy
[24] defined logarithm operational laws and its based weighted aggregation operators
for SVNS to solve theMADMproblems. Peng et al. [18] presented the simplified neu-
trosophic sets and several weighted and ordered weighted aggregation operators. Garg
andNancy [25] presented a TOPSIS (“Technique for Order Preference by Similarity to
Ideal Solution”) strategy by formulating a nonlinear model to solve the MADM prob-
lem under the INS environment. Liu et al. [26] presented generalized neutrosophic
Hamacher aggregation operators to solve the group decision-making problems. Peng

123



Multiple attribute decision making based on immediate… 621

and Liu [27] presented a similarity measure and an algorithm for neutrosophic soft
decision making by using EDAS (“Evaluation Based on Distance from Average Solu-
tion”) method. Garg and Nancy [28,29] presented a group decision-making problem
approaches based on the prioritized Muirhead mean and hybrid weighted aggregation
operators. Ye [30] presented a MADM method with credibility information under
the INS features. Peng and Dai [31] presented a single-valued neutrosophic MADM
method based on MABAC (“Multi-Attributive Border Approximation area Compari-
son”) andTOPSIS approach to solving the decision-making problems.Garg andNancy
[32] developed the hybrid Heronian mean AOs by considering the concept of Choquet
and frank norm operational laws for SVNSs. An extensive review of the different
approaches to solving the MADM problem under the SVNS and INS was presented
by Peng and Dai [33].

The above-mentioned approaches are widely applicable in different fields. How-
ever, the approaches defined above are limited in access, as all the stated aggregation
operators had constructed by assuming that the arguments are independent of each
other. Also, to handle the subjective and objective information more clearly, a concept
of probabilistic information plays a dominant role in the investigation. To address it,
Merigo and its co-authors [34,35] initiated the concept of the probability into the aggre-
gation operators to solve the decision-making problems. In their work, they proposed
the probabilistic weighted average and orderedweighted average operators to solve the
MADM problems. Yager et al. [36] presented the concept of immediate probabilities
(IP). Engemann et al. [37] incorporated the concept of IP into the decision making
modeling, while Merigo [38] extends the idea of IP to the fuzzy decision-making pro-
cess. Garg [39] andWei andMerigo [40] presented the probabilistic weighted average
and geometric operators for the Pythagorean and intuitionistic fuzzy sets environ-
ment. Peng et al. [41] presented the idea of a probability multi-valued neutrosophic
set to solve the group MADM problems. Since probabilistic information along with
the uncertain and vague information is more valuable to solve the real-life problems.
Thus, there is a need to present some generalized aggregation operators to aggregate
the given information using the concept of probabilities and immediate probability
under the SVNS and INS environment.

Considering the versatility of the extensions of neutrosophic sets and the importance
of the aggregation operators, this paper aims to present two novel MADM approaches
to manage the information related to the SVNS and INS with some new aggregation
operators. To address it completely,we embedded the concept of probabilistic informa-
tion into the weighted average and geometric operators and hence defined the various
form of the operators namely, “probabilistic single-valued neutrosophic weighted
average” (P-SVNWA), “immediate probability single-valued neutrosophic ordered
weighted average” (IP-SVNOWA), “probabilistic single-valued neutrosophic ordered
weighted average” (P-SVNOWA), “probabilistic single-valued neutrosophicweighted
geometric” (P-SVNWG), “immediate probability single-valued neutrosophic ordered
weighted geometric” (IP-SVNOWG) and “probabilistic single-valued neutrosophic
ordered weighted geometric” (P-SVNOWG). Further, these operators are extended to
INS features. In all these operators, the importance of each number has complied with
the probability and the attribute weights. The advantage of the developed operators
is that it simultaneously combines the behavior of the decision-makers, objectively
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622 H. Garg, Nancy

(in terms of probability) and subjectively (in terms of weights vector), into the single
process. The various salient features of these operators are also explored to show its
consistency. Holding all the above tips in mind, the main objective of the present work
is listed as

(1) to define some new probabilistic information based aggregation operators for
given numbers under SVNS and INS environment.

(2) to develop two new algorithms to determine the MADM problems based on the
proposed operators.

(3) to demonstrate the approach with a numerical example to explore the study.
(4) to analyze the impact of different parameters on the decision-making process.

The rest of the text is summarized as. Section 2 gives brief review on neutrosophic
set. In Sect. 3, we present several aggregation operators for SVNSs and INSs by
utilizing probabilistic and immediate probabilistic information. In Sect. 4, we offer
two algorithms based on proposedmeasures to solve theMADMproblems. The utility
of the presented algorithms is demonstrated with a numerical example in Sect. 5 and
compare their results with several existing approaches. Finally, Sect. 6 ends up with
concluding remarks.

2 Preliminaries

In it, we discuss some basic terms associated with SVNS and INS in universal set X .

Definition 1 [13] A neutrosophic set N is given as

N = {(x, ςN (x), τN (x), υN (x)) | x ∈ X } (1)

where ςN (x), τN (x), υN (x) : X →]−0, 1+[ are the degrees of “acceptance”,
“indeterminacy” and “non-acceptance” such that −0 ≤ sup ςN (x) + sup τN (x) +
sup υN (x) ≤ 3+.

Definition 2 [14] A SVNS N in X is stated as

N = {(x, ςN (x), τN (x), υN (x)) | x ∈ X } (2)

where ςN , τN , υN ∈ [0, 1] and 0 ≤ ςN + τN + υN ≤ 3 for each x ∈ X . We
call a pair N = (ςN , τN , υN ), throughout this article, and known as single-valued
neutrosophic number.

Definition 3 [14] For two SVNNs N1 = (ς1, τ1, υ1) and N2 = (ς2, τ2, υ2), some
basic operations are defined as

(1) N1 ⊆ N2 if ς1 ≤ ς2, τ1 ≥ τ2, υ1 ≥ υ2.
(2) N1 ∩ N2 = (min(ς1, ς2),max(τ1, τ2),max(υ1, υ2)).
(3) N1 ∪ N2 = (max(ς1, ς2),min(τ1, τ2),min(υ1, υ2)).
(4) N1 = N2 if and only if N1 ⊆ N2 and N2 ⊆ N1.
(5) Complement: N c

1 = (υ1, τ1, ς1).
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Definition 4 [18] Let N = (ς, τ, υ) be a SVNN, then its score function S is defined
as S(N ) = ς − τ − υ, and an accuracy function H is defined as H(N ) = ς + τ + υ.
Based on it, an order relation between two SVNNs N and M denoted by N 	 M
holds if either S(N ) > S(M) or S(N ) = S(M) and H(N ) > H(M) holds. Here,
“	” means “preferred to”.

Definition 5 [18] For two SVNNs N1 = (ς1, τ1, υ1) and N2 = (ς2, τ2, υ2), the
operation laws between them are defined as

(1) N1 ⊕ N2 = (ς1 + ς2 − ς1ς2, τ1τ2, υ1υ2
)
.

(2) N1 ⊗ N2 = (ς1ς2, τ1 + τ2 − τ1τ2, υ1 + υ2 − υ1υ2
)
.

(3) λN1 = (1 − (1 − ς1)
λ , τλ

1 , υλ
1

) ; λ > 0.
(4) N λ

1 = (ςλ
1 , 1 − (1 − τ1)

λ , 1 − (1 − υ1)
λ
) ; λ > 0.

Definition 6 [18] LetN j = (ς j , τ j , υ j ) be “n” SVNNs and ω j > 0 with
∑n

j=1 ω j =
1 be the weight vector of N j . Then, weighted averaging and geometric operators are
defined as

(1) Single-valued neutrosophic weighted average (SVNWA) operator

SVNWA(N1,N2, . . . ,Nn) =
⎛

⎝1 −
n∏

j=1

(
1 − ς j
)ω j ,

n∏

j=1

(
τ j
)ω j ,

n∏

j=1

(
υ j
)ω j

⎞

⎠

(3)

(2) Single-valued neutrosophic weighted geometric (SVNWG) operator

SVNWG(N1,N2, . . . ,Nn)

=
⎛

⎝
n∏

j=1

(
ς j
)ω j , 1 −

n∏

j=1

(
1 − τ j
)ω j , 1 −

n∏

j=1

(
1 − υ j
)ω j

⎞

⎠ (4)

(3) Single-valued neutrosophic ordered weighted average (SVNOWA) operator

SVNOWA(N1,N2, . . . ,Nn)

=
⎛

⎝1 −
n∏

j=1

(
1 − ςσ( j)

)ω j ,

n∏

j=1

(
τσ( j)
)ω j ,

n∏

j=1

(
υσ( j)
)ω j

⎞

⎠ (5)

(4) Single-valued neutrosophic ordered weighted geometric (SVNOWG) operator

SVNOWG(N1,N2, . . . ,Nn)

=
⎛

⎝
n∏

j=1

(
ςσ( j)
)ω j , 1 −

n∏

j=1

(
1 − τσ( j)

)ω j , 1 −
n∏

j=1

(
1 − υσ( j)

)ω j

⎞

⎠ (6)

where σ permutes (1, 2, . . . , n) with Nσ( j−1) ≥ Nσ( j) for j = 2, . . . , n.
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624 H. Garg, Nancy

Definition 7 [15] An INS N over X is given as

N =
{(

x,
[
ς L
N (x), ςU

N (x)
]
,
[
τ L
N (x), τU

N (x)
]
,
[
υL
N (x), υU

N (x)
])

| x ∈ X
}

where
[
ς L
N , ςU

N
]
,
[
τ L
N , τU

N
]
,
[
υL
N , υU

N
] ⊆ [0, 1] with ςU

N + τU
N + υU

N ≤ 3 for all
x ∈ X . For convenience, the pair N = ([ς L , ςU

]
,
[
τ L , τU
]
,
[
υL , υU
])

is called as
an interval neutrosophic number.

Definition 8 [15] For an INNN = ([ς L , ςU ], [τ L , τU ], [υL , υU ]), a score function is
defined as S(N ) = ς L + ςU − τ L − τU − υL − υU

2
, while an accuracy function H

is H(N ) = ς L + ςU + τ L + τU + υL + υU

2
. Based on it, an order relation between

two INNs N1 and N2, denoted by N1 	 N2 if either S(N1) > S(N2) or S(N1) =
S(N2), H(N1) > H(N2) holds.

Definition 9 [21] Let N j = ([ς L
j , ςU

j ], [τ L
j , τU

j ], [υL
j , υU

j ]) be “n” INNs and ω j >

0 with
∑n

j=1 ω j = 1 be the weight vector of N j . Then, weighted averaging and
geometric operators are defined as

(1) Interval neutrosophic weighted average (INWA) operator

INWA(N1,N2, . . . ,Nn)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎣1 −
n∏

j=1

(
1 − ς L

j

)ω j
, 1 −

n∏

j=1

(
1 − ςU

j

)ω j

⎤

⎦ ,

⎡

⎣
n∏

j=1

(
τ L

j

)ω j
,

n∏

j=1

(
τU

j

)ω j

⎤

⎦ ,

⎡

⎣
n∏

j=1

(
υL

j

)ω j
,

n∏

j=1

(
υU

j

)ω j

⎤

⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2) Interval neutrosophic weighted geometric (INWG) operator

INWG(N1,N2, . . . ,Nn)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎣
n∏

j=1

(
ς L

j

)ω j
,

n∏

j=1

(
ςU

j

)ω j

⎤

⎦ ,

⎡

⎣1 −
n∏

j=1

(
1 − τ L

j

)ω j
, 1 −

n∏

j=1

(
1 − τU

j

)ω j

⎤

⎦ ,

⎡

⎣1 −
n∏

j=1

(
1 − υL

j

)ω j
, 1 −

n∏

j=1

(
1 − υU

j

)ω j

⎤

⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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3 New probabilistic operators with neutrosophic information

In this section, we present some new kinds of aggregation operators for the collec-
tions of SVNNs and INSs by introducing the concept of probabilistic and immediate
probabilities into the analysis.

3.1 Aggregation operators for SVNS

LetΩ be the collection of “n” SVNNsN j = (ς j , τ j , υ j )whose subjective and objec-
tively weights are denoted byω j and p j , respectively such thatω j > 0,

∑n
j=1 ω j = 1

and p j > 0,
∑n

j=1 p j = 1.

3.1.1 Probabilistic single-valued neutrosophic weighted average operator

Definition 10 LetN j be the collections of n SVNNs, and let P-SVNWA : Ωn −→ Ω

is a map defined as

P-SVNWA(N1,N2, . . . ,Nn) =
n⊕

j=1

v jN j (7)

then P-SVNWA is called the probabilistic single-valued neurotrophic weighted aver-
age operator, where v j = (1− β)p j + βω j be the weight vector with β ∈ [0, 1] such
that
∑n

j=1 v j = 1.

Theorem 1 For “n” SVNNs N j = (ς j , τ j , υ j ), the aggregated value by P-SVNWA
operator is also SVNN and is given by

P-SVNWA(N1,N2, . . . ,Nn) =
⎛

⎝1 −
n∏

j=1

(1 − ς j )
v j ,

n∏

j=1

τ
v j
j ,

n∏

j=1

υ
v j
j

⎞

⎠ (8)

Proof We will prove the Eq. (8) by applying induction on n. The following steps are
summarized as

Step 1: For n = 2, we have N1 = (ς1, τ1, υ1) and N2 = (ς2, τ2, υ2). Thus, by the
operation of SVNNs, we have v1N1 = (1 − (1 − ς1)

v1, (τ1)
v1 , (υ1)

v1
)
and

v2N2 = (1 − (1 − ς2)
v2 , (τ2)

v2 , (υ2)
v2
)
. Thus,

P-SVNWA(N1,N2) = v1N1 ⊕ v2N2

=
(
1 − (1 − ς1)

v1, (τ1)
v1 , (υ1)

v1

)
⊕
(
1 − (1 − ς2)

v2 , (τ2)
v2 , (υ2)

v2

)

=
(
1 − (1 − ς1)

v1(1 − ς2)
v2 , (τ1)

v1(τ2)
v2 , (υ1)

v1(υ2)
v2

)

=
(
1 −

2∏

j=1

(1 − ς j )
v j ,

2∏

j=1

τ
v j
j ,

2∏

j=1

υ
v j
j

)

Hence, Eq. (8) true for n = 2.
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626 H. Garg, Nancy

Step 2: Assume Eq. (8) true for n = k, then for n = k + 1, we have

P-SVNWA(N1,N2, . . . ,Nk+1)

=
k⊕

j=1

v jN j ⊕ vk+1Nk+1

=
⎛

⎝1 −
k∏

j=1

(1 − ς j )
v j ,

k∏

j=1

τ
v j
j ,

k∏

j=1

υ
v j
j

⎞

⎠

⊕
(
1 − (1 − ςk+1)

vk+1, (τk+1)
vk+1, (υk+1)

vk+1

)

=
(
1 −

k+1∏

j=1

(1 − ς j )
v j ,

k+1∏

j=1

τ
v j
j ,

k+1∏

j=1

υ
v j
j

)

which is true.

Finally, take P-SVNWA(N1,N2, . . . ,Nn) = (ςN , τN , υN ) where ςN = 1 −∏n
j=1(1 − ς j )

v j , υN =∏n
j=1 τ

v j
j and υN =∏n

j=1 υ
v j
j then it is enough to prove

(1) 0 ≤ ςN , τN , υN ≤ 1 ;
(2) ςN + τN + υN ≤ 3.

As N j = (ς j , τ j , υ j ) is SVNN for each j which means that 0 ≤ ς j , τ j , υ j ≤ 1 and
ς j + τ j + υ j ≤ 3. Therefore, 0 ≤ 1 − ς j ≤ 1 and for weight vector v j ∈ [0, 1], we
have 0 ≤ (1− ς j )

v j ≤ 1 which implies that 0 ≤ 1−∏n
j=1(1− ς j )

v j ≤ 1. Similarly,

0 ≤∏n
j=1 τ

v j
j ≤ 1 and 0 ≤∏n

j=1 υ
v j
j ≤ 1. Further, 0 ≤ ςN + τN + υN ≤ 3 since all

are independent.
Hence, the aggregated value by using P-SVNWA operator is again SVNN, which

completes the proof. �
Remark 1 From the proposed operator, it is deduce that

(1) If β = 1 then P-SVNWA operator becomes SVNWA operator [18];
(2) If β = 0 then P-SVNWA operator becomes the neutrosophic probabilistic aggre-

gation operator.

To demonstrate the working of the proposed P-SVNWA operator, we present a
numerical example as follows.

Example 1 Let N1 = (0.4, 0.3, 0.6), N2 = (0.2, 0.5, 0.5), N3 = (0.6, 0.4, 0.2) and
N4 = (0.8, 0.1, 0.4) be four SVNNs and their associated probabilities and weight
vector are taken as p = (0.3, 0.1, 0.4, 0.2)T and ω = (0.2, 0.3, 0.1, 0.4)T respec-
tively. Without loss of generality, we take β = 0.60, and hence v j = (1 − β)p j +
βω j becomes v j = (0.24, 0.22, 0.22, 0.32)T . Now, based on these information,
1−∏4

j=1(1−ς j )
v j = 1−(1−0.4)0.24×(1−0.2)0.22×(1−0.6)0.22×(1−0.8)0.32 =

0.5886,
∏4

j=1 τ
v j
j = (0.3)0.24 × (0.5)0.22 × (0.4)0.22 × (0.1)0.32 = 0.2516 and

∏4
j=1 υ

v j
j = (0.6)0.24 × (0.5)0.22 × (0.2)0.22 × (0.4)0.32 = 0.3976 and hence by

Eq. (8), we have P-SVNWA(N1,N2,N3,N4) = (0.5886, 0.2516, 0.3976).
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Multiple attribute decision making based on immediate… 627

The operator P-SVNWAsatisfies boundedness, idempotent andmonotonicity prop-
erties which are stated below.

Property 1 (Idempotency) If SVNNs N j = N0 ∀ j , then we have

P-SVNWA(N1,N2, . . . ,Nn) = N0

Proof As N j = N0 ∀ j , therefore we get

P-SVNWA(N1,N2, . . . ,Nn) =
n⊕

j=1

v jN j =
n⊕

j=1

v jN0 = N0

n∑

j=1

v j

Since
∑n

j=1 v j =∑n
j=1{(1 − β)p j + βω j } = (1 − β)

∑n
j=1 p j + β

∑n
j=1 ω j = 1,

and hence we get

P-SVNWA(N1,N2, . . . ,Nn) = N0

�
Property 2 (Boundedness) For P-SVNWA operator f , we have:

min
j

{N j } ≤ f (N1,N2, . . . ,Nn) ≤ max
j

{N j }

Proof Take min j {N j } = a and max j {N j } = b, therefore,

f (N1,N2, . . . ,Nn) =
n⊕

j=1

v jN j ≤
n⊕

j=1

v j b = b
n∑

j=1

v j

and f (N1,N2, . . . ,Nn) =
n⊕

j=1

v jN j ≥
n⊕

j=1

v j a = a
n∑

j=1

v j

As,
∑n

j=1 v j = 1 therefore f (N1,N2, . . . ,Nn) ≤ b and f (N1,N2, . . . ,Nn) ≥ a.
Thus, a ≤ f (N1,N2, . . . ,Nn) ≤ b implies that

min
j

{N j } ≤ f (N1,N2, . . . ,Nn) ≤ max
j

{N j }

�
Property 3 (Monotonicity) For a P-SVNWA operator f and two collections of SVNNs
N j = (ςN j , τN j , υN j ) and M j = (ςM j , τM j , υM j ) satisfies ςN j ≤ ςM j , τN j ≥
τM j and υN j ≥ υM j ∀ j , then we have:

f (N1,N2, . . . ,Nn) ≤ f (M1,M2, . . . ,Mn)

Proof Follows from above. �
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3.1.2 Immediate probability single-valued neutrosophic ordered weighted operator

Due to the uncertain nature of probabilistic information,we cannot rely on the collected
information. So, with a specific end goal to include the expert’s opinion into the
probabilistic decision-making problems, a concept of immediate probability (IP) is
studied by the researchers [36,38]. For accomplishing this in the present investigation,
we have characterized the IP based operators for SVNNs which join together the
ordered weighted operator [42], signified by ξ , and the probabilistic data, signified by
p.

Definition 11 For a collection of “n” SVNNs N j , a map IP-SVNOWA : Ωn −→ Ω ,
associated with weight ξ j > 0 such that

∑n
j=1 ξ j = 1, defined by

IP-SVNOWA(N1,N2, . . . ,Nn) =
n⊕

j=1

p̂ jNσ( j) (9)

then IP-SVNOWA is called the immediate probability single-valued neutrosophic
ordered weighted average operator, where σ permutes (1, 2, . . . , n) with Nσ( j−1) ≥
Nσ( j), for j = 2, 3, . . . , n, and p̂ j = ξ j p j∑n

j=1 ξ j p j
is known as the “immediate

probability” assign to the SVNN N j . We could also use p̂ = ξ j +p j∑n
j=1(ξ j +p j )

or other

similar approaches.

Theorem 2 For a collection of SVNNs N j = (ς j , τ j , υ j ), ∀ j , the collective value
given by IP-SVNOWA is a SVNN and given by

IP-SVNOWA(N1,N2, . . . ,Nn)

=
⎛

⎝1 −
n∏

j=1

(
1 − ςσ( j)

) p̂ j ,

n∏

j=1

(
τσ( j)
) p̂ j ,

n∏

j=1

(
υσ( j)
) p̂ j

⎞

⎠ (10)

Proof Follows from Theorem 1, so we omit their proof here. �
Like P-SVNWA, the IP-SVNOWA also satisfies the properties of boundedness,

idempotency, andmonotonicity. Next, we present a numerical example to demonstrate
the concept of the IP-SVNOWA operator.

Example 2 Let N1 = (0.4, 0.2, 0.6), N2=(0.6, 0.1, 0.3), N3 = (0.8, 0.1, 0.2),
N4 = (0.3, 0.2, 0.6) and N5 = (0.3, 0.2, 0.8) be five SVNNs with probabilis-
tic data p = (0.3, 0.3, 0.2, 0.1, 0.1) and the importance of each SVNN as ω =
(0.20, 0.25, 0.15, 0.30, 0.10). In view of the scores of SVNNs, we calculate that
S(N1) = −0.40, S(N2) = 0.20, S(N3) = 0.50, S(N4) = −0.5 and S(N5) = −0.7.
Since S(N3) > S(N2) > S(N1) > S(N4) > S(N5) and hence the permuted
numbers becomes Nσ(1) = N3, Nσ(2) = N2, Nσ(3) = N1, Nσ(4) = N4 and
Nσ(5) = N5. Furthermore, in order to create the choice more secure, the deci-
sion makers are interested in manipulating the probability by allotting the OWA
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weights ξ = (0.1, 0.2, 0.2, 0.2, 0.3) which is clearly a pessimistic because it gives
higher importance to the lowest result used in the last weights ω. Now, based
on such information, immediate probabilities are calculated by p̂ j = ξ j p j∑n

j=1 ξ j p j

and get p̂ j = (0.15, 0.10, 0.10, 0.20, 0.45). Therefore, 1 − ∏n
j=1(1 − ς2

σ( j))
p̂ j =

1− (1− 0.8)0.15 · (1− 0.6)0.10 · (1− 0.4)0.10 · (1− 0.3)0.20 · (1− 0.3)0.45 = 0.4599,
∏n

j=1 τ
p̂ j

σ( j) = (0.1)0.15 · (0.1)0.10 · (0.2)0.10 · (0.2)0.20 · (0.2)0.45 = 0.1682 and
∏n

j=1 υ
p̂ j

σ( j) = (0.2)0.15 · (0.3)0.10 · (0.6)0.10 · (0.6)0.20 · (0.8)0.45 = 0.5404 and hence

Eq. (10) becomes IP-SVNOWA(N1, . . . ,N5) = (0.4599, 0.1682, 0.5404).

3.1.3 Probabilistic single-valued neutrosophic ordered weighted average operator

In this section, by taking the advantages of both P-SVNWA and IP-SVNOWA opera-
tors, we present a probabilistic single-valued neutrosophic ordered weighted average
operator for a collection of SVNNs.

Definition 12 For a collection of “n” SVNNs N j , a map P-SVNOWA : Ωn −→ Ω

defined by is a map with associated weight ξ j > 0 such that
∑n

j=1 ξ j = 1 defined as

P-SVNOWA(N1,N2, . . . ,Nn) =
n⊕

j=1

v jNσ( j) (11)

is called as probabilistic single-valued neutrosophic ordered weighted average (P-
SVNOWA) operator, where σ permutes (1, 2, . . . , n) with Nσ( j−1) ≥ Nσ( j) for j =
2, 3, . . . , n; p j is the associated probability of Nσ( j), ξ j > 0 is the weight vector of
N j and v j = βξ j + (1 − β)p j with β ∈ [0, 1] such that∑ j p j = 1 and

∑
j ξ j = 1.

Theorem 3 For a collection of “n” SVNNs N j = (ς j , τ j , υ j ), the collective value
obtained through P-SVNOWA is again a SVNN and given by

P-SVNOWA(N1,N2, . . . ,Nn)

=
⎛

⎝1 −
n∏

j=1

(
1 − ςσ( j)

)v j ,

n∏

j=1

(
τσ( j)
)v j ,

n∏

j=1

(
υσ( j)
)v j

⎞

⎠ (12)

Proof As similar to Theorem 1. �
Remark 2 From the definition of P-SVNOWA operator, we can deduce the following
features:

(1) When β = 1, the P-SVNOWA operator becomes SVNOWA operator [18] as
given in Eq. (5)

(2) When β = 0, the P-SVNOWA operator becomes SVN probabilistic aggregation
operator.
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Also, it has been noticed that the P-SVNOWA operator has characteristics of bound-
edness, idempotency, and monotonicity.

Example 3 Consider the data as given in Example 2 and assume that the impor-
tance to the subjective (probability) and objective (weightage) information is taken
as 40% and 60%, respectively, so v j = βξ j + (1 − β)p j is calculated as v =
(0.18, 0.24, 0.20, 0.16, 0.22). Based on such information, we have 1 − ∏n

j=1(1 −
ςσ( j))

v j = 1− (1−0.8)0.18 · (1−0.6)0.24 · (1−0.4)0.20 · (1−0.3)0.16 · (1−0.3)0.22 =
0.5264,

∏n
j=1 τ

v j

σ( j) = (0.1)0.18 · (0.1)0.24 · (0.2)0.20 · (0.2)0.16 · (0.2)0.22 = 0.1495,
∏n

j=1 υ
v j

σ( j) = (0.2)0.18 · (0.3)0.24 · (0.6)0.20 · (0.6)0.16 · (0.8)0.22 = 0.4441. Thus,

Eq. (12) becomes P-SVNOWA(N1,N2, . . . ,Nn) = (0.5264, 0.1495, 0.4441).

3.1.4 Probabilistic single-valued neutrosophic weighted geometric operator

In this section, we present some probabilistic geometric aggregation operators
named as probability single-valued neutrosophic weighted geometric (P-SVNWG),
immediate probability single-valued neutrosophic ordered weighted geometric (IP-
SVNOWG) and probability single-valued neutrosophic ordered weighted geometric
(P-SVNOWG) for a collection of SVNNs.

Definition 13 A map P-SVNWG : Ωn → Ω on a collection of “n” SVNNs N j =
(ς j , τ j , υ j ) is defined as

P-SVNWG(N1,N2, . . . ,Nn) =
n⊗

j=1

(N j
)v j

=
⎛

⎝
n∏

j=1

(
ς j
)v j , 1 −

n∏

j=1

(
1 − τ j
)v j , 1 −

n∏

j=1

(
1 − υ j
)v j

⎞

⎠ (13)

where v j = βω j +(1−β)p j is the weight vector with β ∈ [0, 1] such that v j > 0 and∑n
j=1 v j = 1. Then, P-SVNWG is called as probabilistic single-valued neutrosophic

weighted geometric operator.

Remark 3 From the definition of P-SVNWG operator, we conclude that

(1) When β = 1, P-SVNWG operator becomes SVNWG [18].
(2) When β = 0, P-SVNWG operator becomes single-valued neutrosophic proba-

bilistic geometric operator.

Definition 14 An immediate probability single-valued neutrosophic OWG (IP-
SVNOWG) operator is a map IP-SVNOWG : Ωn −→ Ω associated with weight
ξ = (ξ1, . . . , ξn)T such that ξ j > 0 and

∑n
j=1 ξ j = 1, defined as
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IP-SVNOWG(N1,N2, . . . ,Nn) =
n⊗

j=1

(Nσ( j)
) p̂ j

=
⎛

⎝
n∏

j=1

(
ςσ( j)
) p̂ j , 1 −

n∏

j=1

(
1 − τσ( j)

) p̂ j , 1 −
n∏

j=1

(
1 − υσ( j)

) p̂ j

⎞

⎠ (14)

where σ permutes (1, 2, . . . , n) withNσ( j−1) ≥ Nσ( j), ∀ j = 2, 3, . . . , n, eachNσ( j)

has associated a probability p j , and p̂ j = ξ j p j∑n
j=1 ξ j p j

.

Definition 15 A probabilistic single-valued neutrosophic OWG (P-SVNOWG) oper-
ator is a map, P-SVNOWG : Ωn −→ Ω defined as

P-SVNOWG(N1,N2, . . . ,Nn) =
n⊗

j=1

(Nσ( j)
)v j

=
⎛

⎝
n∏

j=1

(
ςσ( j)
)v j , 1 −

n∏

j=1

(
1 − τσ( j)

)v j , 1 −
n∏

j=1

(
1 − υσ( j)

)v j

⎞

⎠ (15)

where σ permutes (1, 2, . . . , n) with Nσ( j) is the largest SVNN, p j is the associated
probability of Nσ( j), ξ j > 0 be the normalized weight vector of N j and v j = βξ j +
(1 − β)p j with β ∈ [0, 1].
3.1.5 Generalized probabilistic ordered weighted operators

From the definition of P-SVNOWA operator, it is seen that the operator can be written
as a linear combination of the SVNOWA operator and the probabilities operators, as

P-SVNOWA(N1,N2, . . . ,Nn) = β

n⊕

j=1

ω jNσ( j) + (1 − β)

n⊕

j=1

p jN j (16)

In the below, we generalized the above-defined P-SVNOWA operator to its more
generalized form, named as probabilistic generalized single-valued neutrosophic
ordered weighted averaging (P-GSVNOWA) operator, by adding parameters λ and
δ which represents the behavior of the decision-makers.

Definition 16 For SVNNs N j , a P-GSVNOWA operator is a map P-GSVNOWA :
Ωn → Ω associated with weights ξ j > 0,

∑n
j=1 ξ j = 1, and a probabilities p j > 0,∑n

j=1 p j = 1, such that:

P-GSVNOWA(N1,N2, . . . ,Nn) = β

⎛

⎝
n⊕

j=1

w jN λ
σ( j)

⎞

⎠

1
λ

+ (1 − β)

⎛

⎝
n⊕

j=1

p jN δ
j

⎞

⎠

1
δ

(17)

where β ∈ [0, 1], λ, δ are real parameters.
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From Eq. (17), it has been concluded that by varying values of β, λ and δ, we get
their corresponding families of the operators, which are discussed below:

(1) If β = 1, then P-GSVNOWA becomes generalized SVNOWA operator [18].
(2) If β = 0, then P-GSVNOWA becomes generalized SVNPA operator.
(3) If λ = δ = 1, then P-GSVNOWA converted to P-SVNOWA as defined in the

Eq. (16).
(4) If λ → 0 and δ → 0, then P-GSVNOWA takes form of P-SVNOWG operator.

P-SVNOWG(N1,N2, . . . ,Nn) = β

n∏

j=1

(Nσ( j)
)w j + (1 − β)

n∏

j=1

(N j
) p̂ j

(5) If λ = δ = −1, then P-GSVNOWA operator becomes the probabilistic single-
valued neutrosophic harmonic OWA (P-SVNHOWA) operator.

P-SVNHOWA(N1,N2, . . . ,Nn) = β
1

n⊕

j=1

(
w j

Nσ( j)

) + (1 − β)
1

n⊕

j=1

(
p j

N j

)

(6) If λ = δ = 2, then P-GSVNOWA operator reduced to the probabilistic single-
valued neutrosophic quadratic OWA (P-SVNQOWA) operator.

P-SVNQOWA(N1,N2, . . . ,Nn) = β

⎛

⎝
n⊕

j=1

w jN 2
σ( j)

⎞

⎠

1
2

+ (1 − β)

⎛

⎝
n⊕

j=1

p jN 2
j

⎞

⎠

1
2

(7) If λ = δ = 3, then P-GSVNOWA operator reduced to the probabilistic single-
valued neutrosophic cubic orderedweighted averaging (P-SVNCOWA) operator.

P-SVNCOWA(N1,N2, . . . ,Nn) = β

⎛

⎝
n⊕

j=1

w jN 3
σ( j)

⎞

⎠

1
3

+ (1 − β)

⎛

⎝
n⊕

j=1

p jN 3
j

⎞

⎠

1
3

(8) If λ = 2 and δ = 1, we get the probabilistic SVN ordered weighted quadratic
average (P-SVNOWQA).
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P-SVNOWQA(N1,N2, . . . ,Nn) = β

⎛

⎝
n⊕

j=1

w jN 2
σ( j)

⎞

⎠

1
2

+ (1 − β)

⎛

⎝
n⊕

j=1

p jN j

⎞

⎠

(9) If λ = 1 and δ = 2, we get the probabilistic single-valued neutrosophic quadratic
OWA (P-SVNQOWA).

P-SVNQOWA(N1,N2, . . . ,Nn) = β

⎛

⎝
n⊕

j=1

w jNσ( j)

⎞

⎠

+ (1 − β)

⎛

⎝
n⊕

j=1

piN 2
j

⎞

⎠

1
2

(10) If λ = 3 and δ = 1, we get the probabilistic single-valued neutrosophic ordered
weighted cubic average (P-SVNOWCA).

P-SVNOWCA(N1,N2, . . . ,Nn) = β

⎛

⎝
n⊕

j=1

w jN 3
σ( j)

⎞

⎠

1
3

+ (1 − β)

⎛

⎝
n⊕

j=1

p jN j

⎞

⎠

(11) If λ = 1 and δ = 3, we get the probabilistic single-valued neutrosophic cubic
OWA (P-SVNCOWA) operator.

P-SVNCOWA(N1,N2, . . . ,Nn) = β

⎛

⎝
n⊕

j=1

w jNσ( j)

⎞

⎠

+ (1 − β)

⎛

⎝
n⊕

j=1

p jN 3
j

⎞

⎠

1
3

(12) If λ = 2 and δ = 3, we get the probabilistic single-valued neutrosophic cubic
ordered weighted quadratic average (P-SVNCOWQA).
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P-SVNCOWQA(N1,N2, . . . ,Nn) = β

⎛

⎝
n⊕

j=1

w jN 2
σ( j)

⎞

⎠

1
2

+ (1 − β)

⎛

⎝
n⊕

j=1

p jN 3
j

⎞

⎠

1
3

3.2 Aggregation operators for INS

In this section,we have extended the above defined aggregation operators fromSVNNs
to the interval neutrosophic numbers (INNs). LetΓ be the collection of all INNsN j =
([ς L

j , ςU
j ], [τ L

j , τU
j ], [υL

j , υU
j ]), having weights ω = (ω1, ω2, . . . , ωn)T , ω j > 0,

∑n
j=1 ω j = 1 and the probabilistic weight p j > 0,

∑n
j=1 p j = 1.

Definition 17 For a collection of “n” INNs N j = ([ς L
j , ςU

j ], [τ L
j , τU

j ], [υL
j , υU

j ]), a
map P-INWA : Γ n −→ Γ defined by

P-INWA(N1,N2, . . . ,Nn) =
n⊕

j=1

v jN j

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎣1 −
n∏

j=1

(
1 − ς L

j

)v j
, 1 −

n∏

j=1

(
1 − ςU

j

)v j

⎤

⎦ ,

⎡

⎣
n∏

j=1

(
τ L

j

)v j
,

n∏

j=1

(
τU

j

)v j

⎤

⎦ ,

⎡

⎣
n∏

j=1

(
υL

j

)v j
,

n∏

j=1

(
υU

j

)v j

⎤

⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(18)

thenP-INWAis called as probabilistic interval neutrosophicweighted average operator
where v j = (1 − β)p j + βω j with β ∈ [0, 1].

Remark 4 If β = 1 then P-INWA acted as INWA and if β = 0 then it acts as interval
neutrosophic probabilistic aggregation operator.

Definition 18 An immediate probability interval neutrosophic ordered weighted aver-
age (IP-INOWA)operator is amap IP-INOWA : Γ n → Γ , with associated normalized
weight vector ξ = (ξ1, ξ2, . . . , ξn)T , defined as
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IP-INOWA(N1,N2, . . . ,Nn) =
n⊕

j=1

p̂ jNσ( j)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎣1 −
n∏

j=1

(
1 − ς L

σ( j)

) p̂ j
, 1 −

n∏

j=1

(
1 − ςU

σ( j)

) p̂ j

⎤

⎦ ,

⎡

⎣
n∏

j=1

(
τ L
σ( j)

) p̂ j
,

n∏

j=1

(
τU
σ( j)

) p̂ j

⎤

⎦ ,

⎡

⎣
n∏

j=1

(
υL

σ( j)

) p̂ j
,

n∏

j=1

(
υU

σ( j)

) p̂ j

⎤

⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(19)

where σ permutes (1, 2, . . . , n) such that Nσ( j−1) ≥ Nσ( j) and p̂ j = ξ j p j∑n
j=1 ξ j p j

. We

could also use p̂ = ξ j +p j∑n
j=1(ξ j +p j )

or other similar approaches.

Definition 19 A probabilistic interval neutrosophic ordered weighted average (P-
INOWA) operator is a map P-INOWA : Γ n → Γ , with associated weight vector
ξ = (ξ1, ξ2, . . . , ξn)T , such that ξ j > 0 and

∑n
j=1 ξ j = 1, and is defined as

P-INOWA(N1,N2, . . . ,Nn) =
n⊕

j=1

v jNσ( j)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎣1 −
n∏

j=1

(
1 − ς L

σ( j)

)v j
, 1 −

n∏

j=1

(
1 − ςU

σ( j)

)v j

⎤

⎦ ,

⎡

⎣
n∏

j=1

(
τ L
σ( j)

)v j
,

n∏

j=1

(
τU
σ( j)

)v j

⎤

⎦ ,

⎡

⎣
n∏

j=1

(
υL

σ( j)

)v j
,

n∏

j=1

(
υU

σ( j)

)v j

⎤

⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(20)

where p j is the associated probability of Nσ( j) and v j = (1 − β)p j + βξ j with
β ∈ [0, 1].

Remark 5 If β = 1 then the P-INOWA takes form of INOWA and if β = 0 then it
converts to interval neutrosophic probabilistic aggregation.
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Definition 20 A probability interval neutrosophic weighted geometric (P-INWG)
operator is a map P-INWG : Γ n → Γ defined as

P-INWG(N1,N2, . . . ,Nn) =
n⊗

j=1

(N j
)v j

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎣
n∏

j=1

(
ς L

j

)v j
,

n∏

j=1

(
ςU

j

)v j

⎤

⎦ ,

⎡

⎣1 −
n∏

j=1

(
1 − τ L

j

)v j
, 1 −

n∏

j=1

(
1 − τU

j

)v j

⎤

⎦ ,

⎡

⎣1 −
n∏

j=1

(
1 − υL

j

)v j
, 1 −

n∏

j=1

(
1 − υU

j

)v j

⎤

⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(21)

where ω j > 0,
∑n

j=1 ω j = 1 is the weight vector ofN j , v j = (1−β)p j +βω j with
β ∈ [0, 1] is the weight that binds the probabilities with the INWG in the similar data.

Remark 6 If β = 1 then P-INWG takes form of INWGwhile if β = 0 then it becomes
the interval neutrosophic probabilistic geometric aggregation.

Definition 21 An immediate probability interval neutrosophic ordered weighted geo-
metric (IP-INOWG) is a map IP-INOWG : Γ n → Γ , with associated weight vector
ξ = (ξ1, ξ2, . . . , ξn)T , such that ξ j > 0,

∑n
j=1 ξ j = 1, defined as

IP-INOWG(N1,N2, . . . ,Nn) =
n⊗

j=1

(Nσ( j)
) p̂ j

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎣
n∏

j=1

(
ς L

σ( j)

) p̂ j
,

n∏

j=1

(
ςU

σ( j)

) p̂ j

⎤

⎦ ,

⎡

⎣1 −
n∏

j=1

(
1 − τ L

σ( j)

) p̂ j
, 1 −

n∏

j=1

(
1 − τU

σ( j)

) p̂ j

⎤

⎦ ,

⎡

⎣1 −
n∏

j=1

(
1 − υL

σ( j)

) p̂ j
, 1 −

n∏

j=1

(
1 − υU

σ( j)

) p̂ j

⎤

⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(22)

where σ permutes (1, 2, . . . , n) with Nσ( j−1) ≥ Nσ( j) ∀ j = 2, 3, . . . , n, p j is the

associated probability of Nσ( j) and p̂ j = ξ j p j∑n
j=1 ξ j p j

.
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Definition 22 A probability interval neutrosophic ordered weighted geometric (P-
INOWG) for INNs is a map P-INOWG : Γ n −→ Γ defined by

P-INOWG(N1,N2, . . . ,Nn) =
n∏

j=1

(Nσ( j)
)v j

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎣
n∏

j=1

(
ς L

σ( j)

)v j
,

n∏

j=1

(
ςU

σ( j)

)v j

⎤

⎦ ,

⎡

⎣1 −
n∏

j=1

(
1 − τ L

σ( j)

)v j
, 1 −

n∏

j=1

(
1 − τU

σ( j)

)v j

⎤

⎦ ,

⎡

⎣1 −
n∏

j=1

(
1 − υL

σ( j)

)v j
, 1 −

n∏

j=1

(
1 − υU

σ( j)

)v j

⎤

⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(23)

where v j = (1 − β)p j + βω j with β ∈ [0, 1] such that v j > 0 and
∑n

j=1 v j = 1.

Remark 7 If β = 1 then the P-INOWG converts to INOWG and if β = 0 then it
becomes the interval neutrosophic probabilistic OWG (INPOWG) operator.

The proposed operators P-INWA, IP-INOWA, P-INOWA, P-INWG, IP-INOWG,
P-INOWG also have properties like boundedness, idempotency, and monotonicity.

4 Proposed algorithm

In this section, we present a decision-making algorithm for solving the MADM
problems under the neutrosophic set environment. Consider a set of alternatives
V1,V2, . . . ,Vm which are evaluated by an expert under the different attributes
B1,B2, . . . ,Bn and gives their preferences either in terms of SVNNs or INNs. Let
ω = (ω1, ω2, . . . , ωn) be the weight vector assigned to the given attributes B j such
that ω j > 0 and

∑n
j=1 ω j = 1. Then, the procedure for choosing the finest alterna-

tive(s) by utilizing the proposed operators are summarized in the following algorithms.

4.1 Algorithm 1: when ratings are given under SVNS environment

When an expert evaluate the given alternatives Vi under different attributes B j and
represent their values in terms of SVNNs βi j = (ςi j , τi j , υi j

)
such that ςi j , τi j , υi j ∈

[0, 1] and ςi j + τi j + υi j ≤ 3. Then, the following are the steps summarized to find
the best alternative(s).

123



638 H. Garg, Nancy

Step 1: Arrange the collective informationof the expert in the neutrosophic decision
matrixM = (βi j )m×n as

M =

B1 B2 . . . Bn⎛

⎜⎜
⎝

⎞

⎟⎟
⎠

V1 β11 β12 . . . β1n

V2 β21 β22 . . . β2n
...

...
...

. . .
...

Vm βm1 βm2 . . . βmn

Step 2: Set the probabilistic information p, weight vectorw, ordered weights ξ and
the importance factor β. Based on such information, calculate the imme-
diate probability p̂ = ξ j p j∑n

j=1 ξ j p j
.

Step 3: Aggregate the collection information of the alternative Vi with expert eval-
uation βi j , j = 1, 2, . . . , n into βi , i = 1, 2, . . . , m by using either of
the proposed averaging operator such as P-SVNWA, P-SVNOWA, IP-
SVNOWA, or by geometric operator such as P-SVNWG, P-SVNOWG,
IP-SVNOWG operator.

Step 4: Compute the score value of the obtained aggregated number βi =
(ςi , τi , υi ), i = 1, 2, . . . , m as

S(βi ) = ςi − τi − υi (24)

If score values are equal for any two indices then compute the accuracy
values for them by using Eq. (25).

H(βi ) = ςi + τi + υi (25)

Step 5: Rank the given alternatives based on the descending values of score values
of βi and hence select the best one(s).

4.2 Algorithm 2: when ratings are given under INS environment

When an expert evaluate the given alternatives Vi under different attributes B j and

represent their values in terms of INNs γi j =
([

ς L
i j , ς

U
i j

]
,
[
τ L

i j , τ
U
i j

]
,
[
υL

i j , υ
U
i j

])
such

that ς L
i j , ς

U
i j , τ

L
i j , τ

U
i j , υ

L
i j , υ

U
i j ∈ [0, 1] and ςU

i j + τU
i j + υU

i j ≤ 3. Then, the following
are the steps summarized to find the best alternative(s).

Step 1: Arrange the collective informationof the expert in the neutrosophic decision
matrixM = (γi j )m×n as
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M =

B1 B2 . . . Bn⎛

⎜⎜
⎝

⎞

⎟⎟
⎠

V1 γ11 γ12 . . . γ1n

V2 γ21 γ22 . . . γ2n
...

...
...

. . .
...

Vm γm1 γm2 . . . γmn

Step 2: Set the probabilistic information p, weight vectorw, ordered weights ξ and
the importance factor β. Based on such information, calculate the imme-
diate probability p̂ = ξ j p j∑n

j=1 ξ j p j
.

Step 3: Aggregate the collection information of the alternative Vi with expert eval-
uation γi j , j = 1, 2, . . . , n into γi , i = 1, 2, . . . , m by using either of the
proposed averaging operator such as P-INWA, P-INOWA, IP-INOWA, or
by geometric operator such as P-INWG, P-INOWG, IP-INOWG operator.

Step 4: Compute the score value of the obtained aggregated number γi =
([ς L

i , ςU
i ], [τ L

i , τU
i ], [υL

i , υU
i ]), i = 1, 2, . . . , m as

S(γi ) = ς L
i + ςU

i − τ L
i − τU

i − υL
i − υU

i

2
(26)

If score values are equal for any two indices then compute the accuracy
values for them by using Eq. (27).

H(γi ) = ς L
i + ςU

i + τ L
i + τU

i + υL
i + υU

i

2
(27)

Step 5: Rank the given alternatives based on the descending values of score values
of βi and hence select the best one(s).

5 Numerical example

To demonstrate the working of the above-defined algorithms, we illustrate them with
a case study that can be read as follows.

“Demonetization is the withdrawal of a particular form of currency from circula-
tion. On 8 November 2016, the Government of India announced in a broadcast to the
nation that Rs. 500 and Rs. 1000 currency notes would no longer be recognized legally
as currency. This step was taken to crack down the use of illicit and counterfeit cash
to fund illegal activity and terrorism. The government knew that demonetization will
affect the Indian economy and may also drop the country’s Gross domestic product
(GDP) growth. So before the announcement of the demonetization, the Government
wanted to conduct a survey of the effect of this bold move on various sectors of the
Indian economy to take further decisions. For doing this, the Indian government hired
an economist or decision-maker who is able to handle this kind of situation and able to
crack that which sector (alternative) of the Indian economy will be affected by demon-
etization. For this, decision-maker assume the five important sectors on which our
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Indian economy depends and were given as: V1(Agriculture Sector), V2(Real-Estate
Sector), V3(Information Technology Sector), V4(Educational Sector), V5(Industrial
Sector). For evaluation, decision-maker considered criterion in the terms ‘how much
effect of demonetization on particular sector in linguistic terms’which are summarized
as: B1(Very low effect), B2(Low effect), B3(Regular effect), B4( High effect) and
B5(Very high effect)”. The evaluation of these strategies is in terms of neutrosophic
numbers taken by the evaluators/experts under the criteria defined above.

5.1 When evaluations are taken in SVNNs

The access the best alternatives among the given ones, we implemented the steps of
the proposed Algorithm 1 here.

Step 1: Assume the given alternatives are evaluated by an expert and gives their
rating in terms of SVNNs. Such values are represented in Table 1.

Step 2: As decided by the experts according to the problem, the probability infor-
mation and weight vector are set as p = (0.3, 0.3, 0.2, 0.1, 0.1)T and
ω = (0.2, 0.25, 0.15, 0.3, 0.1)T . Further, take weighage to the probabil-
ity information and the weightage average as 60% and 40%, respectively.
The decision-maker wants to arrange the government when the situation
becomes exceptionally critical for future objectives, so at that point, they
control the probabilities by OWA weights ξ = (0.1, 0.2, 0.2, 0.2, 0.3)T .
Finally, IPs are computed and are summarized in Table 2.

Step 3a: By utilizing the P-SVNWA operator to aggregate the given information,
we get the collective values of each alternative Vi as β1=(0.4021, 0.2314,
0.3970), β2= (0.6673, 0.1899, 0.2490), β3=(0.5587, 0.1856, 0.3258),
β4=(0.6007, 0.2872, 0.2144) andβ5=(0.4210, 0.1306, 0.3423).On the other
hand, if we utilize IP-SVNOWA operator to aggregate the numbers then
we get β1=(0.3774, 0.2372, 0.4345), β2= (0.6682, 0.1888, 0.2551), β3=
(0.5504, 0.2228, 0.3545), β4= (0.5842, 0.3270, 0.2245), and β5= (0.4079,
0.1297, 0.3640).

Step 3b: By utilizing the weighted geometric operator such as P-SVNWG to
aggregate the information, we get the numbers are β1=(0.3675, 0.2375,
0.4176), β2=(0.6622, 0.2263, 0.2557), β3=(0.5537, 0.2167, 0.3402),
β4=(0.5633, 0.3226, 0.2227), and β5=(0.4137, 0.1499, 0.3910). However,
if we utilize IP-SVNOWG operator for the given numbers then we get

Table 1 Decision matrix in terms of SVNNs

B1 B2 B3 B4 B5

V1 (0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4) (0.3, 0.3, 0.4)

V2 (0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2) (0.7, 0.1, 0.2)

V3 (0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3) (0.6, 0.4, 0.3)

V4 (0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2) (0.4, 0.5, 0.4)

V5 (0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6) (0.3, 0.2, 0.4)
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Table 2 Immediate probabilities
of the problem

B1 B2 B3 B4 B5

V1 0.1579 0.3158 0.1053 0.1053 0.3158

V2 0.0500 0.3000 0.3000 0.2000 0.1500

V3 0.0952 0.0952 0.2857 0.0952 0.4286

V4 0.1667 0.3333 0.1111 0.2222 0.1667

V5 0.1667 0.3333 0.2222 0.1111 0.1667

β1=(0.3362, 0.2437, 0.4591), β2=(0.6632, 0.2226, 0.2616), β3=(0.5454,
0.2482, 0.3650), β4=(0.5424, 0.3626, 0.2375), and β5= (0.4021, 0.1481,
0.4052).

Step 4: By Eq. (24), the score values of collective number obtained through P-
SVNWA operator are computed as S(β1) = −0.2263, S(β2) = 0.2284,
S(β3) = 0.0474, S(β4) = 0.0991 and S(β5) = −0.0519 while these val-
ues for the numbers obtained through P-SVNWG operator are S(β1) =
−0.2877, S(β2) = 0.1803, S(β3) = −0.0032, S(β4) = 0.0180 and
S(β5) = −0.1272.

Step 5: Based on the score value, the raking order of the alternatives is taken as
V2 	 V4 	 V3 	 V5 	 V1, where 	 means “preferred to”. From this
ordering, we compute the V2 is the best alternative for the desired task.

5.2 Comparative analysis

To compare the performance of the proposed approach with the several existing
approaches, we implement the existing averaging operators such as NWA [20],
SVNWA [18], SVNOWA [18], SVNHWA [26] and SVNFWA [23] to aggregate the
given information. The aggregated results corresponding to these existing approaches
alongwith the proposed operators namely P-SVNWA, P-SVNOWAand IP-SVNOWA
are summarized in Table 3.

On the other hand, by utilizing the existing geometric operators such as NWG [20],
SVNWG [18], SVNOWG [18], SVNHWG [26], and SVNFWG [23] to aggregate the
given information along with the proposed ones namely P-SVNWG, P-SVNOWGand
IP-SVNOWG operators, the results corresponding to them are listed in Table 4.

Based on the score function as given in Eq. (24), the ranking order of the alternatives
is represented in Table 5, where 	 means “preferred to”. From this conclusion, we
conclude that the ranking of alternatives slightly differs for different operators but the
final outcome of the finest alternative is V2 under all operators. From this analysis,
it has been concluded that a decision-maker can select the best alternatives as per
their needs and desire. For example, to make an optimal decision according to the
optimism nature then an expert can select the averaging operator while selecting a
geometric operator for pessimism nature. Similarly, by considering the importance
of probabilistic and immediate probabilistic, in terms of the subjective and objective
information, a decision-maker can choose the appropriate one during the aggregation
phase and the final ranking phase.
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Table 5 Ordering of the alternatives

Existing operators Ordering Proposed operators Ordering

NWA [20] V2 	 V4 	 V3 	 V5 	 V1
SVNWA [18] V2 	 V4 	 V3 	 V5 	 V1 P-SVNWA V2 	 V4 	 V3 	 V5 	 V1
SVNOWA [18] V2 	 V3 	 V4 	 V5 	 V1 P-SVNOWA V2 	 V3 	 V4 	 V5 	 V1
SVNWG [18] V2 	 V4 	 V3 	 V5 	 V1 IP-SVNOWA V2 	 V4 	 V3 	 V5 	 V1
SVNOWG [18] V2 	 V3 	 V4 	 V5 	 V1 P-SVNWG V2 	 V4 	 V3 	 V5 	 V1
SVNFWA [23] V2 	 V4 	 V3 	 V5 	 V1 P-SVNOWG V2 	 V3 	 V4 	 V5 	 V1
SVNHWA [26] (γ = 2) V2 	 V4 	 V3 	 V5 	 V1 IP-SVNOWG V2 	 V4 	 V3 	 V5 	 V1
SVNHWA [26] (γ = 3) V2 	 V4 	 V3 	 V5 	 V1
NWG [20] V2 	 V4 	 V3 	 V5 	 V1
SVNFWG [23] V2 	 V4 	 V3 	 V5 	 V1
SVNHWG [26] (γ = 2) V2 	 V4 	 V3 	 V5 	 V1
SVNHWG [26] (γ = 3) V2 	 V4 	 V3 	 V5 	 V1

Table 6 Decision matrix in terms of INNs

B1 B2 B3

V1 ([0.4, 0.6], [0.2, 0.3], [0.3, 0.5]) ([0.45, 0.55], [0.1, 0.2], [0.3, 0.4]) ([0.2, 0.3], [0.1, 0.2], [0.6, 0.7])
V2 ([0.7, 0.8], [0.1, 0.2], [0.3, 0.5]) ([0.65, 0.80], [0.2, 0.3], [0.3, 0.5]) ([0.5, 0.7], [0.2, 0.3], [0.2, 0.3])
V3 ([0.5, 0.6], [0.3, 0.4], [0.4, 0.5]) ([0.60, 0.65], [0.2, 0.3], [0.3, 0.4]) ([0.4, 0.6], [0.1, 0.2], [0.2, 0.3])
V4 ([0.6, 0.7], [0.3, 0.5], [0.2, 0.4]) ([0.70, 0.80], [0.1, 0.2], [0.1, 0.2]) ([0.4, 0.5], [0.5, 0.6], [0.1, 0.2])
V5 ([0.4, 0.5], [0.1, 0.2], [0.3, 0.4]) ([0.50, 0.60], [0.1, 0.2], [0.2, 0.3]) ([0.3, 0.4], [0.1, 0.2], [0.5, 0.6])

B4 B5

V1 ([0.2, 0.4], [0.2, 0.3], [0.3, 0.4]) ([0.2, 0.4], [0.3, 0.4], [0.4, 0.6])
V2 ([0.6, 0.7], [0.4, 0.5], [0.2, 0.3]) ([0.6, 0.7], [0.1, 0.3], [0.2, 0.3])
V3 ([0.4, 0.5], [0.1, 0.3], [0.3, 0.4]) ([0.6, 0.7], [0.4, 0.5], [0.3, 0.4])
V4 ([0.3, 0.5], [0.1, 0.2], [0.2, 0.3]) ([0.3, 0.4], [0.5, 0.6], [0.4, 0.5])
V5 ([0.3, 0.4], [0.2, 0.3], [0.5, 0.6]) ([0.2, 0.3], [0.2, 0.4], [0.3, 0.4])

Table 7 Immediate probabilities
of the problem in case of
interval-valued data

B1 B2 B3 B4 B5

V1 0.1667 0.3333 0.1111 0.2222 0.1667

V2 0.1667 0.1111 0.2222 0.3333 0.1667

V3 0.0952 0.2857 0.0952 0.0952 0.4286

V4 0.1667 0.1111 0.3333 0.2222 0.1667

V5 0.1667 0.3333 0.2222 0.1111 0.1667
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5.3 When evaluations are taken in INNs

Assume that the expert rates the given alternatives in terms of INNs. Then to access the
best alternatives among them, we implemented the steps of the proposed Algorithm 2
here.

Step 1: The rating values of the expert are summarized in Table 6.
Step 2: The immediate probability values for the given problem are calculated and

summarized in Table 7.
Step 3a: UtilizeP-INWAoperator to aggregate the rating ofTable 6 and the collective

values of each alternative Vi are obtained as

γ1 = ([0.3316, 0.4878], [0.1514, 0.2562], [0.3498, 0.4882]),
γ2 = ([0.6278, 0.7590], [0.1765, 0.2960], [0.2490, 0.3953]),
γ3 = ([0.5095, 0.6103], [0.1856, 0.3163], [0.3005, 0.4025]),
γ4 = ([0.5357, 0.6550], [0.2088, 0.3452], [0.1558, 0.2824]),

and γ5 = ([0.3797, 0.4813], [0.1214, 0.2306], [0.3387, 0.4270]).

On the other hand, by taking IP-INOWA operator during the aggregation
phase, we get the collective values for each alternative as

γ1 = ([0.3172, 0.4830], [0.1634, 0.2688], [0.3671, 0.5221]),
γ2 = ([0.6168, 0.7551], [0.1852, 0.3053], [0.2449, 0.3873]),
γ3 = ([0.5245, 0.6173], [0.2228, 0.3428], [0.3265, 0.4282]),
γ4 = ([0.5126, 0.6268], [0.2697, 0.4161], [0.1714, 0.3071]),

and γ5 = ([0.3572, 0.4585], [0.1212, 0.2348], [0.3620, 0.4364]).

Step 3b: Aggregate the given information by using P-INWG operator and get the
collective values of each alternative Vi are

γ1 = ([0.3005, 0.4614], [0.1667, 0.2670], [0.3768, 0.5150]),
γ2 = ([0.6181, 0.7523], [0.2075, 0.3179], [0.2557, 0.4163]),
γ3 = ([0.4945, 0.6030], [0.2167, 0.3339], [0.3111, 0.4117]),
γ4 = ([0.4796, 0.6087], [0.2849, 0.4169], [0.1794, 0.3086]),

and γ5 = ([0.3582, 0.4614], [0.1292, 0.2411], [0.3775, 0.4586])

while by IP-INOWG operator, these values are

γ1 = ([0.2884, 0.4529], [0.1809, 0.2814], [0.3975, 0.5476]),
γ2 = ([0.6072, 0.7483], [0.2121, 0.3233], [0.2517, 0.4084]),
γ3 = ([0.5137, 0.6122], [0.2482, 0.3573], [0.3364, 0.4369]),
γ4 = ([0.4640, 0.5828], [0.3415, 0.4776], [0.2017, 0.3378]),

and γ5 = ([0.3360, 0.4394], [0.1290, 0.2487], [0.3951, 0.4622]).
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Step 4: By Eq. (26), we compute the score values of the numbers obtained by P-
INWA operator as S(γ1) = −0.2131, S(γ2) = 0.1350, S(γ3) = −0.0426,
S(γ4) = 0.0992 and S(γ5) = −0.1284. On the other hand, these score
values corresponding to the INNsobtained through IP-INOWGoperator are
S(γ1) = −0.3330, S(γ2) = 0.0800, S(γ3) = −0.1264, S(γ4) = −0.1559
and S(γ5) = −0.2297.

Step 5: Based on these score values, we obtain the ranking order of the given
alternatives as V2 	 V4 	 V3 	 V5 	 V1 through P-INWA operator while
V2 	 V3 	 V4 	 V5 	 V1 when IP-INOWG operator used. Clearly seen
that there is change in the alternative ordering, while the best one remains
same i.e., V2.

5.4 Comparative analysis

To compare the performance of the stated Algorithm 2 by using proposed P-INWA, P-
INOWA, and IP-INOWA operators with the several existing operators such as INWA
[21], INOWA [21], INFWA [23] and INHWA [26], we execute these operators to
aggregate the given information. The resultant values of the alternatives obtained
through each operator are listed in Table 8.

On the other hand, we utilize the geometric operators namely P-INWG, P-INOWG,
and IP-INOWG operators to aggregate the given information and compare their per-
formance with the existing geometric operators namely INWG [21], INOWG [21],
INFWG[23] and INHWG[26]with INSenvironment. The aggregative values obtained
through each operator are summarized in Table 9.

Based on the score values of the resultant numbers as summarized in Tables 8 and
9, the final ranking order of the given alternatives is listed in Table 10. From the table,
it can easily be seen that the most effective sector is V2, although there is a change in
their ranking order.

5.5 Impact of the parameters �, ı andˇ on alternatives

To study the impact of the parameters λ, δ and β on to the ranks of the alternatives,
an investigation has been done, in which the attitudinal characteristic of the decision-
maker towards the alternative is varied, by using the proposed approach. The effects
of these parametric values are summarized in Table 11 and the following observations
have been noticed out:

(1) By incorporating the feature of the probabilistic information alongwith theweight
information during the analysis, the factor β is varied from 0 to 1 and hence their
corresponding impact on the final ranking of the alternatives have been analyzed
for different pairs of the parameters (λ, δ). For instance, if this pair is taken to be
as (λ, δ) = (1, 1), then we see that overall evaluation value of each alternative, in
terms of their score values, decreases with the increase of β. Similar observations
have been noticed from the other pairs also.

(2) Also, with a specific end objective to see the impact of parameters λ and δ on
to the individual alternatives as well as complete ranking of the alternatives, we

123



Multiple attribute decision making based on immediate… 647

Ta
bl
e
8

N
eu
tr
os
op

hi
c
ag
gr
eg
at
ed

re
su
lts

by
av
er
ag
in
g
op

er
at
or
s
(β

=
0.
40

)

IN
W
A
[2
1]

IN
O
W
A
[2
1]

IN
FW

A
[2
3]

V 1
([0

.3
12
3,
0.
47
31

],[
0.
15
78

,
0.
26
25

],[
0.
34
26

,
0.
47
37

])
([0

.2
72
5,
0.
44
56

],[
0.
18
35

,
0.
28
96

],[
0.
37
57

,
0.
52
83

])
([0

.3
10
1,
0.
47
13

],[
0.
15
85

,
0.
26
32

],[
0.
34
40

,
0.
47
55

])
V 2

([0
.6
22
3,
0.
75
00

],[
0.
20
00

,
0.
32
24

],[
0.
24
00

,
0.
37
75

])
([0

.6
04
3,
0.
73
44

],[
0.
20
00

,
0.
33
58

],[
0.
22
59

,
0.
34
97

])
([0

.6
21
7,
0.
74
96

],[
0.
20
21

,
0.
32
43

],[
0.
24
04

,
0.
37
91

])
V 3

([0
.4
98
0,

0.
59
81

],[
0.
17
02

,
0.
31
47

],[
0.
29
90

,
0.
40
06

])
([0

.5
17
0,

0.
61
55

],[
0.
21
07

,
0.
34
78

],[
0.
31
40

,
0.
41
56

])
([0

.4
96
7,
0.
59
73

],[
0.
17
16

,
0.
31
58

],[
0.
29
96

,
0.
40
12

])
V 4

([0
.5
05
2,

0.
63
44

],[
0.
18
63

,
0.
31
62

],[
0.
16
25

,
0.
28
44

])
([0

.4
42
4,
0.
56
49

],[
0.
27
86

,
0.
41
61

],[
0.
20
00

,
0.
32
80

])
([0

.5
00
3,
0.
63
08

],[
0.
18
97

,
0.
32
09

],[
0.
16
34

,
0.
28
59

])
V 5

([0
.3
67
6,
0.
46
91

],[
0.
13
20

,
0.
24
21

],[
0.
35
90

,
0.
44
68

])
([0

.3
16
9,
0.
41
82

],[
0.
14
14

,
0.
26
70

],[
0.
41
19

,
0.
45
71

])
([0

.3
66
1,
0.
46
76

],[
0.
13
23

,
0.
24
27

],[
0.
36
21

,
0.
44
94

])
IN

H
W
A
[2
6]

P-
IN

W
A

γ
=

2
γ

=
3

V 1
([0

.3
07
2,

0.
46
93

],[
0.
15
89

,
0.
26
37

],[
0.
34
54

,
0.
47
74

])
([0

.3
04
0,

0.
46
72

],[
0.
15
93

,
0.
26
41

],[
0.
34
68

,
0.
47
94

])
([0

.3
31
6,
0.
48
78

],[
0.
15
14

,
0.
25
62

],[
0.
34
98

,
0.
48
82

])
V 2

([0
.6
21
2,

0.
74
93

],[
0.
20
35

,
0.
32
59

],[
0.
24
07

,
0.
38
05

])
([0

.6
20
7,
0.
74
90

],[
0.
20
49

,
0.
32
75

],[
0.
24
10

,
0.
38
19

])
([0

.6
27
8,
0.
75
90

],[
0.
17
65

,
0.
29
60

],[
0.
24
90

,
0.
39
53

])
V 3

([0
.4
95
3,
0.
59
67

],[
0.
17
26

,
0.
31
67

],[
0.
30
01

,
0.
40
17

])
([0

.4
94
0,

0.
59
60

],[
0.
17
35

,
0.
31
75

],[
0.
30
05

,
0.
40
22

])
([0

.5
09
5,
0.
61
03

],[
0.
18
56

,
0.
31
63

],[
0.
30
05

,
0.
40
25

])
V 4

([0
.4
95
1,
0.
62
77

],[
0.
19
23

,
0.
32
49

],[
0.
16
41

,
0.
28
70

])
([0

.4
89
9,
0.
62
47

],[
0.
19
48

,
0.
32
90

],[
0.
16
47

,
0.
28
82

])
([0

.5
35
7,
0.
65
50

],[
0.
20
88

,
0.
34
52

],[
0.
15
58

,
0.
28
24

])
V 5

([0
.3
64
1,
0.
46
58

],[
0.
13
25

,
0.
24
32

],[
0.
36
47

,
0.
45
21

])
([0

.3
62
1,
0.
46
41

],[
0.
13
27

,
0.
24
37

],[
0.
36
72

,
0.
45
47

])
([0

.3
79
7,
0.
48
13

],[
0.
12
14

,
0.
23
06

],[
0.
33
87

,
0.
42
70

])
P-
IN

O
W
A

IP
-I
N
O
W
A

V 1
([0

.3
16
4,
0.
47
73

],[
0.
16
08

,
0.
26
65

],[
0.
36
29

,
0.
51
00

])
([0

.3
17
2,

0.
48
30

],[
0.
16
34

,
0.
26
88

],[
0.
36
71

,
0.
52
21

])
V 2

([0
.6
20
8,
0.
75
31

],[
0.
17
65

,
0.
30
08

],[
0.
24
30

,
0.
38
34

])
([0

.6
16
8,
0.
75
51

],[
0.
18
52

,
0.
30
53

],[
0.
24
49

,
0.
38
73

])
V 3

([0
.5
17
0,

0.
61
71

],[
0.
20
22

,
0.
32
92

],[
0.
30
65

,
0.
40
85

])
([0

.5
24
5,
0.
61
73

],[
0.
22
28

,
0.
34
28

],[
0.
32
65

,
0.
42
82

])
V 4

([0
.5
13
0,

0.
63
02

],[
0.
24
53

,
0.
38
53

],[
0.
16
93

,
0.
29
89

])
([0

.5
12
6,
0.
62
68

],[
0.
26
97

,
0.
41
61

],[
0.
17
14

,
0.
30
71

])
V 5

([0
.3
60
3,
0.
46
19

],[
0.
12
48

,
0.
23
98

],[
0.
35
79

,
0.
43
10

])
([0

.3
57
2,

0.
45
85

],[
0.
12
12

,
0.
23
48

],[
0.
36
20

,
0.
43
64

])
IN

W
A
in
te
rv
al

ne
ut
ro
so
ph

ic
w
ei
gh

te
d
av
er
ag
e,

IN
O

W
A
in
te
rv
al

ne
ut
ro
so
ph

ic
or
de
re
d
w
ei
gh

te
d
av
er
ag
e,

IN
F

W
A
in
te
rv
al

ne
ut
ro
so
ph

ic
Fr
an
k
w
ei
gh

te
d
av
er
ag
e,

IN
H

W
A
in
te
rv
al

ne
u-

tr
os
op

hi
c
H
am

ac
he
r
w
ei
gh

te
d
av
er
ag
e,

P
-I

N
W

A
pr
ob

ab
ili
ty

in
te
rv
al
ne
ut
ro
so
ph

ic
w
ei
gh

te
d
av
er
ag
e,

P
-I

N
O

W
A
pr
ob

ab
ili
ty

in
te
rv
al
ne
ut
ro
so
ph

ic
or
de
re
d
w
ei
gh

te
d
av
er
ag
e,

IP
-I

N
O

W
A

im
m
ed
ia
te
pr
ob

ab
ili
ty

in
te
rv
al
ne
ut
ro
so
ph

ic
or
de
re
d
w
ei
gh

te
d
av
er
ag
e

123



648 H. Garg, Nancy

Ta
bl
e
9

N
eu
tr
os
op

hi
c
ag
gr
eg
at
ed

re
su
lts

by
ge
om

et
ri
c
op

er
at
or
s
(β

=
0.
40

)

IN
W
G
[2
1]

IN
O
W
G
[2
1]

IN
FW

G
[2
3]

V 1
([0

.2
81
4,
0.
44
99

],[
0.
17
25

,
0.
27
29

],[
0.
36
62

,
0.
49
93

])
([0

.2
49
1,
0.
42
28

],[
0.
20
38

,
0.
30
43

],[
0.
40
24

,
0.
55
41

])
([0

.2
83
4,
0.
45
18

],[
0.
17
19

,
0.
27
22

],[
0.
36
39

,
0.
49
70

])
V 2

([0
.6
14
3,
0.
74
34

],[
0.
23
98

,
0.
35
01

],[
0.
24
67

,
0.
39
84

])
([0

.5
97
0,

0.
72
86

],[
0.
23
98

,
0.
35
87

],[
0.
23
14

,
0.
36
72

])
([0

.6
14
9,
0.
74
37

],[
0.
23
74

,
0.
34
80

],[
0.
24
63

,
0.
39
67

])
V 3

([0
.4
82
0,

0.
58
85

],[
0.
20
20

,
0.
33
04

],[
0.
30
75

,
0.
40
80

])
([0

.5
03
0,

0.
60
63

],[
0.
24
83

,
0.
36
67

],[
0.
32
26

,
0.
42
31

])
([0

.4
83
3,
0.
58
93

],[
0.
20
02

,
0.
32
93

],[
0.
30
70

,
0.
40
74

])
V 4

([0
.4
44
7,
0.
58
82

],[
0.
26
11

,
0.
38
76

],[
0.
18
52

,
0.
30
77

])
([0

.3
97
3,
0.
52
42

],[
0.
36
21

,
0.
48
51

],[
0.
23
98

,
0.
36
13

])
([0

.4
49
2,

0.
59
14

],[
0.
25
62

,
0.
38
22

],[
0.
18
39

,
0.
30
60

])
V 5

([0
.3
46
7,
0.
44
97

],[
0.
14
14

,
0.
25
32

],[
0.
39
85

,
0.
48
04

])
([0

.2
96
1,
0.
39
95

],[
0.
15
15

,
0.
28
55

],[
0.
43
95

,
0.
48
19

])
([0

.3
48
2,

0.
45
13

],[
0.
14
10

,
0.
25
25

],[
0.
39
59

,
0.
47
78

])
IN

H
W
G
[2
6]

P-
IN

W
G

γ
=

2
γ

=
3

V 1
([0

.2
84
9,
0.
45
36

],[
0.
17
08

,
0.
27
13

],0
.3
61
4,
0.
49
47

])
([0

.2
86
5,
0.
45
54

],[
0.
16
95

,
0.
27
02

],[
0.
35
89

,
0.
49
25

])
([0

.3
00
5,
0.
46
14

],[
0.
16
67

,
0.
26
70

],[
0.
37
68

,
0.
51
50

])
V 2

([0
.6
15
7,
0.
74
43

],[
0.
23
39

,
0.
34
53

],0
.2
45
7,
0.
39
48

])
([0

.6
16
5,
0.
74
50

],[
0.
23
00

,
0.
34
25

],[
0.
24
50

,
0.
39
27

])
([0

.6
18
1,
0.
75
23

],[
0.
20
75

,
0.
31
79

],[
0.
25
57

,
0.
41
63

])
V 3

([0
.4
84
6,
0.
59
02

],[
0.
19
75

,
0.
32
78

],0
.3
06
2,

0.
40
67

])
([0

.4
85
9,
0.
59
11

],[
0.
19
44

,
0.
32
62

],[
0.
30
53

,
0.
40
60

])
([0

.4
94
5,
0.
60
30

],[
0.
21
67

,
0.
33
39

],[
0.
31
11

,
0.
41
17

])
V 4

([0
.4
53
8,
0.
59
54

],[
0.
24
91

,
0.
37
54

],0
.1
81
8,
0.
30
37

])
([0

.4
58
4,
0.
59
97

],[
0.
24
14

,
0.
36
83

],[
0.
17
96

,
0.
30
13

])
([0

.4
79
6,
0.
60
87

],[
0.
28
49

,
0.
41
69

],[
0.
17
94

,
0.
30
86

])
V 5

([0
.3
49
5,
0.
45
28

],[
0.
14
04

,
0.
25
14

],0
.3
92
5,
0.
47
49

])
([0

.3
50
8,
0.
45
42

],[
0.
13
95

,
0.
25
02

],[
0.
38
88

,
0.
47
20

])
([0

.3
58
2,

0.
46
14

],[
0.
12
92

,
0.
24
11

],[
0.
37
75

,
0.
45
86

])
P-
IN

O
W
G

IP
-I
N
O
W
G

V 1
([0

.2
86
3,
0.
45
01

],[
0.
17
94

,
0.
27
99

],[
0.
39
12

,
0.
53
69

])
([0

.2
88
4,
0.
45
29

],[
0.
18
09

,
0.
28
14

],[
0.
39
75

,
0.
54
76

])
V 2

([0
.6
11
1,
0.
74
63

],[
0.
20
75

,
0.
32
15

],[
0.
24
97

,
0.
40
44

])
([0

.6
07
2,

0.
74
83

],[
0.
21
21

,
0.
32
33

],[
0.
25
17

,
0.
40
84

])
V 3

([0
.5
03
0,

0.
61
02

],[
0.
23
52

,
0.
34
86

],[
0.
31
72

,
0.
41
78

])
([0

.5
13
7,
0.
61
22

],[
0.
24
82

,
0.
35
73

],[
0.
33
64

,
0.
43
69

])
V 4

([0
.4
58
5,
0.
58
13

],[
0.
32
57

,
0.
45
60

],[
0.
20
18

,
0.
33
05

])
([0

.4
64
0,

0.
58
28

],[
0.
34
15

,
0.
47
76

],[
0.
20
17

,
0.
33
78

])
V 5

([0
.3
36
3,
0.
44
01

],[
0.
13
33

,
0.
25
44

],[
0.
39
48

,
0.
45
92

])
([0

.3
36
0,

0.
43
94

],[
0.
12
90

,
0.
24
87

],[
0.
39
51

,
0.
46
22

])
IN

W
G
in
te
rv
al
ne
ut
ro
so
ph

ic
w
ei
gh

te
d
ge
om

et
ri
c,

IN
O

W
G
in
te
rv
al
ne
ut
ro
so
ph

ic
or
de
re
d
w
ei
gh

te
d
ge
om

et
ri
c,

IN
F

W
G
in
te
rv
al
ne
ut
ro
so
ph

ic
Fr
an
k
w
ei
gh

te
d
ge
om

et
ri
c,

IN
H

W
G
in
te
rv
al

ne
ut
ro
so
ph

ic
H
am

ac
he
r
w
ei
gh

te
d
ge
om

et
ri
c,

P
-I

N
W

G
pr
ob

ab
ili
ty

in
te
rv
al
ne
ut
ro
so
ph

ic
w
ei
gh

te
d
ge
om

et
ri
c,

P
-I

N
O

W
G
pr
ob

ab
ili
ty

in
te
rv
al
ne
ut
ro
so
ph

ic
or
de
re
d
w
ei
gh

te
d
ge
om

et
ri
c,

IP
-I

N
O

W
G
im

m
ed
ia
te
pr
ob

ab
ili
ty

in
te
rv
al
ne
ut
ro
so
ph

ic
or
de
re
d
w
ei
gh

te
d
ge
om

et
ri
c

123



Multiple attribute decision making based on immediate… 649

Table 10 Ordering of the alternative

Existing operators Ordering Proposed operators Ordering

INWA [21] V2 	 V4 	 V3 	 V5 	 V1 P-INWA V2 	 V4 	 V3 	 V5 	 V1
INOWA [21] V2 	 V3 	 V4 	 V5 	 V1 P-INOWA V2 	 V3 	 V4 	 V5 	 V1
INWG [21] V2 	 V4 	 V3 	 V5 	 V1 IP-INOWA V2 	 V4 	 V3 	 V5 	 V1
INOWG [21] V2 	 V3 	 V4 	 V5 	 V1 P-INWG V2 	 V4 	 V3 	 V5 	 V1
INFWA [23] V2 	 V4 	 V3 	 V5 	 V1 P-INOWG V2 	 V3 	 V4 	 V5 	 V1
INFWG [23] V2 	 V4 	 V3 	 V5 	 V1 IP-INOWG V2 	 V3 	 V4 	 V5 	 V1
INHWA [26] (γ = 2) V2 	 V4 	 V3 	 V5 	 V1
INHWA [26] (γ = 3) V2 	 V4 	 V3 	 V5 	 V1
INHWG [26] (γ = 2) V2 	 V4 	 V3 	 V5 	 V1
INHWG [26] (γ = 3) V2 	 V4 	 V3 	 V5 	 V1

have seen from this table that for a fix β, say 0.4, the overall value of each choice
is to increase with the increase of λ and δ simultaneously. On the other hand, if
we fix λ and β say to 1 and 0.4 respectively, then by varying the value of δ from 1
to 2 and further to 3, we conclude that relative value of each alternative increases.
For instance for alternative V1, its relative value is increases from −0.2207 to
−0.2017 and further to −0.1840. Thus, different choices of the parameters will
give the decision-maker more opportunities regarding the selection process and
hence gives more valuable and reliable results during uncertainty.

6 Conclusion

The key contribution of the work can be summarized below.

(1) The examined study employs the three independent degrees namely member-
ship degree, non-membership degree and degree of indeterminacy to check the
vagueness in the data.

(2) To aggregate the different collection of SVNNs and INNs, we proposed some
series of probabilistic and immediate probabilistic averaging and geometric oper-
ators and investigated their properties. The advantage of such operators is that
they give the total perspective of indeterminate decision issues by thinking about
the probabilistic data and the attitudinal character of the decision-makers’ choice.
Also, from these stated operators, it can be concluded that by assigning the spe-
cific value to the factor β, several existing operators [18,20,21,23,26] under the
SVNS and INS can be deduced.

(3) In the stated operators, the importance of each number has complied with the
probability and the attribute weights. The advantage of the developed operators is
that it simultaneously combines the behavior of the decision-makers, objectively
(in terms of probability) and subjectively (in terms of weights vector), into the
one process.
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Table 11 Ranking of alternatives for different values of parameters

(λ, δ) β Score values of the alternatives Ranking

V1 V2 V3 V4 V5
(1,1) 0 −0.2207 0.2417 0.0373 0.0996 − 0.0210 V2 	 V4 	 V3 	 V5 	 V1

0.4 −0.2655 0.2256 0.0261 0.0361 − 0.0860 V2 	 V4 	 V3 	 V5 	 V1
0.6 −0.2879 0.2176 0.0205 0.0044 − 0.1185 V2 	 V3 	 V4 	 V5 	 V1
1 −0.3328 0.2015 0.0094 − 0.0591 − 0.1834 V2 	 V3 	 V4 	 V5 	 V1

(2,2) 0 −0.2017 0.2464 0.0450 0.1150 − 0.0098 V2 	 V4 	 V3 	 V5 	 V1
0.4 −0.2453 0.2313 0.0339 0.0543 − 0.0731 V2 	 V4 	 V3 	 V5 	 V1
0.6 −0.2671 0.2237 0.0284 0.0239 − 0.1048 V2 	 V3 	 V4 	 V5 	 V1
1 −0.3107 0.2086 0.0174 − 0.0368 − 0.1681 V2 	 V3 	 V4 	 V5 	 V1

(3,3) 0 −0.1840 0.2512 0.0533 0.1301 0.0016 V2 	 V4 	 V3 	 V5 	 V1
0.4 −0.2255 0.2371 0.0423 0.0728 − 0.0598 V2 	 V4 	 V3 	 V5 	 V1
0.6 −0.2462 0.2301 0.0368 0.0441 − 0.0905 V2 	 V4 	 V3 	 V5 	 V1
1 −0.2877 0.2160 0.0258 − 0.0132 − 0.1520 V2 	 V3 	 V4 	 V5 	 V1

(1,2) 0 −0.8641 − 0.3062 − 0.5765 − 0.4951 − 0.5756 V2 	 V4 	 V5 	 V3 	 V1
0.4 −0.6516 − 0.1031 − 0.3421 − 0.3207 − 0.4187 V2 	 V4 	 V3 	 V5 	 V1
0.6 −0.5453 − 0.0016 − 0.2250 − 0.2335 − 0.3403 V2 	 V3 	 V4 	 V5 	 V1
1 −0.3328 0.2015 0.0094 − 0.0591 − 0.1834 V2 	 V3 	 V4 	 V5 	 V1

(1,3) 0 −1.2365 − 0.7053 − 0.9765 − 0.8992 − 0.9059 V2 	 V4 	 V5 	 V3 	 V1
0.4 −0.8750 − 0.3426 − 0.5821 − 0.5632 − 0.6169 V2 	 V4 	 V3 	 V5 	 V1
0.6 −0.6943 − 0.1612 − 0.3849 − 0.3951 − 0.4724 V2 	 V3 	 V4 	 V5 	 V1
1 −0.3328 0.2015 0.0094 − 0.0591 − 0.1834 V2 	 V3 	 V4 	 V5 	 V1

(2,3) 0 −0.5607 − 0.0447 − 0.2878 − 0.1995 − 0.3169 V2 	 V4 	 V3 	 V5 	 V1
0.4 −0.4607 0.0566 − 0.1657 − 0.1344 − 0.2574 V2 	 V4 	 V3 	 V5 	 V1
0.6 −0.4107 0.1073 − 0.1047 − 0.1019 − 0.2276 V2 	 V4 	 V3 	 V5 	 V1
1 −0.3107 0.2086 0.0174 − 0.0368 − 0.1681 V2 	 V3 	 V4 	 V5 	 V1

(4) The proposed aggregation operators have been extended to its more generalized
form by adding the parameters λ, δ and β into the analysis. By assigning the spe-
cific values to these parameters, we get a wide range of the generalized operators
for the SVNS information.

(5) Two newMADMalgorithms, under SVNS and INS, based on the stated operators
are explained, which is more generalized and flexible with the parameter λ, δ and
β to the decision-maker. The significance of these parameters is shown in detail
(Table 11).Also, the presentedmethod is based on the parameterswhichwillmake
a decision maker flexible to choose their alternatives based on their preferences
or goals.

(6) To demonstrate the performance of the stated algorithms, a numerical example is
given and compare their results with the existing studies [18,20,21,23,26]. It is
concluded from this study that the proposed work gives more reasonable ways to
handle the fuzzy information to solve the practical problems.
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In the future, we shall lengthen the application of the proposed measures to the diverse
fuzzy environment as well as different fields of application such as supply chain
management, emerging decision problems, brain hemorrhage, risk evaluation, etc [43–
47].
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