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Abstract
In this study, the singular boundarymethod is applied to solve time-dependent pseudo-
parabolic equations in two space dimensions with initial and Dirichlet-type boundary
conditions. A splitting procedure is used to split the solution of the inhomogeneous
governing equation into a homogeneous solution and a particular solution. This work
presents the numerical operation for calculating the particular solution and homoge-
neous solution. Several numerical examples are provided to show the accuracy and
efficiency of the method. Furthermore, the analysis of stability and convergence is
presented.
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1 Introduction

We consider third order two-dimensional equation on the domain � as follows:
∂u

∂t
− α�u − η

∂

∂t
(�u) = f (x, t), in � × (0, T ], (1)

u(x, 0) = g(x), in �, (2)

u(x, t) = h(x, t), on ∂�, (3)

where � is the two-dimensional Laplacian, � ⊆ R
2 and ∂� is the boundary of �.

Also, functions f and g are known continuous functions and α, η and T > 0 are
specified constants. Moreover, the function h(x, t) is a known smooth function. When
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η = 0, as special case of Eq. (1), the equation is the 2D time-dependent diffusion
equation.

These equations belong to family of pseudo-parabolic or Sobolev type equations,
that emerge in engineering fields like heat conduction including a thermodynamic
temperature and a conductive temperature, flows of fluids via fissured rock and quasi-
stationary operations in semi-conductors [1–3].

Several finite element and finite volume approaches have been made to handle
for 1D and 2D problems [3–7]. Other numerical techniques such as family of finite
differences and spectral and methods for this kind of equations can be seen in [8,9].
Comparing with the finite element method (FEM), the finite volume method (FVM)
and the boundary element method (BEM), meshfree methods are used to stablish
system of algebraic equations for whole problem domain with no need to mesh of
the domain discretization in order to use a set of points scattered inside the domain
of the problem such as sets of points on the boundaries of the domain to state the
domain of the problem and its boundaries. Moreover, some meshless methods are
based on of collocation techniques like the meshless collocation method by using
radial basis functions (RBFs) [10–13] and some other kinds of meshfree methods is
based on weak forms and hybrid of collocation approach and weak forms, like the
element free Galerkin (EFG) method [14,15] and the meshless local Petrov–Galerkin
(MLPG)method [16–18].Another approach has been applied for numerical solution of
differential equations is spectral collocation method like spectral meshless radial point
interpolation (SMRPI)method [19].Also, there are somenovelmeshlessmethods [20–
22]. Against to the domain-type meshless methods as methods based on collocation
approaches, there are several boundary-type methods like the method of fundamental
solutions (MFS), boundary collocation method (BCM), regularized meshless method
(RMM) and boundary knot method (BKM) [23–29].

Recently, Chen et al. proposed the singular boundary method (SBM) as a meshfree
boundary collocation method [30–36].

The SBM directly uses the fundamental solutions as basis functions and it omits the
artificial boundary problem in the MFS. The main concept in the SBM is to present
the notion of origin intensity factors (OIFs) to remove the singularities of fundamental
solutions on the adaptation of the source points and collocation points upon phys-
ical boundary of domain. The SBM is easy in mathematically speaking, simple for
programming, accurate and free of integration,more enforceable for problems on com-
plicated shapes with high dimension domains, less time-consuming than the boundary
element method (BEM) and at the same time keeps away the fictitious boundary in the
MFS and becomes numerically more stable than the MFS because condition number
of its interpolation matrix is better [37–40]. As well as the MFS and BEM, the SBM
acts when the fundamental solution of the defined problem is attainable [41–46]. The
SBM applies the fundamental solution as the basis function. The important concept of
the SBM is to utilize the OIF to substitute the singular integration in the BEM to gain
accurate numerical consequences, while keeping high numerical stability and also it
has less computation load. Specially, the SBM can achieve to high accurate numerical
results employing very few boundary points and small CPU time.

There are some ways have been extended to calculate the OIFs. The first approach
is named the inverse interpolation technique(IIT), in numerical form, calculates OIFs.
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The second technique is to conclude the analytical formula for evaluating unknown
OIFs. And the third one is empirical approach to determining OIFs. In this paper,
subtracting and adding-back (SAB) technique is a popular approach to calculate the
OIFs that it is more fast and stable than the IIT.

The structure of this article is organized as follows: In Sect. 2, we express briefly
mathematical preliminaries and numerical implementation of the method. In Sect. 3,
wepresent timediscretization and implementation ofmethodonEqs. (1)–(3). Section 4
includes discussion for analysis of stability and convergence of the method. Also
we obtain an error estimate under some conditions. Some numerical examples are
reviewed to show the accuracy of the method,and results are reported in Sect. 5.
Finally, in the last section, a concluding remarks are given.

2 Mathematical preliminaries and numerical implementations

This section deals with the numerical procedure in order to calculating the partic-
ular solution and homogeneous solution. For approximation particular solution and
homogeneous solution we applied MPS method and SBM method, respectively.

2.1 Method of particular solutions (MPS)

An important category of problem-dependent radial basis functions are particular
solutions [47–49]. By applying splitting scheme, the solution of the inhomogeneous
governing equation split into homogeneous solution and particular solution. The key
point is to make the particular solutions to satisfy the governing equation.

Consider the boundary value problem as follows:

Ru(x) = ψ(x), x ∈ �, (4)

Bu(x) = ω(x), x ∈ 	, (5)

whereR is a differential operator,B is a boundary differential operator, ψ and ω are
given functions, � and 	 = ∂� are the inner region and boundary of the domain,
respectively.

Suppose xi Ni=1 are the interpolation points containing Ni interior points in � and
Nb boundary points on 	, so N = Ni + Nb.

If u p be a particular solution of Eq. (4), then it satisfies

Ru p(x) = ψ(x), x ∈ �, (6)

but has not necessary need to satisfy the boundary condition. If u p in Eq. (6) can be
achieved, then the main equation in Eqs. (4) and (5) can be turned into the following
homogeneous equation via the variable substitution uh = u − u p, namely

Ruh(x) = 0, x ∈ �, (7)

Buh(x) = ω(x) − Bu p(x), x ∈ 	. (8)
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The homogeneous equation Eqs. (7) and (8) can be solved by using boundary
methods. The above numerical approach for solving partial differential equations is
pretty standard provided when the particular solution and fundamental solution are
both attainable. The final solution of Eqs. (4) and (5)can be attained by summation of
particular solution and homogeneous solution as follows:

u = u p + uh .

Themethod of particular solution (MPS) is used for the discretization of the Eqs. (4)
and (5). By MPS, for approximating the variable ψ by a linear superposition of the
radial basis functions (RBFs), we consider the solution to Eqs. (4) and (5) can be
approximated by a linear superposition of the corresponding particular solutions of
the given radial basis function like φ, such as

ψ(x) =
N∑

j = 1

α jφ(||x − x j ||), (9)

where ||.|| is the Euclidean norm,α j are the undetermined coefficients, an approximate
particular solution u p to Eq. (6) as follows

u p(x) =
N∑

j = 1

α j�(||x − x j ||), (10)

where
R� = φ. (11)

2.2 Particular solution for modified Helmholtz equation

In this work, we utilize Polyharmonic splines of higher order or generalized thin plate
spline (GTPS) as radial basis functions, described as:

φ(r) = rm ln(r), m = 2, 4, 6, . . . in R
2. (12)

For modified Helmholtz operator as: R = �−μ2 and considering Eqs. (11) and (12)
we obtain:

(� − μ2)�(r) = φ(r), (13)

where � states the Laplace operator. Finally [47]–[49], we get

�(r) = − 1

μ2

m/2∑

i=1

(
�

μ2

)i

.rm ln(r) − (m)!!2
μm+2 K0(μr), (14)

where r is the Euclidean norm between the point x and the origin. Function K0 is the
Bessel function of the second kind of order zero.
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For TPS φ(r) = r2 ln(r) in R
2, means m = 2 in Eq. (14), the corresponding

particular solution is:

�(r) =

⎧
⎪⎪⎨

⎪⎪⎩

−r2 ln(r)

μ2 − 4

μ4 (1 + ln(r) + K0(μr)) , r �= 0,

4

μ4

(
−1 + γ + ln

(μ

2

))
, r = 0.

(15)

And for polyharmonic splines of order 2, φ(r) = r4 ln(r) in R
2, the corresponding

particular solution is:

�(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−r4 ln(r)

μ2 − 8r2 (2 ln(r) + 1)

μ4 − (96 + 64 ln(r) + 64K0(μr))

μ6 , r �= 0,

1

μ6

(
−96 + 64γ + 64 ln

(μ

2

))
, r = 0.

(16)
In (15) and (16) constant γ , is the Euler constant equal to

γ = 0.57721566490153286 . . .

Remark 2.1 For calculating Laplace of u p by Eqs. (10) and (13), it can result in

�u p(x) =
N∑

j = 1

α j��(r j ), (17)

and
��(r j ) = μ2�(r j ) + φ(r j ), (18)

finally, by merging two above equations we get:

�u p(x) =
N∑

j = 1

α j

(
μ2�(r j ) + φ(r j )

)
. (19)

2.3 Singular boundarymethod (SBM)

The SBM belongs to the classification of boundary-type meshless methods based on
the singular fundamental solution that uses as the basis function of its approximation
expansion. In contrast with theMFS, the source points of the SBMare located upon the
physical boundary that are coincided with collocation points while in MFS the source
points are located over a fictitious boundary. The main idea in the SBM is to present
the notion of origin intensity factors (OIFs) to omit the singularities of fundamental
solutions on the adaptation of the source and collocation points on physical boundary
of domain.
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Consider the homogenous PDE with the following conditions:

⎧
⎪⎨

⎪⎩

Ru = 0, x ∈ � ⊂ R
n,

u = g0(x), x ∈ 	D,

q(x) = ∂u(x)
∂n

= g1(x), x ∈ 	N ,

(20)

that R is a partial differential operator, n is the unit outward normal vector, � states
the computational domain that it is a bounded and connected known domain, 	D and
	N illustrate the Dirichlet boundary (essential) and the Neumann boundary (natural)
conditions, 	D ∪	N = ∂� and 	D ∩	N = ∅, that ∂� represents the whole physical
boundary. Also, functions g0(x) and g1(x) are given functions.

The SBM approximates the solution u(x) by a linear combination of the fundamen-
tal solution as its basis function. If G(x) be the fundamental solution of the operator
in Eq. (20), for field points xi and source points s j , approximation of u and q are:

u(xi ) =
N∑

j=1

α j G(xi , s j ), x ∈ � − 	D, (21)

u(xi ) =
N∑

j=1,i �= j

α j G(xi , s j ) + αi uii , x ∈ 	D, (22)

q(xi ) =
N∑

j=1,i �= j

α j
∂G(xi , s j )

∂n
+ αi qii , x ∈ 	N , (23)

where N is the number of source points and α j is the jth unknown coefficient. Sin-
gularities of the fundamental solution G will occur when xi = s j . To eliminate this
problem, the SBM recommends the notion of origin intensity factors (OIFs). The
method places all computing points on the same physical boundary. So the source
points s j and the collocation points xi are the same set of boundary nodes. When
xi = s j , we use origin intensity factors replacing the singular terms in formulation.
Where uii and qii in Eqs. (22) and (23) are defined as the OIFs corresponding to the
fundamental solutions and the unit outward normal of fundamental solutions, namely,
the diagonal elements of the SBM interpolation matrix. Therefore, to solve all kinds
of physical and mechanical problems, the main issue is to specify the OIFs. The origin
intensity factor is numerically assigned by the inverse interpolation technique (IIT),
where a sample solution us satisfying the governing equation are imperative, and some
sample points yk are located inside of the physical domain.

By using subtracting and adding-back (SAB) technique presented in [33], SBM
interpolation formula for boundary condition can be regularized accurately.

The origin intensity factor is numerically determined, where a sample solution
us satisfying the governing equation are imperative, and some sample points yk are
located inside the physical domain.

Replacing the sample points yk with the boundary collocation points xi , the SBM
interpolation matrix of the diffusion problem can be written as
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us(xi ) =
N∑

j=1, j �=i

β j G(xi , s j ) + β j uii , (24)

and

∂us(xi )
∂n

=
N∑

j=1, j �=i

β j
∂G(xi , s j )

∂n
+ β j qii , (25)

It is noted that only the origin intensity factors uii and qii are unknown in the above
equation. Thus, the origin intensity factors can be calculated via

uii = 1

βi

⎡

⎣us(xi ) −
N∑

j=1, j �=i

β j G(xi , s j )

⎤

⎦ , (26)

and

qii = − 1

Li

N∑

j=1, j �=i

L j
∂G0(xi , s j )

∂ns
, (27)

where Li is the half length of the curve between source points si−1 and si+1. Also G0
is the fundamental solution of the Laplace equation in 2D.

It is noted that the sample points yk do not coincide with the source points s j , and
the sample points number should not be fewer than the physical boundary source node
number.

Finally, the approximated solution is:

u(x) =
N∑

j=1,i �= j

α j G(x, s j ) + αi uii , (28)

that, Eq. 28 is the solution of equation Eq. 20.
It is emphasized that the source intensity factors only depends on the distribution of

the source points, the fundamental solution of the governing equation and the boundary
conditions. Theoretically speaking, the source intensity factors remain unchanged
with different sample solutions. Therefore, by employing mentioned technique, we
circumvent the singularity of the fundamental solution upon the coincidence of the
source and collocation points.

Remark 2.2 (Improved singular boundary method with moment condition) The SBM
formulation applies well for some problems. For better result for the problem which
solution contains a constant potential, in modified approach, the ISBM method add
a constant term to the SBM expansion formula (28) to insure the uniqueness of the
SBM interpolation matrix. In [34] the ISBM formulation is defined by
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592 M. Aslefallah et al.

u(x) =
N∑

j=1,i �= j

α j G(x, s j ) + αi uii + αN+1 (29)

with the condition

N∑

j=1

α j = 0. (30)

Remark 2.3 For the Laplace equation on 2D domain, as

�u(x) = 0, x ∈ �, (31)

fundamental solution described as following formula:

G(x, s j ) = − 1

2π
ln(r(x, s j )) = − 1

2π
ln(‖x − s j‖2), x ∈ R

2, (32)

where r defined above.

Remark 2.4 For the modified Helmholtz equation on a two-dimensional domain, as

(� − μ2)u(x) = 0, x ∈ �, (33)

fundamental solution can be written by the following formula:

G(x, s j ) = − 1

2π
K0(μr(x, s j )) = − 1

2π
K0(μ‖x − s j‖2), x ∈ R

2, (34)

where r and K0 defined above.

Remark 2.5 Relation between OIFs of Laplace and modified Helmholtz operators:
In [30] shown that the origin intensity factors (OIFs) of the modified Helmholtz equa-
tion are relevant with the OIFs of the Laplace equation as following relations:

uii = uiiL − 1

2π
ln

(μ

2

)
− γ

2π
, (35)

qii = qiiL , (36)

where uiiL and qiiL are OIFs in Dirichlet and Neumann boundary conditions of the
Laplace equation respectively. Also, γ is the Euler constant.

Remark 2.6 (Uniqueness of solution of the modified Helmholtz equation) If � be a
bounded domain and solutions u1 and u2 be solutions of the modified Helmholtz
equation, then, w := u1 − u2 satisfies:

(� − μ2)w(x) = 0, x ∈ �, (37)
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and
w(x) = 0, x ∈ ∂�, (38)

by multiplying above equation by w, integrating over �, and applying Green’s first
identity we obtain:

∫

�

w�wdx − μ2
∫

�

w2dx = 0,
(∫

∂�

w
∂w

∂n
ds −

∫

�

|∇w|2dx
)

− μ2
∫

�

w2dx = 0,
∫

�

|∇w|2dx + μ2
∫

�

w2dx = 0,

which acquires that w = 0 and therefore u1 = u2.

3 Finite differences for time discretization

In this section, by introducing a uniformly partitioned time mesh, the procedure of
time discretization based on the forward finite-difference relation will be used for
approximation of the first order derivative on time variable of the main equation at
two successive time levels k and k + 1 as follows:

Let δt = tk+1 − tk be the constant length of the time steps and tk = kδt . For any
tk ≤ t ≤ tk+1:

∂uk

∂t
∼= uk+1(x) − uk(x)

δt
, (39)

and for other term in Eq. (1) derivative on time variable described as

∂

∂t
(�uk) ∼= �uk+1(x) − �uk(x)

δt
, (40)

that uk = u(x, kδt). Also, we employ θ -method (0 ≤ θ ≤ 1) for the following
approximation as

�u(x, t) ∼= θ�uk+1(x) + (1 − θ)�uk(x). (41)

In special case, if θ = 1
2 , the Crank–Nicolson technique is:

�u(x, t) ∼= 1

2

(
�uk+1(x) + �uk(x)

)
, (42)

where �uk(x) = �u(x, k δt), that:

�u = ∂2u

∂x2
+ ∂2u

∂ y2
. (43)
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By replacing Eqs. (39)–(42) in Eq. (1), the main equation can be described as:

uk+1 − uk

δt
− α

2

(
�uk+1 + �uk

)
− η

δt

(
�uk+1 − �uk

)
= f k+1 + f k

2
+ Rk+1,

(44)
in which |Rk+1| < Cδt , that C is a positive constant.

Then by omitting the small term Rk+1, we obtain the following equation:

(α

2
+ η

δt

)
�uk+1 − 1

δt
uk+1 =

( η

δt
− α

2

)
�uk − 1

δt
uk − f k+1 + f k

2
. (45)

Suppose that λ = α

2
+ η

δt
, μ2 = 1

δtλ
and Fk+1 = − f k+1 + f k

2λ
, therefore, we

get

�uk+1 − μ2uk+1 = 1

λ

( η

δt
− α

2

)
�uk − μ2uk + Fk+1. (46)

If the right hand side of Eq. (46) demonstrated as a function like bk(x), with con-
dition λ > 0, Eq. (46) can be rewritten as modified Helmholtz equation as follows:

(� − μ2)uk+1(x) = bk(x), (47)

where

bk(x) = 1

λ

( η

δt
− α

2

)
�uk − μ2uk + Fk+1. (48)

Notice that for k = 0, from Eq. (48) and initial condition u0 = u(x, 0) = g0 we
obtain:

b0(x) = 1

λ

( η

δt
− α

2

)
�g0 − μ2g0 + F1, (49)

4 Analysis of stability and convergence

For analysis of the stability and convergence of Eq. (46) with considered initial con-
dition u(x, 0) = u0, and boundary condition uk |∂� = u(x, tk), k = 0, 1, . . . , n,
consider the inner product as follows:

(u, v) =
∫

�

u(x)v(x)dx, (50)

and norm in L2

‖u‖2 = [(u, u)]1/2 =
[∫

�

u2(x)dx
]1/2

. (51)

For the finite-difference scheme (46), some results achieved as follows:

Theorem 4.1 Suppose uk ∈ H2
0 (�), k = 0, 1, . . . , n is the solution of Eq. (46), if the

functions ∂uk
∂x and ∂uk

∂ y are monotone function with respect to variable t, and αδt > 2η
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then

‖uk‖2 ≤ ‖u0‖2 + max0≤ j≤n‖F j‖2.

Proof The theorem proven by mathematical induction. For k = 0, it is clear that

�u1 − μ2u1 = 1

λ

( η

δt
− α

2

)
�u0 − μ2u0 + F1. (52)

If Eq. (52) multiply by u1 and integrating on � then

(�u1, u1) − μ2(u1, u1) = 1

λ

( η

δt
− α

2

)
(�u0, u1) − μ2(u0, u1) + (F1, u1). (53)

By employing of Green’s formula as follows:

∫

�

∇u · ∇vdx =
∫

∂�

u
∂v

∂n
ds −

∫

�

u�vdx,

where

∂v

∂n
= ∂v

∂x
n1 + ∂v

∂ y
n2

is the outward normal derivative on the boundary ∂�, we obtain

(∇u1,∇u1)+μ2(u1, u1) = 1

λ

( η

δt
− α

2

)
(∇u0,∇u1)+μ2(u0, u1)−(F1, u1), (54)

and then,

‖u1‖22 + 1

μ2 (∇u1,∇u1) = (u0, u1) + 1

λμ2

( η

δt
− α

2

)
(∇u0,∇u1) − 1

μ2 (F1, u1),

(55)
where, it has been used from this fact that u1 ∈ H2

0 (�). Since αδt > 2η and the

functions ∂uk
∂x and ∂uk

∂ y are monotone functions with respect to variable t, then 2η −
αδt < 0 and (∇u1,∇u0) > 0. Hence, Eq. (55) yields

‖u1‖22 ≤ (u0, u1) + (F1, u1). (56)

Finally, by applying Schwarz inequality, we have

‖u1‖2 ≤ ‖u0‖2 + ‖F1‖2 ≤ ‖u0‖2 + max0≤ j≤n‖F j‖2. (57)

For hypothesis of mathematical induction suppose we have proven following inequal-
ity:

‖ul‖2 ≤ ‖u0‖2 + max0≤ j≤n‖F j‖2, l = 1, 2, . . . , k. (58)
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If Eq. (46) multiply by uk+1 and integrating on � then

(�uk+1, uk+1) − μ2(uk+1, uk+1) = 1

λ

( η

δt
− α

2

)
(�uk, uk+1)

−μ2(uk, uk+1) + (Fk+1, uk+1), (59)

using Green’s formula leads to

(∇uk+1,∇uk+1) + μ2(uk+1, uk+1) = 1

λ

( η

δt
− α

2

)
(∇uk,∇uk+1)

+μ2(uk, uk+1) − (Fk+1, uk+1), (60)

and then,

‖uk+1‖22 + 1

μ2 (∇uk+1,∇uk+1) = (uk, uk+1)

+ 1

λμ2

( η

δt
− α

2

)
(∇uk,∇uk+1) − 1

μ2 (Fk+1, uk+1). (61)

Now by applying theorems’s assumptions and Schwarz inequality, it results in

‖uk+1‖2 ≤ ‖uk‖2 + ‖Fk+1‖2, (62)

and by using (58), we obtain

‖uk+1‖2 ≤ ‖u0‖2 + max0≤ j≤n‖F j‖2, (63)

hence, the proof is complete. �
Suppose thatUk is the solution of Eq. (46) with the initial condition u(x, 0) = U 0,

and the boundary condition Uk |∂� = u(x, tk), then the stability resultant can be
expressed as follows.

Theorem 4.2 The time discrete numerical solution Eq. (46) is H1-convergent with
convergence order O(δt)

Proof Define the error

ε(x) = uk(x) −Uk(x),

it satisfies

�εk+1(x) − μ2εk+1(x) = 1

λ

( η

δt
− α

2

)
�εk(x) − μ2εk(x)

and

εk+1|∂� = 0.
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By usage of Theorem 4.1, we have

‖εk‖2 ≤ ‖ε0‖2, k = 1, 2, . . . , n,

hence, the proof is complete. �
Now we perform an error estimate for the approximated solution of the time-

discretized equation (46). We signify from now by C a general constant that can not
be the same at different occasions.

Theorem 4.3 Under assumptions of Theorem 4.1, suppose {ue(x, tk)}k=n
k=0 be the exact

solution of the problem (1)–(3), and {u(x, tk)}k=n
k=0 be the approximated solution

Eq. (46) with considered initial condition ue(x, 0) = u(x, 0), then error estimates
can be stated as follows

‖ue(x, kδt) − u(x, kδt)‖2 ≤ C(δt). (64)

Proof As regards ue(x, tk) is the exact solution of the main equation (1)–(3) and by
using Crank–Nicolson method to achieve Eq. (46), then

�uk+1
e (x) − μ2uk+1

e (x) = 1

λ

( η

δt
− α

2

)
�uke(x) − μ2uke(x) − Fk+1 + C(δt). (65)

Let εk(x) = ue(x, tk) − u(x, tk), by subtracting Eqs. (46) and (65), we acquire

�εk+1(x) − μ2εk+1(x) = 1

λ

( η

δt
− α

2

)
�εk(x) − μ2εk(x) − Fk+1 + C(δt), (66)

ε0(x) = 0, ε0(x)
∣∣∣
∂�

= 0. (67)

Therefore, from Theorem 4.1, we deduce

‖εk(x)‖2 ≤ ‖ε0(x)‖2 + C(δt) = C(δt), (68)

then
‖ue(x, tk) − u(x, tk)‖2 ≤ C(δt), (69)

hence, the proof is complete. �

5 Numerical experiments

In this section we present the numerical examples acquired by employing the Singular
boundary method for approximated solution of the 2D pseudoparabolic problems.

We solve four examples using the SBM method mentioned in Sect. 2, and report
the numerical results.
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The accuracy and convergency of the method shown with two types of error mea-
surements, maximum absolute error ε∞ and relative error εR are used as follows:

ε∞(u) = ‖uexact − uapprox‖∞, (70)

or
ε∞(u) = max{|uexact (xi , t) − uapprox (xi , t)|, i = 1, 2, . . . , N },

and

εR(u) =
√√√√

∑N
i=1(uexact (xi , t) − uapprox (xi , t))2∑N

i=1(uexact (xi , t))
2

, (71)

where uexact (xi , t) and uapprox (xi , t) denote exact and numerical approximated solu-
tions, respectively.

In the following examples we employ Polyharmonic splines of order 2 described
as: φ(r) = r4ln(r), as radial basis function.

Example 1 On a finite square�1 = [0, 1]2, consider Eqs. (1)–(3) with initial condition
u(x, 0) = cos x + sin y, x ∈ [0, 1] × [0, 1] (72)

and boundary conditions

u(x, 0, t) = e2t cos x, u(x, 1, t) = e2t (cos x + sin(1)),
u(0, y, t) = e2t (1 + sin y), u(1, y, t) = e2t (cos(1) + sin y),

(73)

where the analytical solution is: u(x, t) = e2t (cos x + sin y), and f (x, t) = (2+α +
2η)e2t (cos x + sin y).

Here, the presented approach is applied for numerical solution of the main problem
with α = 1 and η = 0.00025. Two kinds of errors are reported in Table 1 at different
times until the desired time t = 1. Furthermore, it is clear from Table 1 that εR(u) of
SBM method has no growth whenever the time is increasing, in the other words, this
fact shows that the method is stable. The numerical approximated solution obtained by
the SBM and the maximum absolute error of this computed solution with δt = 0.001
and N = 441 at time T = 1 are shown in Fig. 1 which discloses the validity and
accuracy of this method. Figure 2 shows the comparison between SBM and SMRPI
methods for behaviour of ε∞(u) (left) and behaviour of εR(u) (right) with δt = 0.001
and N = 441 at time t ∈ [0, 1].
Example 2 In the next case, consider Eqs. (1)–(3) on the circular physical domain �2,
which is described by

�2 =
{
x = (x, y) ∈ R

2 :
√
x2 + y2 ≤ 3

}

with initial condition u(x, 0) = cos x + sin y, x ∈ �2, and boundary conditions,
where the analytical solution is: u(x, t) = e2t (cos x + sin y), and f (x, t) = (2+α +
2η)e2t (cos x + sin y).
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Table 1 The ε∞(u) and εR(u) errors obtained by SBM and compared by SMRPI with N=441 and
δt = 0.001 at time t for Example 1

t ε∞(u) εR(u)

SBM SMRPI [19] SBM SMRPI [19]

0.10 1.1566 × 10−3 3.0755 × 10−3 5.4282 × 10−4 6.2135 × 10−4

0.20 1.1650 × 10−3 3.7662 × 10−3 5.4214 × 10−4 6.2740 × 10−4

0.30 1.0926 × 10−3 4.6011 × 10−3 5.4139 × 10−4 6.2794 × 10−4

0.40 1.0161 × 10−3 4.9199 × 10−3 5.4053 × 10−4 6.2800 × 10−4

0.50 1.0082 × 10−3 5.3642 × 10−3 5.3953 × 10−4 6.2800 × 10−4

0.60 1.0018 × 10−3 5.9839 × 10−3 5.3836 × 10−4 6.2800 × 10−4

0.70 1.5911 × 10−3 6.0240 × 10−3 5.3697 × 10−4 6.2800 × 10−4

0.80 2.6354 × 10−3 7.2507 × 10−3 5.3534 × 10−4 6.2800 × 10−4

0.90 3.9023 × 10−3 8.1276 × 10−3 5.3346 × 10−4 6.2800 × 10−4

1.00 5.4020 × 10−3 8.8658 × 10−3 5.3130 × 10−4 6.2800 × 10−4
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Fig. 1 Approximate solution by SBM (left) and behaviour of ε∞(u) (right) with δt = 0.001 and N = 441
at time T = 1 for Example 1
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Fig. 2 Comparison SBM and SMRPI for behaviour of ε∞(u) (left) and behaviour of εR(u) (right) at
different time t ∈ [0, 1] for with δt = 0.001 and N = 441 for Example 1
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Table 2 The ε∞(u) and εR(u) errors obtained by SBM with N=441 and different δt at time t for
example 2

t δt = 0.01 δt = 0.005
ε∞(u) εR(u) ε∞(u) εR(u)

0.10 1.4890 × 10−3 7.4502 × 10−4 9.4808 × 10−5 1.7249 × 10−5

0.20 1.4845 × 10−3 7.3847 × 10−4 1.4723 × 10−4 2.7356 × 10−5

0.30 1.4803 × 10−3 7.2991 × 10−4 1.5930 × 10−4 3.0956 × 10−5

0.40 1.4761 × 10−3 7.2102 × 10−4 1.4302 × 10−4 2.8605 × 10−5

0.50 1.4719 × 10−3 7.1521 × 10−4 9.7010 × 10−5 2.1041 × 10−5

0.60 1.4616 × 10−3 7.1727 × 10−4 5.9018 × 10−5 1.1487 × 10−5

0.70 1.9180 × 10−3 7.3284 × 10−4 1.0733 × 10−4 1.8600 × 10−5

0.80 2.5066 × 10−3 7.6742 × 10−4 2.3303 × 10−4 4.1052 × 10−5

0.90 3.1820 × 10−3 8.2527 × 10−4 3.8462 × 10−4 6.9831 × 10−5

1.00 3.9428 × 10−3 9.0854 × 10−4 5.6146 × 10−4 1.0373 × 10−4
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Fig. 3 Domain of the problem (left) and numerical solution by SBM (right) with δt = 0.005 and N = 441
for example 2

Here, the presented approach is applied for numerical solution of the problem with
α = 1 and η = 0.00025. Two kinds of errors are reported in Table 2 at different
times until the favorable time T = 1. As it is shown, the numerical results are valid.
Furthermore, it is obvious from Table 2 that εR(u) has no growth whenever the time is
increasing, namely this shows that the method is stable. The uniform point distribution
of the domain � and numerical solution achieved by the SBM with δt = 0.005 and
N = 441 at time T=1 are shown in Fig. 3. Also, Fig. 4 shows the behaviour of ε∞(u)

with δt = 0.01 and N = 441 at time T=1.

Example 3 In this example, the computational domain is the amoeba-like physical
domain, �3, which is described by

�3 =
{
(r cos θ, r sin θ) : r = esin θ sin2(2θ) + ecos θ cos2(2θ)

}
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Fig. 4 Graphs of maximum absolute error as surface plot (left) and contour plot (right) for behaviour of
ε∞(u) with δt = 0.01 and N = 441 at time T = 1 for Example 2

Here, we consider Eqs. (1)–(3) upon �3 with initial condition

u(x, 0) = cos x + sin y, x ∈ �3,

and boundary conditions, where the analytical solution is: u(x, t) = e2t (cos x+sin y),
and f (x, t) = (2 + α + 2η)e2t (cos x + sin y).

Here, the presented approach is applied for numerical solution of the problem with
α = 1 and η = 0.00025. Two kinds of the errors are reported in Table 3 at different
times until the desired time t = 1. Furthermore, it is obvious from Table 3 that
εR(u) has no growth whenever the time is increasing, that means the method is stable.
Also, these errors show that the presented methodology is efficient and accurate for
the evaluation of the problem. The uniform point distribution of the domain � and
numerical solution obtained by the SBM with δt = 0.005 and N = 441 at time T=1
are shown in Fig. 5. Moreover, Fig. 6 shows the behaviour of ε∞(u) with δt = 0.01
and N = 441 at time T=1.

Example 4 As another example, the SBM is employed to solve the problem. To illus-
trate the accuracy of this method, a more complex multiply connected domain is
considered and the collocation points are distributed regularly, in the irregular physi-
cal domain �4, which is described by

�4 =
{
(r cos θ, r sin θ) : r = m2 + 5m + 2 − 2m + 2

m3 cos(mθ)

}

for m = 6. According to Eqs. (1)–(3) on �4with initial condition

u(x, 0) = cos x + sin y, (x, y) ∈ �4, (74)

and boundary conditions, the analytical solution is: u(x, t) = e2t (cos x + sin y), and
f (x, t) = (2 + α + 2η)e2t (cos x + sin y).
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Table 3 The ε∞(u) and εR(u) errors obtained by SBMwith N=441 and different δt at time t for example
3

t δt = 0.01 δt = 0.005
ε∞(u) εR(u) ε∞(u) εR(u)

0.10 1.4446 × 10−3 7.4871 × 10−4 2.0419 × 10−4 6.9974 × 10−6

0.20 1.6613 × 10−3 7.4749 × 10−4 2.6603 × 10−4 1.2422 × 10−5

0.30 2.4795 × 10−3 7.4659 × 10−4 4.0940 × 10−4 1.6603 × 10−5

0.40 3.4438 × 10−3 7.4632 × 10−4 7.2555 × 10−4 1.9946 × 10−5

0.50 4.5464 × 10−3 7.4679 × 10−4 1.1196 × 10−3 2.2965 × 10−5

0.60 6.9230 × 10−3 7.4883 × 10−4 1.7610 × 10−3 2.6281 × 10−5

0.70 9.7664 × 10−3 7.5302 × 10−4 2.5333 × 10−3 3.0539 × 10−5

0.80 1.2989 × 10−2 7.6018 × 10−4 3.4217 × 10−3 3.6265 × 10−5

0.90 1.6581 × 10−2 7.7711 × 10−4 4.4216 × 10−3 4.3786 × 10−5

1.00 2.0532 × 10−2 7.8696 × 10−4 5.5292 × 10−3 5.3232 × 10−5
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Fig. 5 Domain of the problem (left) and numerical solution by SBM (right) with δt = 0.005 and N = 441
for Example 3
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Fig. 6 Graphs of maximum absolute error as surface plot (left) and contour plot (right) for behaviour of
ε∞(u) with δt = 0.01 and N = 441 at time T = 1 for Example 3
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Table 4 The ε∞(u) and εR(u) errors calculated by SBM with N=441 and different δt at time t for
Example 4

t δt = 0.01 δt = 0.005
ε∞(u) εR(u) ε∞(u) εR(u)

0.10 3.1625 × 10−4 7.5448 × 10−5 4.1081 × 10−5 1.6569 × 10−6

0.20 9.1407 × 10−4 7.8911 × 10−5 1.2720 × 10−4 2.9022 × 10−6

0.30 1.8465 × 10−3 8.7706 × 10−5 3.4071 × 10−4 4.6787 × 10−6

0.40 3.2214 × 10−3 1.0387 × 10−4 6.4957 × 10−4 8.0416 × 10−6

0.50 4.9675 × 10−3 1.2865 × 10−4 1.0509 × 10−3 1.3356 × 10−5

0.60 7.0901 × 10−3 1.6244 × 10−4 1.5432 × 10−3 2.0662 × 10−5

0.70 9.5977 × 10−3 2.0523 × 10−4 2.1258 × 10−3 2.9957 × 10−5

0.80 1.2500 × 10−2 2.5694 × 10−4 2.7984 × 10−3 4.1259 × 10−5

0.90 1.5811 × 10−2 3.1755 × 10−4 3.5615 × 10−3 5.4580 × 10−5

1.00 1.1954 × 10−2 3.8710 × 10−4 4.4155 × 10−3 6.9948 × 10−5
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Fig. 7 Domain of the problem (left) and numerical solution by SBM (right) for Example 4 with δt = 0.005
and N = 441

Here, the presented approach is applied for numerical solution of the problem with
α = 1 and η = 0.00025. Two types of the errors are reported in Table 4 at different
times until the desired time t = 1. Furthermore, it is clear from Table 4 that εR(u)

has no growth whenever the time is increasing, this fact shows the stability of the
method.

The uniform point distribution of the domain � and numerical solution obtained
by the SBM with δt = 0.005 and N = 441 at time T=1 are shown in Fig. 7.
Also, Fig. 8 shows the behaviour of ε∞(u) with δt = 0.01 and N = 441 at time
T = 1.
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Fig. 8 Graphs of maximum absolute error as surface plot (left) and contour plot (right) for behaviour of
ε∞(u) for Example 4 with δt = 0.01 and N = 441 at time T = 1

6 Conclusion

In this paper singular boundary method (SBM) has been employed to solve two-
dimensional pseudo-parabolic equations. A time discretizationwas applied to approxi-
mate the time derivatives. Also, to illustrate the accuracy and efficiency of this method,
four numerical examples with different domains have been presented. Through numer-
ical experiments, we find that SBM results are in good agreement with the exact
analytical solutions. The analysis of stability and convergence for this meshless tech-
nique have been considered and it has been proved theoretically that technique is stable
with respect to some conditions and furthermore, it is convergence. As illustrated by
the computational results, the implementation of the proposed method is very easy for
similar problems.
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