
Journal of Applied Mathematics and Computing (2020) 63:523–541
https://doi.org/10.1007/s12190-020-01328-5

ORIG INAL RESEARCH

Blood flow analysis in tapered stenosed arteries with the
influence of heat andmass transfer

Yadong Liu1 ·Wenjun Liu1

Received: 12 January 2020 / Published online: 20 February 2020
© Korean Society for Informatics and Computational Applied Mathematics 2020

Abstract
Anon-Newtonian fluidmodel is used to investigate the 2Dpulsatile blood flow through
a tapered artery with stenosis. The mixed convection effects of heat and mass transfer
are also taken into account. By applying non-dimensionalization and radial coordinate
transformation, we simplify the system in a tube. Under the finite difference scheme,
numerical solutions are calculated for velocity, temperature concentration, resistance,
impedance, wall shear stress and shearing stress at the stenosis throat. Finally, Quan-
titative analysis is carried out.

Keywords Blood flow · Stenosed artery · Non-Newtonian model · Heat and mass
transfer · Finite difference scheme

Mathematics Subject Classification 80A20 · 76A05 · 76M20

1 Introduction

The human cardiovascular system is the internal transport of fluids with multiple
branches of the arteries in which is a complex blood circulates. The work concerning
about bio-fluid dynamical aspects of the humancardiovascular systemhas gainedmuch
attention in recent yearswith respect to the diagnosis and the genesis of atherosclerosis.
Among the various cardiovascular diseases, stenosis is a major one which affects the
flow of blood in the arteries. It is associated with pressure distribution, shear stress at
the wall and resistance to blood flow. Reasonable analysis and simulations may help
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clinic a lot. Thus, the study of blood flow through stenosed arteries is of considerable
significance [11,21].

Several researchers [30,32] examined and analyzed the blood flow through a
stenosed artery and investigated the effect of physical parameters onbloodflow through
an arterial stenosis. The effect of tapering on the physiologically important parameters
such as wall shear stress, flow rate and resistance to flow has been studied by Bloch
[7]. Ku [16], and Kumar [17] discussed the diagnosis and treatment of cardiovascular
diseases.

In all the investigations above, blood was treated as classical Newtonian fluid in
which the constitutive equation is established by

τ = μ
du

dy
,

where τ is the shearing stress, du
dy is the shear rate of the fluid and μ is the viscosity.

However, It has been pointed out that in some diseased conditions, blood
exhibits remarkable non-Newtonian properties since it has been seen through sev-
eral experiments that most of the biological fluids exhibit rheology of non-Newtonian
characteristics [18,26,28]. Therefore, the interest has been non-Newtonian fluid in
stenosed artery in recent years.

During past decades, numerous investigators focused on different types of fluid in
stenosed artery. Ismail et al. [15] and Nadeem et al. [22] studied blood flow through
a tapered artery with a stenosis by Power law fluid model

τ = μ(γ̇ )m−1γ̇ , (1)

where the consistency μ is the characteristics of each polymer and

γ̇ =
√
1

2

∑
i

∑
j
γ̇i j γ̇i j =

√
1

2
Π,

γ̇i j , i, j = 1, 2, 3 are the rate of strain tensor component. Chaturani and Samy [10]
presented Casson fluid for blood flow through a normal artery with a stenosis by
perturbation method:

|τ | 12 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|τ0| 12 + μ

∣∣∣∣∂u∂r
∣∣∣∣
1
2

, |τ | ≥ |τ0| ,
∂u

∂r
= 0, |τ | ≤ |τ0| ,

(2)

The relation (2)2 corresponds to the vanishing of the velocity gradients in regions in
which the shear stress is less than the yield stress. Ali et al. [6] and Zaman et al. [33]
captured the rheology of blood by utilizing Sisko fluid model:

τ =
(

μ∞ + (μ0 − μ∞)
[
1 + Γ 2Π2

]n− 1
2
)
A1, (3)
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whereμ∞ is the infinite shear rate viscosity,μ0 is the zero shear rate viscosity,Γ is the
time constant, n is the power law index, A1 is the first Rivilin-Ericksen tensor given as

A1 = ∇u + (∇u)T and Π =
√

1
2 tr(A

2
1). Ellahi et al. [12] investigated the blood flow

as Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles:

τ = μ

1 + λ1

(
γ̇ + λ∗

2γ̈
)
. (4)

Akbar [2–4] modelled blood with Carreau fluid, Walter’s B fluid and Sutterby fluid
model through a tapered artery with a stenosis, respectively and she also discussed
Williamson fluid with pseudoplastic characteristics [5].

At the same time, the system was been more complex under the background of
medicine and physic. Mekheimer and El Kot [20] considered blood flow as Sisko fluid
and examined the influence of heat and mass transfer; Waqas et al. [31] modeled and
analyzed the generalized Burgers fluid subject to Cattaneo–Christov heat flux model;
Sankar [25] treated blood as Casson fluid and analyzed the effects of magnetic field
through a stenosed artery; Tripathi et al. [29] developed couple stress biofluids with
electro-magneto-hydrodynamic properties; Noreen, Waheed and Hussanan [23] stud-
ied the flow of magneto-hydrodynamic nanofluid through an asymmetric microfluidic
channel under an applied axial electric field by considering the impacts of wall flexi-
bility, Joule heating and upper/lower wall zeta potentials.

In 1992, Luo andKuang [18] proposed a newconstitutive relation of non-Newtonian
fluid which has the property of shear thinning. The constitutive equation is as follows:

τ̄ = τ̄0 + η2 ¯̇γ 1
2 + η1 ¯̇γ, τ̄ ≥ τ̄0

¯̇γ = 0, τ̄ < τ̄0,
(5)

where τ̄0, η1 and η2 are functions of hematocrit, plasma viscosity and other chemical

variable respectively and ¯̇γ =
√

Π̄
2 denotes the shear rate of the fluid, Π̄ is the

second covariant of the system.Moreover, Luo and Kuang [18] made the experimental
verification of the K–L model. The results showed that the experimental data fit quite
well with the K–L model (5), so the model can be used to describe blood flow. It
is quite a different constitutive relationship of non-Newtonian fluid and no one has
treated it as blood flow in a stenosed artery.

Motivated by the researches above, we model blood as the K–L model and inves-
tigate the heat and mass transfer of blood flow. First, we examine the fluid equation
with heat and mass transfer by the constitutive equation of K–Lmodel and choose one
geometry of stenosed artery. Then, we use the basic parameters to nondimensionalize
the system for further study. Moreover, in order to discrete the system conveniently,
we apply the radial coordinate transformation. Finally, we get the numerical solution
of velocity, flow rate, resistance and wall shear stress at the stenosis throat by finite
difference method [9,14,24].

The paper is arranged as follows. Section 2 gives the formulation of the prob-
lem including fluid equations, constitutive equation and geometry of tapered stenosed
artery. Section 3 does the nondimensionalization. Section 4 transfers fluid equations

123



526 Y. Liu, W. Liu

Fig. 1 Geometry of the stenosed
artery

by radial coordinate transformation and gives the relation between axial velocity and
radial velocity. Section 5 shows the numerical approximation iteration by finite dif-
ference method. Section 6 provides the numerical results by graphics.

2 Formulation of the problem

2.1 Geometry of stenosed artery

In our work, the artery is considered as a tube which is thin, elastic, cylindrical and
tapered. It also has overlapping stenosis in the vessel axisymmetricly. To illustrate the
blood artery, we would take the cylindrical polar coordinates system. We denote one
point in the system by (r , θ, z), in which z-axis is taken along the axis of the artery, r
and θ are radial and circumferential directions respectively. According to [8,15], we
introduce the geometry of stenosis as follows

R̄
(
z̄, t̄

) =

⎧⎪⎨
⎪⎩

[
(mz̄ + d0) − τm cos(ψ)

(
z̄ − d̄

)
l̄0

ζ̄

]
ā1(t̄), d̄ ≤ z̄ ≤ d̄ + 3

2
l̄0,

(mz̄ + d0) ā1(t̄), Otherwise.

where ζ̄ = 11 − 94(z̄−d̄)
3l̄0

+ 32(z̄−d̄)
2

l̄20
− 32(z̄−d̄)

3

3l̄30
, R̄

(
z̄, t̄

)
denotes the radius of the

artery; 3l̄0
2 is the length of overlapping stenosis, ψ is the angle of tapering; d̄ is the

location of the stenosis; L̄ represents the finite length of arterial segment; The slope of
the tapered vessel is taken bym = tan(ψ) and the critical height of the stenosis is given
by τm . The time-variant parameter ā1(t̄) can be writen as ā1(t̄) = 1+ kr cos(ω̄t̄ −φ),
where kr denotes some parameter related to amplitude and φ denotes the phase angle.
Specificly, we can see the geometry in Fig. 1.

2.2 Flow equations

The blood flow is concerned as an type of incompressible viscous fluid system in
which we consider the thermal diffusion and mass transfer which can be applied to
illustrate the blood flow with drug.
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The continuity equation

∂ ū

∂ r̄
+ ū

r̄
+ ∂w̄

∂ z̄
= 0, (6)

The momentum equations

ρ

(
∂ ū

∂ t̄
+ ū

∂ ū

∂ r̄
+ w̄

∂ ū

∂ z̄

)
= −∂ p̄

∂ r̄
+

(
1

r̄

∂

∂ r̄
(r̄ τ̄rr ) + ∂

∂ r̄
τ̄r z

)
, (7)

ρ

(
∂w̄

∂ t̄
+ w̄

∂w̄

∂ r̄
+ w̄

∂w̄

∂ z̄

)
= −∂ p̄

∂ z̄
+

(
1

r̄

∂

∂ r̄
(r̄ τ̄r z) + ∂

∂ r̄
τ̄zz

)

+ ρ ḡᾱ
(
T̄ − T̄0

) + ρ ḡᾱ
(
C̄ − C̄0

)
, (8)

The energy equation

ρcp

(
∂ T̄

∂ t̄
+ ū

∂ T̄

∂ r̄
+ w̄

∂ T̄

∂ z̄

)
= τ̄rr

∂ ū

∂ r̄
+ τ̄r z

∂w̄

∂ r̄
+ τ̄r z

∂ ū

∂ z̄
+ τ̄zz

∂w̄

∂ z̄

+ k

(
∂2T̄

∂ r̄2
+ 1

r

∂ T̄

∂ r̄
+ ∂2T̄

∂ z̄2

)
,

(9)

and The mass concentration equation

(
∂C̄

∂ t̄
+ ū

∂C̄

∂ r̄
+ w̄

∂C̄

∂ z̄

)
= D

(
∂2C̄

∂ r̄2
+ 1

r

∂C̄

∂ r̄
+ ∂2C̄

∂ z̄2

)

+ DKT

Tm

(
∂2T̄

∂ r̄2
+ 1

r

∂ T̄

∂ r̄
+ ∂2T̄

∂ z̄2

)
,

(10)

where ρ denotes the density of fluid, p̄ is the fluid pressure. To make a distinction, we
define ū and w̄ as the velocity components in radial and axial directions respectively.
T̄ refers to the temperature and C̄ is defined as the concentration of mass. Moreover,
we denote the thermal conductivity by k, the specific heat at constant pressure by cp,
also we define the medium’s temperature as Tm , the thermal-diffusion ratio and the
coefficients of mass diffusivity as D and KT respectively.

From (5), it can be deduced that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ̄zz = 2η̄( ¯̇γ )

(
∂w̄

∂ z̄

)

τ̄rr = 2η̄( ¯̇γ )

(
∂ ū

∂ r̄

)

τ̄r z = η̄( ¯̇γ )

(
∂w̄

∂ r̄
+ ∂ ū

∂ z̄

)

where η̄( ¯̇γ ) = τ̄
¯̇γ represents the apparent viscosity.
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It is known that blood flow is pulsatile. As [27] stated, the pressure gradient with
dimension can be writen as [27]

−∂ p̄

∂ z̄
= Ā0 + Ā1 cos ω̄t̄, t > 0.

where Ā0 denotes the amplitude in the case of the steady state while Ā1 represent the
amplitude in the case of the pulsatile blood flow. ω̄ is the angular frequency defined
by ω̄ = 2π f̄ p where f̄ p is the frequency of pulse.

2.3 Initial and Boundary conditions

The initial value for velocity is given by [27],

w̄(r , z, 0) =
(
Ā0 + Ā1

4η1

) [
d20 −

(
r̄

d0

)2
]

,

ū(r , z, 0) = 0, T̄ (r , z, 0) = T̄0, C̄(r , z, 0) = C̄0.

The boundary conditions are

ū(r̄ , z̄, t̄) = 0,
∂w̄

∂ r̄
(r̄ , z̄, t̄) = 0,

∂ T̄

∂ r̄
(r̄ , z̄, t̄) = 0,

∂C̄

∂ r̄
(r̄ , z̄, t̄) = 0, r̄ = 0,

ū(r̄ , z̄, t̄) = ∂ R̄

∂ t̄
, w̄(r̄ , z̄, t̄) = 0, T̄ (r̄ , z̄, t̄) = 0, C̄(r̄ , z̄, t̄) = 0, r̄ = R̄(z̄, t̄),

3 Non-dimensionalization

Let us introduce non-dimensional quantities as follows:

r = r̄

d0
, z = z̄

d0
, R = R̄

d0
, u = ū

u0
, w = w̄

u0
, t = ω̄t̄, p = d0

u0η1
p̄,

τ0 = d0
u0η1

τ̄0, τrr = d0
u0η1

τ̄rr , τzz = d0
u0η1

τ̄zz, τr z = d0
u0η1

τ̄r z,

α2 = ρd20 ω̄

η1
, T = T̄ − T̄0

T̄0
, C = C̄ − C̄0

C̄0
, Re = ρd0u0

η1
, Ec = u20

cpT̄0
,

Pr = cpη1
k

, Sr = ρDKT T̄0
η1TmC̄0

, Sc = η1

Dρ
, Gr = gᾱd30 T̄0

η21
, Gc = gᾱd30 C̄0

η21
,

A0 = d20
u0η1

Ā0, A1 = d20
u0η1

Ā1,

(11)

123



Blood flow analysis in tapered stenosed arteries with… 529

where d0 is the fixed radius of the normal artery positioned in the non-stenotic region,
u0 denotes the average velocity of flow in the uniform artery, T̄0 and C̄0 are average
temperature of the fluid and concentration of mass respectively. Pr is the Prandtl
number, Sr is Soret number, Ec is Eckert number, Sc is Schmidt number, Gr is Grashof
number and Gc is solutal Grashof number.

As non-dimensional quantities are shown in Eq. (11), the dimensionless geometry
of stenosed artery is

R (z, t) =

⎧⎪⎨
⎪⎩

[
(mz + d0) − τm cos(ψ) (z − d)

l0
ζ

]
a1(t), d ≤ z ≤ d + 3

2
l0,

(mz + d0) a1(t), Otherwise.

where ζ = 11 − 94(z−d)
3l0

+ 32(z−d)2

l20
− 32(z−d)3

3l30
and a1(t) = 1 + kr cos(t − φ).

Similarly, making use of (11) along with Eq. (6)–(10), one obtains that

∂u
∂r + u

r + ∂w
∂z = 0, (12)

α2 ∂u
∂t + Re

(
u ∂u

∂r + w ∂u
∂z

)
= − ∂ p

∂r +
[

∂
∂r (rτrr ) + ∂

∂z (τr z)
]
, (13)

α2 ∂w
∂t + Re

(
u ∂w

∂r + w ∂w
∂z

)
= − ∂ p

∂z +
[

∂
∂r (rτr z) + ∂

∂z (τzz)
]

+GrT + GcC, (14)

α2 ∂T
∂t + Re

(
u ∂T

∂r + w ∂T
∂z

)

= Ec

(
τrr

∂u
∂r + τr z

∂w
∂r + τr z

∂u
∂z + τzz

∂w
∂z

)

+ 1
Pr

(
∂2T
∂r2

+ 1
r

∂T
∂r + ∂2T

∂z2

)
, (15)

α2 ∂C
∂t + Re

(
u ∂C

∂r + w ∂C
∂z

)
= 1

Sc

(
∂2C
∂r2

+ 1
r

∂C
∂r + ∂2C

∂z2

)

+Sr
(

∂2T
∂r2

+ 1
r

∂T
∂r + ∂2T

∂z2

)
, (16)

in which the dimensionless stress components are

τzz = 2η(γ̇ )

(
∂w

∂z

)
,

τrr = 2η(γ̇ )

(
∂u

∂r

)
,

τr z = η(γ̇ )

(
∂w

∂r
+ ∂u

∂z

)
,

η(γ̇ ) = τ0 + lγ̇
1
2 + γ̇

γ̇
, l = η2

η1

(
d0
u0

) 1
2

,

γ̇ 2 = 2

[(
∂u

∂r

)2

+
(u
r

)2 +
(

∂w

∂z

)2
]

+
(

∂u

∂z
+ ∂w

∂r

)2

.
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Moreover, the dimensionless pressure gradient − ∂ p
∂z in Eq. (14) is as follows:

−∂ p

∂z
= A0 + A1 cosωt, t > 0.

Correspondingly, the initial conditions are

w(r , z, 0) =
(
A0 + A1

4

) [
1 −

(
r

d0

)2
]

,

u(r , z, 0) = 0, T (r , z, 0) = 0, C(r , z, 0) = 0.

(17)

The boundary conditions are

u(r , z, t) = 0,
∂w

∂r
(r , z, t) = 0,

∂T

∂r
(r , z, t) = 0,

∂C

∂r
(r , z, t) = 0, r = 0,

u(r , z, t) = ∂R

∂t
, w(r , z, t) = 0, T (r , z, t) = 0, C(r , z, t) = 0, r = R(z, t).

(18)

4 Radial coordinate transformation

As the vessel wall varies in time, we introduce the radial coordinate transformation
ξ = r

R(z,t) , which was given by [6,8,19], to fix the vessel. Under the transformation,
Eq. (12), (14)–(16) take the form as follows:

1

R

∂u

∂ξ
+ u

ξ R
+ ∂w

∂z
− ξ

R

∂R

∂z

∂w

∂ξ
= 0, (19)

∂w

∂t
= ξ

R

∂R

∂t

∂w

∂ξ
+ Re

α2

(
− u

R

∂w

∂ξ
+ ξ

R

∂R

∂z
w

∂w

∂ξ
− w

∂w

∂ξ

)

− 1

α2

∂ p

∂z
+ 1

α2

(
1

ξ R
τξ z + 1

R

∂τξ z

∂ξ
− ∂τzz

∂z
+ ξ

R

∂R

∂z

∂τzz

∂z

)

+GrT + GcC, (20)
∂T

∂t
= ξ

R

∂R

∂t

∂T

∂ξ
+ Re

α2

(
− u

R

∂T

∂ξ
+ ξ

R

∂R

∂z
w

∂T

∂ξ
− w

∂T

∂ξ

)

+ Ec

α2

[
τξξ

R

∂u

∂ξ
+ τξ z

R

∂w

∂ξ
+ τξ z

(
∂u

∂z
− ξ

R

∂R

∂z

∂u

∂ξ

)

+ τzz

(
∂w

∂z
− ξ

R

∂R

∂z

∂w

∂ξ

)]

+ 1

α2Pr

[
1

R2

∂2T

∂ξ2
+ 1

ξ R2

∂T

∂ξ
+ ∂2T

∂z2

−
(

− ξ

R2

∂R

∂z

∂T

∂ξ
+ ξ

R

∂2R

∂z2
∂T

∂ξ
+ ξ

R

∂R

∂z

∂2T

∂ξ2

)]
, (21)
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∂C

∂t
= ξ

R

∂R

∂t

∂C

∂ξ
+ Re

α2

(
− u

R

∂C

∂ξ
+ ξ

R

∂R

∂z
w

∂C

∂ξ
− w

∂C

∂ξ

)

+ Sr
α2

[
1

R2

∂2T

∂ξ2
+ 1

ξ R2

∂T

∂ξ
+ ∂2T

∂z2

−
(

− ξ

R2

∂R

∂z

∂T

∂ξ
+ ξ

R

∂2R

∂z2
∂T

∂ξ
+ ξ

R

∂R

∂z

∂2T

∂ξ2

)]

+ 1

α2Sc

[
1

R2

∂2C

∂ξ2
+ 1

ξ R2

∂C

∂ξ
+ ∂2C

∂z2

−
(

− ξ

R2

∂R

∂z

∂C

∂ξ
+ ξ

R

∂2R

∂z2
∂C

∂ξ
+ ξ

R

∂R

∂z

∂2C

∂ξ2

)]
, (22)

where stress components are

τzz = 2η(γ̇ )

(
∂w

∂z
− ξ

R

∂R

∂z

∂w

∂ξ

)
,

τξξ = 2η(γ̇ )

(
1

R

∂u

∂ξ

)
,

τξ z = η(γ̇ )

(
∂u

∂z
− ξ

R

∂R

∂z

∂u

∂ξ
+ 1

R

∂w

∂ξ

)
,

η(γ̇ ) = τ0 + lγ̇
1
2 + γ̇

γ̇
, l = η2

η1

(
d0
u0

) 1
2

,

γ̇ 2 = 2

[(
∂u

∂ξ

1

R

)2

+
(

u

ξ R

)2

+
(

∂w

∂z
− ξ

R

∂R

∂z

∂w

∂ξ

)2
]

+
(

∂u

∂z
− ξ

R

∂R

∂z

∂u

∂ξ
+ 1

R

∂w

∂ξ

)2

.

Multiplying Eq. (19) by ξ R and integrating with respect to ξ from 0 to ξ , we get

u(ξ, z, t) = ξ
∂R

∂ξ
w − R

ξ

∫ ξ

0
ξ
∂w

∂z
dξ − 2

ξ

∫ ξ

0
ξwdξ, (23)

for ξ = 1, using the boundary conditions. (23) becomes

−
∫ 1

0
ξ
∂w

∂ξ
dξ =

∫ 1

0
ξ

[
2

R

∂R

∂z
w + 1

R

∂R

∂t
f (ξ)

]
dξ, (24)

where f (ξ) is an arbitrary function satisfying
∫ 1
0 ξ f (ξ)dξ = 1. Thus, we set f (ξ) =

4
(
ξ2 − 1

)
. Combining (24), we have

∂w

∂z
= − 2

R

∂R

∂z
w + 4

R

(
ξ2 − 1

) ∂R

∂t
, (25)
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substituting (25) into (23), we finally arrive at

u(ξ, z, t) = ξ

[
∂R

∂z
w + ∂R

∂t

(
2 − ξ2

)]
. (26)

Conditions (17) and (18) can be written as

w(ξ, z, 0) =
(
A0 + A1

4

)[
1 −

(
ξ R

d0

)2
]

,

u(ξ, z, 0) = 0, T (ξ, z, 0) = 0, C(ξ, z, 0) = 0.

u(ξ, z, t) = 0,
∂w

∂ξ
(ξ, z, t) = 0,

∂T

∂ξ
(ξ, z, t) = 0,

∂C

∂ξ
(ξ, z, t) = 0, r = 0,

u(ξ, z, t) = ∂R

∂t
, w(ξ, z, t) = 0, T (ξ, z, t) = 0, C(ξ, z, t) = 0, r = R(z, t),

5 Numerical approximation

In this section, finite difference method is applied to solve the problem. Specifically,
central difference scheme is carried out in spatial dimension while forward difference
scheme is adapted in time dimension as in following manner ( Difference of u, T ,C
with relevant derivatives and Q,Λ, τw can also be obtained by similar expression ):

(
wξ

)k
i, j = ∂w

∂ξ
= (w)ki, j+1 − (w)ki, j−1

2Δξ
,

(wz)
k
i, j = ∂w

∂z
= (w)ki+1, j − (w)ki−1, j

2Δz
,

∂w

∂t
= (w)k+1

i, j − (w)ki, j

Δt
,

(
wξξ

)k
i, j = ∂2w

∂ξ2
= (w)ki, j+1 − (w)ki, j + (w)ki, j−1

(Δξ)2
,

(wzz)
k
i, j = ∂2w

∂z2
= (w)ki+1, j − (w)ki, j + (w)ki−1, j

(Δz)2
,

(
wξ z

)k
i, j = ∂2w

∂ξ∂z
= (w)ki+1, j+1 − (w)ki−1, j+1 − (w)ki+1, j−1 + (w)ki−1, j−1

4ΔξΔz
,

where

⎧⎪⎨
⎪⎩

ξ j = ( j − 1) Δξ, ( j = 1, 2, . . . , N + 1) , ξN+1 = 1,

zi = (i − 1) Δz, (i = 1, 2, . . . , M + 1) ,

tk = (k − 1) Δt, (k = 1, 2, . . .) .

123



Blood flow analysis in tapered stenosed arteries with… 533

For more specific expressions of numerical scheme, readers are refered to [9,14,
24,25].

6 Results and discussion

In this section, graphical results are displayed and The quantitative effects of param-
eters are discussed. As in [10,14], we have parameters that

d0 = 1, A0 = 1, A1 = 0.2A0, φ = 0, kr = 0.05

f p = 1.2, L0 = 15, d = 7, L = 30.

We takeΔξ = 0.1 along the radial direction andΔz = 0.1 along the axial direction.
What’smore, tomake sure the convergence of the solution, time step isΔt = 0.001.By
using MATLAB programming, we obtain the numerical solutions for velocity, flow
rate, shear stress, resistive impedance, temperature, and concentration distributions
with respect to various system parameters.

6.1 Velocity distribution

Figure 2 shows the velocity distribution with regard to different values of ψ and τm
with z = 10, t = 0.2,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec = 0.4,Pr = 3,Sr =
3,Sc = 3,Gr = 1.5,Gc = 1. Under the assumption that the blood vessel is axial
symmetric, it is obviously that blood flow velocity reaches the maximum value at the
center of the artery from Fig. 2. With the increase of maximum depth of the stenosis
τm , the velocity of blood increases remarkably while it will decrease as the angle of
tapered vessel increases. We can also conclude that the velocity varies like a parabolic
function at ξ . Thus, reducing the stenosis in the blood vessel is so important that
dredging the vessels will decelerate the blood velocity and consequently, reducing the
risk of disease.

Fixing the critical height of stenosis at τm = 0.3d0 and varying Gr and Gc, we
have different velocity profile with different Gr and Gc on Fig. 3. Thus, we can obtain
that the velocity increase with the rise of Grashof number Gr and solutal Grashof
number Gc which represent the heat effects and mass effect on fluid respectively. That
means with the growth of temperature and concentration, the velocity will increase a
lot correspondingly.
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Fig. 2 Variation of axial velocity for z = 10, t = 0.2,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec =
0.4,Pr = 3,Sr = 3,Sc = 3,Gr = 1.5,Gc = 1.5

6.2 Flow rate

Figure 4 illustrates the profiles for volumetric flow rate in stenosed artery under three
different taper angles and Gr with t = 0.2, τm = 0.3d0,Re = 1000, α2 = 2000, τ0 =
1, l = 4,Ec = 0.3,Pr = 3,Sr = 3,Sc = 3,Gc = 1.5. It can be seen that the
volumetric flow rate distribution is shaped like the geometry of the stenosis, which
demostrates that the flow rate dropped at the beginning of the stenosis and reaches
to its Minimum at the stenosis critical height. What’s more, when the tapered angle
increases, the flow rate grows up considerably. It can also be obtained in Fig. 4 that as
thermodynamics parameter Grashof number Gr increases, the flow rate grows up.

Figure 5 shows that under the effect of the mass transfer in fluid which can be
illustrated by solutal Grashof number Gc, the flow rate will have a different increases
as Gc increases. The positive feedback can guide people to take effective action to
enhance the flow rate.

6.3 Wall shear stress

Figures 6 and 7 are presented to demonstrate the variation of the shear stress at stenosis
for different tapered angle with Grashof number Gr and solutal Grashof number Gc
with t = 0.2, τm = 0.3d0,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec = 0.3,Pr =
3,Sr = 3,Sc = 3. It is observed that the wall shear stress appears diverging tapering
with tapered angle ψ > 0, converging tapering with tapered angle ψ < 0 and non-
tapered artery with tapered angle ψ = 0. What’s more, with an increase in Gr, Gc,
the wall shear stress decrease a lot, which means that temperature and concentration
profile have a negative effect on wall shear stress.
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Fig. 3 Variation of axial velocity for z = 10, t = 0.2, τm = 0.3d0,Re = 1000, α2 = 2000, τ0 = 1, l =
4,Ec = 0.4,Pr = 3,Sr = 3, Sc = 3
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Fig. 4 Variation of flow rate for t = 0.2, τm = 0.3d0,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec =
0.4,Pr = 3,Sr = 3,Sc = 3,Gc = 1.5
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Fig. 5 Variation of flow rate for t = 0.2, τm = 0.3d0,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec =
0.4,Pr = 3,Sr = 3,Sc = 3,Gr = 1.5
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Fig. 6 Variation of wall shear stress for t = 0.2, τm = 0.3d0,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec =
0.4,Pr = 3,Sr = 3,Sc = 3,Gc = 1.5

123



Blood flow analysis in tapered stenosed arteries with… 537

-8

-6

-4

-2

0

2

4

5 10 15 20 25

Fig. 7 Variation of wall shear stress for t = 0.2, τm = 0.3d0,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec =
0.4,Pr = 3,Sr = 3,Sc = 3,Gr = 1.5
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Fig. 8 Variation of flow resistance for t = 0.2, τm = 0.3d0,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec =
0.4,Pr = 3,Sr = 3,Sc = 3,Gc = 1.5
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Fig. 9 Variation of flow resistance for t = 0.2, τm = 0.3d0,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec =
0.4,Pr = 3,Sr = 3,Sc = 3,Gr = 1.5

Fig. 10 Axial velocity profiles measured at different times [1]

6.4 Flow resistance

Figures 8 and 9 reveal the flow resistance profile for different values of ψ , Gr and Gc
with z = 10, t = 0.2,Re = 1000, α2 = 2000, τ0 = 1, l = 4,Ec = 0.4,Pr = 3,Sr =
3,Sc = 3. It is obviously that blood flow resistance reaches the maximum value at
the critical height point of the stenosis from Figs. 8 and 9. The shape of the resistance
distribution is like the opposition of flow rate as in Fig. 4. Moreover, when Grashof
number Gr and solutal Grashof number Gc grows, the flow resistance reduces and it
will decreases as the angle of tapered vessel increases.
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Fig. 11 The experimental (o)
and numerical (–) results of the
axial velocity profiles [13]

Remark 1 From [1,13], we have found several experimental results as showed in
Figs. 10 and 11. Figures 10 and 11 illustrated the parabolic trend of the axial blood
velocity which is consistent with our results in Fig. 2 and so with other the blood
rheology properties. That means our model and simulations are credible.

7 Conclusion

Based on the above analysis, we can summarize several fluid dynamical properties of
blood, which flows through tapered narrow arteries with time-dependent overlapping
stenosis under heat and mass transfer. Several blood rheology properties such as the
axial velocity of blood, flow rate,wall shear stress and resistance to floware determined
by the stenosis, different degrees of taperness, heat transfer and mass transfer. The
major results of the present investigation are:

– When the maximum depth of the stenosis τm grows, the axial velocity of blood
increases while it will decrease as the angle of tapered vessel increases.

– With the growth of Grashof number Gr and solutal Grashof number Gc, the flow
rate will increase a lot correspondingly, which means the positive feedback of heat
and mass transfer on the velocity profile of blood.

– The distribution of wall shear stress with regard to z-axis shaped like the distri-
bution of flow rate and have similar response from different tapered angle and
Grashof number Gr and solutal Grashof number Gc.

– Since the flow rate is higher in the former than in the latter, it can be observed that
the resistive impedance in a diverging tapering is less than those in a converging
tapering.

– It is seen that the flow resistance decrease when the Grashof number and solutal
Grashof number increases, which means the negative feedback of heat and mass
transfer on the blood resistance.
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In our work, we apply a different constitutive equation in fluid equations. The
analytical results show numerous relationships between various rheology properties,
thus, may provide some quantitative guidance in clinical analysis.
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