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Abstract
In this paper, we present a method of so-called q-Newton’s type descent direction for
solving unconstrainedmultiobjective optimization problems. The algorithm presented
in this paper is implemented by applying an independent parameter q (quantum) in
an Armijo-like rule to compute the step length which guarantees that the value of the
objective function decreases at every iteration. The search processes gradually shift
from global in the beginning to local as the algorithm converges due to q-gradient.
The algorithm is experimented on 41 benchmark/test functions which are unimodal
and multi-modal with 1, 2, 3, 4, 5, 10 and 50 different dimensions. The performance
of the proposed method is confirmed by comparing with three existing schemes.
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1 Introduction

Multiobjective optimization has played an important role in solving real-world prob-
lems. Most engineering problems require the designer to optimize several conflicting
objectives. The objectives are in conflict to each other if an improvement in one objec-
tive leads to the deterioration in another. In multiobjective optimization problems,
several objective functions have to be minimized simultaneously. In this method, no
single point can minimize all objective functions at a time. Therefore, the concept
of optimality is replaced with Pareto optimality or efficiency [1]. A point is called
Pareto optimal or efficient, if there does not exist a different point with the same or
smaller objective function values, such that there is a decrease in at least one objec-
tive function value. Multiobjective unconstrained optimization problems have been
applications in engineering design [2,3], design [4–6], location science [7], statistics
[8], medicine [9–11], and cancer treatment planning [12], etc. There are many new
studies on this field to solve the multiobjective unconstrained optimization problems
[13–16]. A general solution approach for the multiobjective optimization problem is
the scalarization technique which is widely used for computing the proper efficient
solutions [17]. This method is free from priori chosen weighting factors or any other
form of a prior ranking or ordering information for the different objective functions
[18,19]. Several parameter dependent scalarization approaches for solving nonlinear
multiobjective optimization problems are discussed in [20]. Scalarization techniques
convert the original multiobjective optimization problem into a new single objective
optimization problem in such a way that the optimal solution for the new problem is
also optimal for the original one. From a practical point of view, the main advantage
of this approach is that several fast and reliable methods developed for solving sin-
gle objective optimization problems can be used to solve multiobjective optimization
problems. In multiobjective optimization, one of the most widely used scalarization
techniques is the weighting method, which consists of minimizing the weighted sum
of different objectives [21]. In general, the weights, which are critical for the methods,
are not known in advance for us. Thus, the computational implementations of this
technique are not straightforward. Of course, the random choices of the weighting
vector do not yield an optimal solution. The extension of the weighting method is for
vector optimization [22] .

It is well known that the objective functions areminimized rapidly along the descent
direction. The q-calculus was first developed by Jackson [23], and the results obtained
in [24] rise to generalizations of series, functions and special numbers within the
context of the q-calculus [25]. The q-calculus has been one of the research interests
in the field of mathematics, physics, and signal processing for the last few decades
[24,26]. The q-Newton-Kantorovich method [27] has been developed to solve the
system of nonlinear equations such as:

|x21 − 4| + e7x2−36 − 2 = 0, (1)

log10

(
12x21
x2

− 6

)
+ x41 − 9 = 0. (2)
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With a starting point x0 = (2, 5)T , the solution x∗ = (
√
3, 36

7 )T is obtained. But, the
classical Newton-Kantorovich method with the same starting point fails because the
partial derivative of (1) with respect to the first variable does not exist. This is one of
the motivation to use the q-derivative over the classical derivative. The q-derivative
has been used in the steepest descent method to solve single objective unconstrained
optimization problems [28]. It shows that the generated points are escaped frommany
local minima and reach to the global minima. Global optimization using q-gradient
was further studied in [29], where the parameter q is a dilation that is used to control
the degree of the localness of the search. The q-derivative concept has also been used
to develop q-least mean squares algorithm given in [30], which shows that the q-
derivative takes larger steps to get the optimal solution for q ∈ (0, 1) when compared
to the conventional derivative. Recently, the q-derivative in the gradient of the given
function is used to show the local convergent scheme, and then this idea extended to
show the global convergence property for single objective unconstrained optimization
[31]. The advantages of applying the q-derivative in multiobjective unconstrained
optimization problems are given as follows:

1. When q �= 1, the q-gradient vector can make any angle with the classical gradient
vector, and the search direction can point in any direction. For example, for the
case of the steepest descent method for single objective optimization problems, the
descent direction can reduce the zigzag movement to obtain the optimal solution
[28].

2. It minimizes the cost for solving multiobjective optimization problems because
q-gradient takes the larger steps in the search direction as it evaluates the secant
of the function rather than the tangent for the case of classical derivative [30].

To the best of our knowledge, the q-derivative has not been applied in Newton’s
method to solve multiobjective unconstrained optimization problems so far. In this
paper, we apply the q-derivative to compute the q-Hessian which is used to find
Newton’s search direction, and generalize the algorithm given in [32] and prove the
convergence theorem.

The outline of this paper is organized in the following manner: in Sect. 2, some
prerequisites related to the multiobjective optimization problems are discussed. In
Sect. 3,wepresent thefirst-order optimality condition formultiobjective unconstrained
optimization using q-derivative, and present Newton’s search descent direction. In
Sect. 4, we give the algorithm with convergence theorem, and numerical examples are
given in Sect. 5. The last section is conclusion.

2 Preliminaries

Weaddress the followingmultiobjective unconstrainedoptimizationproblem (MUOP):

min f (x), x ∈ R
n, (3)

where f : R
n → R

m, f (x) = ( f1(x), f2(x), . . . , fm(x)), and f j : R
n → R

is continuously differentiable for j = 1, . . . ,m. For x, y ∈ R
n we denote vector
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inequalities as

x = y ⇐⇒ xi = yi for all i = 1, . . . , n,

x � y ⇐⇒ xi ≥ yi for all i = 1, . . . , n,

x ≥ y ⇐⇒ xi ≥ yi and x �= y,

x > y ⇐⇒ xi > yi for all i = 1, . . . , n.

The q-derivative (q �= 1) of f j for j = 1, . . . ,m is defined as

Dq,x f j (x) =
⎧⎨
⎩

f j (x)− f j (qx)
x(1−q)

, x �= 0,

f ′
j (x), x = 0.

(4)

In the limit as q → 1 or x → 0, the q-derivative reduces to the classical derivative.
Suppose the partial derivatives of f j : Rn → R, for j = 1, . . . ,m exist. For x ∈ R

n,

consider an operator εq,i on f j as

(εq,i f j )(x) = f j (x1, x2, . . . , xi−1, qxi , xi+1, . . . , xn). (5)

The q-partial derivative (q �= 1) of f j for j = 1, . . . ,m at x with respect to xi for
i = 1, . . . , n is

Dq,xi f j (x) =
⎧⎨
⎩

f j (x)−(εq,i f j )(x)
(1−q)(xi )

, xi �= 0,

∂ f j
∂xi

, xi = 0.
(6)

We denote

g j (x) = ∇ f j (x) = (g j
1 (x), g

j
2 (x), . . . , g

j
n (x))

T ,

where gi = ∂ f j
∂xi

for i = 1, . . . , n, j = 1, . . . ,m. The Jacobian of the function f j for
j = 1, . . . ,m is the q-partial derivative of ∇ f j (x), which is given as:

Dq∇ f j (x) =

⎡
⎢⎢⎢⎢⎢⎣

Dq,x1g
j
1 (x) Dq,x2g

j
1 (x) . . . , Dq,xn g

j
1 (x)

Dq,x1g
j
2 (x) Dq,x2g

j
2 (x) . . . Dq,xn g

j
2 (x)

. . . . . . . . . . . .

Dq,x1g
j
n (x) Dq,x2g

j
n (x) . . . Dq,xn g

j
n (x)

⎤
⎥⎥⎥⎥⎥⎦
n×n

. (7)

In short, we write Dq∇ f j (x) = [Dq,xi gi (x)]n×n, ∀ i = 1, . . . n, and j = 1, . . . ,m.

The matrix Dq∇ f j (x) is not necessarily a symmetric matrix. For example, let f :
R
2 → R be a function defined by

f (x) = 3x21 − 5x1x
3
2 . (8)
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Then,

∇ f (x) = [6x1 − 5x32 ,−15x1x
2
2 ]T ,

and

Dq∇ f (x) =
[

6 −5(1 + q + q2)x22
−15x22 −15(1 + q)x1x2

]
,

which is not symmetric. A point x∗ ∈ X is a Pareto optimum, if there is no y ∈ X
for which f j (y) ≤ f (x∗), j = 1, . . . ,m, and f (y) �= f (x∗). The point x∗ ∈ X is a
weak Pareto optimum, if there is no y ∈ X for which f j (y) < f (x∗), j = 1, . . . ,m.

Let R++ be the set of strictly positive real numbers. Assume that X ⊆ R
n is an open

set and f j : X → R, j = 1, . . . ,m is given function. The directional derivative of
f j , where j = 1, . . . ,m at x ∈ R

n in the direction d ∈ R
n is defined as

f ′
j (x; d) = lim

α→0

f j (x + αd) − f j (x)

α
, ∀ j = 1, . . . ,m. (9)

For x ∈ R
n , ‖x‖ denotes the Euclidean norm in R

n . Norm of a matrix A ∈ R
n×n

is ‖A‖ = max ‖Ax‖
‖x‖ , x �= 0. We say d ∈ R

n as a descent direction for f j at x , if for

all j = 1, . . . ,m, dT∇ f j (x) < 0. Thus, d is a descent direction of f at x , if there
exists α0 > 0 such that f j (x + αd) < f j (x) for all α ∈ (0, α0]. A point x∗ ∈ R

n

is said to be an efficient point of (MUOP), if there does not exist y ∈ R
n such that

f j (y) ≤ f j (x∗), j = 1, . . . ,m. This means that point x∗ is weak efficient point of f j ,
if there does not exist d ∈ R

n such that g j (x∗)T d < 0 for all j = 1, . . . ,m. The next
proposition due to [32] establishes the relationship between the properties of being a
critical and an optimal point.

Proposition 1 Let f j , j = 1, . . . ,m, be a continuously differentiable on X ⊂ R
n.

Then,

1. If x∗ is locally weak Pareto optimal, then x∗ is a critical point for f j .
2. If f j ∈ R

m is convex, and x∗ is a critical for f j , then x∗ is a weak Pareto optimal.
3. If f j ∈ C2(Rn,Rm), and Hessian matrices are positive definite for all x ∈ R

n,
and if x∗ is critical point for all f j , then x∗ for all j = 1, . . . ,m, is a Pareto
optimal.

The idea of our proposed algorithm is very straightforward: choose an initial guess
x0 and check if part 1 of Proposition 1 holds. If not, compute aNewton search direction
and make a suitable step length from x0 along Newton search direction, which results
a new point and the algorithm is repeated in this way.

3 On q-Newton type descent direction

We now proceed to present the q-Newton descent direction for multiobjective uncon-
strained optimization problem. For any point x ∈ R

n , we denote dNq(x), the Newton
direction as the optimal solution of the following problem:
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{
min max j=1,...,m g j (x)T dNq(x) + 1

2dNq(x)T Dq∇ f j (x)dNq(x)

subject to dNq(x) ∈ R
n .

(10)

We consider the symmetric counter part D̄q of Dq as

D̄q = 1

2
(Dq + DT

q ). (11)

In addition to this, Dq∇ f j , j = 1, . . . ,m may not be positive definite for some q.
Here, we assume the symmetric counter part D̄q∇ f j , j = 1, . . . ,m, and the positive
definiteness of D̄q∇ f is in the vicinity of x∗. The optimal value of problem (10) is
given as:

θ(x) : infdNq∈Rn max
j=1,...,m

g j (x)
T dNq + 1

2
dTNq D̄q∇ f j (x)dNq . (12)

For multiobjective optimization, Newton search direction [32] is obtained by mini-
mizing the maximum of quadratic term, which is given as:

dNq(x) : arg mindNq∈Rn max
j=1,...,m

g j (x)
T dNq + 1

2
dTNq D̄q∇ f j (x)dNq . (13)

The problem (10) is a non-smooth problem, but it also involves quadratic approxima-
tion of each objective function.

The above problem will be a quadratic convex programming problem, if every
objective function is strongly convex. Therefore, such problem always has a unique
minimizer, which is presented as:

P(x) :

⎧⎪⎪⎨
⎪⎪⎩
min �(x)

subject to g j (x)T dNq(x) + 1
2d

T
Nq D̄q∇ f j (x)dNq(x) ≤ �(x), 1 ≤ j ≤ m,

(�(x), dNq) ∈ R × R
n .

Thus,

�(x) : arg mindNq∈Rn max
j=1,...,m

g j (x)
T dNq + 1

2
dTNq D̄q∇ f j (x)dNq . (14)

Also, note that form = 1, the Newton direction dNq(x) becomes the classical Newton
direction for scalar optimization problems.

For x ∈ R
n , necessary condition for Pareto optimality is given in [1], and defined

for steepest descent like methods for multiobjective case in [33,34], which is modified
as:

�(D̄q∇ f j (x)) ∩ (−R
m++) = φ, ∀ j = 1, . . . ,m. (15)
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Note that P(x) has unique solution, which can be obtained usingKarush-Kuhn-Tucker
(KKT) optimality conditions. The Lagrange function of problem P(x) is:

L(�, dNq ; λ) = �(x) +
m∑
j=1

λ j

(
g j (x)

T dNq + 1

2
dTNq D̄q∇ f j (x)dNq − �(x)

)
,

(16)

whereλ j ≥ 0 areLagrangemultipliers. The correspondingKKToptimality conditions
for P(x) are given as:

m∑
j=1

λ j
(
g j (x)

T + D̄q∇ f j (x)dNq(x)
) = 0, (17)

m∑
j=1

λ j = 1, (18)

λ j ≥ 0, g j (x)
T dNq(x) + 1

2
dNq(x)

T D̄q∇ f j (x)dNq(x) ≤ �(x), ∀ j = 1, . . . ,m,

(19)

λ j

(
g j (x)

T dNq(x) + 1

2
dTNq D̄q∇ f j (x)dNq(x) − �(x)

)
= 0, ∀ j = 1, . . . ,m.

(20)

Suppose dNq(x) satisfies (17)–(20) with Lagrange multipliers λ j , where j =
1, . . . ,m. The optimal value of P(x) is �(x). In particular, from (17), we obtain
following:

dNq(x) = −
⎡
⎣ m∑

j=1

(D̄q∇ f j (x)

⎤
⎦

−1
m∑
j=1

λ j g j (x)
T . (21)

Theorem 1 For any noncritical point x ∈ R
n, the Newton direction dNq(x), as defined

in (21) is a descent direction at x.

Proof Note that, from (14), for dNq(x) = 0, we have �(x) ≤ 0. Suppose x is not a
critical point of f j , ∀ j = 1, . . . ,m, then we must have

�(D̄q∇ f j (x)) ∩ (−R
m++) �= φ, ∀ j = 1, . . . ,m.

Thus, there existsd(x) ∈ R
n such that g j (x)T dNq(x) < 0,∀ j = 1, . . . ,m. Replacing

d(x) by γ dNq(x) for any γ ∈ (0, 1), we get
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�(x) ≤ max
j=1,...m

g j (x)
T γ d(x) + 1

2
γ d(x)T D̄q∇ f j (x)γ d(x)

= γ max
j=1,...m

g j (x)
T d(x) + 1

2
d(x)T D̄q∇ f j (x)d(x).

Therefore, for γ > 0, max j=1,...,m g j (x)T dNq(x) + 1
2dNq(x)T D̄q∇ f j (x)dNq(x) is

negative, that is,�(x) < 0. Since D̄q∇ f j (x) is positive definite matrix, and dNq(x) �=
0, then

g j (x)
T dNq(x) < g j (x)

T dNq(x)
T D̄q∇ f j (x)dNq(x) ≤ �(x) < 0. (22)

Thus, g j (x)T dNq(x) < 0, ∀ j = 1, . . . ,m. Thus, dNq(x) is a descent direction.
This completes the proof. ��
Remark 1 We say that x∗ is a critical point of f j where j = 1, . . . ,m if and only if
�(x∗) = 0, and dNq(x∗) = 0.

Theorem 2 Let function dNq : X → R given by (21) be a bounded on compact sets
and � : X → R given by (14), then |�(x) − �(y)| < ε, ∀ x, y ∈ X .

Proof Let Y ⊂ X be a compact set for any x ∈ X , and we have �(x) ≤ 0 due to part
1 in Lemma 3.2 of [32], then

g j (x)
T dNq(x) + 1

2
dNq(x)

T D̄q∇ f j (x)dNq(x) ≤ 0.

We obtain

−1

2
dNq(x)

T D̄q∇ f j (x)dNq(x) ≥ g j (x)
T dNq(x). (23)

Note that f j is twice continuously differentiable, and its all q-Hessians are positive
definite due to (11), so there exists κ and λ > 0 such that

κ = max
x∈Y , j=1,...,m

‖g j (x)‖, (24)

and

λ = min
y∈Y ,‖θ‖=1

θT D̄q∇ f j (y)θ, (25)

where j = 1, . . . ,m. Combining (23)–(25) and using Cauchy–Schwartz inequality,
for x ∈ Y , and j = 1, . . . ,m, we get

λdNq(x)
T dNq(x) ≤ ‖g j (x)‖‖dNq(x)‖ ≤ κ‖dNq(x)‖. (26)
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Therefore,

‖dNq(x)‖ = 1

λ
κ, (27)

for all y ∈ Y . As any point in Y is in the interior of a compact subset of Y , then it
suffices to show that continuity of�(x) on an arbitrary compact set Y ⊂ X . For y ∈ Y ,
and φy, j : Y → R, where j = 1, . . . ,m such that

ζ → g j (ζ )T dNq(y) + 1

2
dNq(x)

T D̄q∇ f j (ζ )dNq(y). (28)

The family {ψy, j } ∈ Y , j = 1, . . . ,m is equi-continuous.

�(ζ ) ≤ max
j=1,...m

g j (ζ )T γ dNq(y) + 1

2
γ dTNq(y)D̄q∇ f j (ζ )γ dNq(y),

that is,

�y(ζ ) ≤ φy + |�y(ζ ) − �y(y)| + ε.

Thus, |�(ζ ) − �(y)| < ε. Interchanging the roles of ζ and y, we conclude that � is
continuous on X .
This completes the proof. ��

4 On q-Newton unconstrainedmultiobjective algorithm and
convergence

On the basis of theory described in previous section, we present the algorithm
of q-Newton unconstrained multiobjective algorithm for solving (MOUP) using q-
derivative.Weexamine�(x) to obtain theNewtondirectiondNq (x) at eachnon-critical
point. The step length is determined by means of inexact Armijo condition with back-
tracking line search method. The algorithm for finding a critical/Pareto front is given
below.

We now present the convergence theorem ofAlgorithm 1.Observe that if Algorithm
1 terminates after a finite number of iterations, then it terminates at a Pareto critical
point. The following theorem is the modification of [35].

Theorem 3 Let f j be continuously differentiable on a compact set X ⊂ R
n for j =

1, . . . ,m and {xk} be the sequence by xk+1 = xk + αkdNq(xk) given in Algorithm 1,
and αk satisfies

f j
(
xk+1

)
− f j

(
xk

)
≤ cαk

m∑
j=1

λkj

(
g j (x

k)
)T

dNq

(
xk

)
, (29)
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Algorithm 1: q-Newton Unconstrained Multiobjective Algorithm

Choose x0 ∈ X ⊆ R
n , error of tolerance ε > 0, fix q ∈ (0, 1), small positive number δ such that

0 < δ < 1, θkj is the angle between g j (x
k ) and dNq (xk ) ;

for k=0,1,2,… do
Compute �(xk ), and dNq (xk );
for j = 1, . . . ,m do

if cos2(θkj ) ≥ δ then

then choose appropriate step length αk such that xk + αkdNq (xk ) ∈ X and satisfies (29)
and (31).

end
if cos2(θkj ) < δ then

choose appropriate step length αk such that xk + αkdNq (xk ) ∈ X and satisfies (29).
end

end
Set xk+1 = xk + αkdNq (xk );

if �(xk+1) < ε or ‖gk+1
j ‖ < ε then

stop;
end

end

for all j = 1, . . . ,m. Suppose that L0 = {x ∈ X : f (x) < f (x0)} is bounded and
convex, where x0 ∈ X is an initial guess point. The function f j (x) is bounded below
for at least one j ∈ {1, . . . ,m}. Then, the accumulation point of {xk} is a critical point
of x∗ of (MOUP).

Proof We have

f j
(
xk+1

)
− f j

(
xk

)
≤ cαk

m∑
i=1

λkj

(
g j (x

k)
)T

dNq

(
xk

)
.

Since
∑m

j=1 λkj = 1, and λkj ≥ 0, then

f j
(
xk+1

)
− f j

(
xk

)
≤ cαk max

j=1,...m

(
(g j (x

k))T dNq(x
k)

)
.

Since D̄q∇ f j (x) is positive definite, then

f j
(
xk+1

)
− f j

(
xk

)
< cαk max

j=1,...m

(
(g j (x

k))T dNq(x
k)

+ 1

2
dNq

(
xk

)T
D̄q∇ f j (x)dNq

(
xk

))
= cαk�

(
xk

)
.

We obtain

f j
(
xk+1

)
< f j

(
x0

)
+ c

k∑
i=0

αi�
(
xi

)
for all j = 1, . . . ,m.
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Fix one j1 from j = 1, . . . ,m for which f j (x) is bounded below such that f j1(x) >

−∞ for all x ∈ X . Also, { f j1(xk)} is monotonically decreasing sequence which is
bounded below where f j1(x∗) > −∞. Thus,

f j1
(
x0

)
− f j1

(
xk+1

)
> −c

k∑
i=0

αi�
(
xi

)
.

Taking k → ∞ in the above inequality to get following:

c
∞∑
i=0

αi

(
−�(xi )

)
< f j1

(
x0

)
− f j1

(
x∗) < ∞ (30)

We already know that �(xi ) ≤ 0 for all i , and c
∑∞

i=0 αi (−�(xi )) is finite. Thus,
we obtain cαk(− f (xk)) → 0 as k → ∞. Since the step length is bounded above so
αk → ∞ for some k implies L0 unboundedwhich is contradiction to the assumption. If
αk ≥ β for all k and for someβ > 0, thenwe get− f (xk) → 0 as k → ∞. Note that L0
is bounded sequence, and has at least one accumulation point. Let {P∗

1 , P∗
2 , . . . , P∗

r }
be the set of accumulation points {xk}. Since P∗

s is an accumulation point for every
s ∈ {1, 2, . . . , r}, and � is a continuous function, then �(P∗

s ) is a critical point of f
for every s ∈ {1, 2, . . . , r}.
This completes the proof. ��
Theorem 4 Let f j be a continuously differentiable on a compact set X ⊂ R

n for every
j = 1, . . . ,m, and {xk} be the sequence by xk+1 = xk + αkdkNq(x

k), and given that

1. c2

m∑
j=1

λkj

(
g j (x

k)
)T

dNq

(
xk

)
≤

m∑
j=1

λkj g j

(
xk+1

)
dNq

(
xk

)
, (31)

2. g j are Lipschitz for all j = 1, . . . ,m, and
3. cos2 θkj ≥ δ for some δ > 0, for all j = 1, . . . ,m, where θkj is the angle between

dNq(xk) and g j (xk).

Then, every accumulation point of {xk} generated by Algorithm 1 is a weak efficient
solution of (MOUP).

Proof From Theorem 3, we observe that every accumulation point of {xk} is a critical
point of f j , where j = 1, . . . ,m. Let x∗ be an accumulation point of {xk}. Fix one j0
from j = 1, . . . ,m for which g j0(x

∗) = 0, then x∗ will be a weak efficient solution.
From part 2 of Theorem 4, g j are Lipschitz continuous for all j = 1, . . .m. Thus,
there exists L j > 0 such that ‖g j (x) − g j (y)‖ ≤ L j‖x − y‖ for j = 1, . . . ,m. Form
Cauchy–Schwartz inequality, we have

(
g j (x

k+1) − g j (x
k)

)T
dNq

(
xk

)
≤ ‖g j

(
xk+1

)
− g j

(
xk

)
‖‖dNq

(
xk

)
‖

≤ L j‖xk+1 − xk‖‖dNq(x
k)‖

≤ L jαk‖dNq(x
k)‖2,
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Since L = max L j , where j = 1, 2 . . . ,m, then

(
g j (x

k+1) − g j (x
k)

)T
dNq

(
xk

)
≤ Lαk

∥∥∥dNq

(
xk

)∥∥∥2 .

Thus,

Lαk

∥∥∥dNq

(
xk

)∥∥∥2 ≥ max
j=1,...m

(
g j (x

k+1) − g j (x
k)

)T
dNq

(
xk

)

≥
m∑
j=1

λkj

(
g j (x

k+1) − g j (x
k)

)T
dNq

(
xk

)
.

From part 1 of Theorem 4, we get

Lαk

∥∥∥dNq(x
k)

∥∥∥2 ≥ (c2 − 1)
m∑
j=1

λkj g j

(
xk

)T
dNq

(
xk

)

≥ (c2 − 1) max
j=1,...,m

g j

(
xk

)T
dNq

(
xk

)
.

This implies

αk ≥ c2 − 1

L‖dNq(xk)‖2 max
j=1,...,m

g j

(
xk

)T
dNq

(
xk

)
.

Since max j=1,...,m g j (xk)T dNq(xk) < 0, then

αk

(
max

j=1,...,m
g j (x

k)T dNq(x
k)

)
≤ c2 − 1

L‖dNq(xk)‖2
(

max
j=1,...,m

g j (x
k)T dNq(x

k)

)2

,

that is,

−c1αk

(
max

j=1,...,m
g j (x

k)T dNq(x
k)

)
≥ c1(c2 − 1)

L‖dNq(xk)‖2 min
j=1,...,m

(
g j (x

k)T dNq(x
k)

)2

.

Since (g j (xk)T dNq(xk))2 = (g j (xk)T )2(dNq(xk))2(cos2 θkj ), then

−c1αk

(
max

j=1,...,m
g j (x

k)T dNq(x
k)

)
≥ c1(1 − c2)

L
min

j=1,...,m
[‖g j (x

k)‖2 cos2(θ j )
T ],
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where θkj is the angle between g j (xk) and dNq(xk). We follow the same process done
in Theorem 3.

∞ > f j1
(
x0

)
− f j1

(
xk+1

)
≥ −c1

k∑
i=0

αi max
y∈Y , j=1,...,m

(
g j (x

i )
)T

dNq

(
xi

)

=
k∑

i=0

αi

(
−c1 max

y∈Y , j=1,...,m
(g j (x

i ))T dNq(x
i )

)
.

Taking k → ∞, we get

∞ > f j1
(
x0

)
− f j1

(
x∗) ≥

∞∑
i=0

αi

(
−c1 max

j=1,...,m
(g j (x

i ))T dNq(x
i )

)
.

Since −c1 max j=1,...,m g j (xi )T dNq(xi ) > 0, then

αk(−c1 max
j=1,...,m

(g j (x
k))T dNq(x

k)) → 0 as k → ∞.

We also have

c1(1 − c2)

L
min

j=1,...,m
[‖g j (x

k)‖2 cos2 θkj ] → 0 as k → ∞.

Since cos2 θkj > δ for j = 1, . . . ,m, then min j=1,...,m‖g j (xk)‖2 → 0 as k → ∞. Fix

any j0 from j = 1, . . . ,m such that ‖g j0(xk)‖2 → 0 as k → ∞. Since ‖g j0
(
xk

)‖ is
a continuous function, and ‖g j0(xk)‖ → 0 as k → ∞, then g j0(x∗) = 0 for every
accumulation points x∗ of {xk}. Thus, x∗ is a local weak efficient solution.
This completes the proof. ��
Remark 2 Algorithm 1 is also applicable to non-convex functions. It is important to
note that weak efficient solution of any multiobjective unconstrained optimization
problem is not unique. Thus, if Algorithm 1 is executed with any initial point, then
the users may obtain any one out of these weak efficient points while shifting the
descent direction from global to local rapidly due to q-gradient. All three assumptions
of Theorem 4 should be satisfied for every accumulation point of the sequence {xk} to
be a weak efficient point of (MOUP), otherwise accumulation point becomes critical
point if assumptions of Theorem 3 is satisfied.

5 Numerical examples

In this section, Algorithm1 is verified and comparedwith existingmethods using some
numerical problems from different sources. MATLAB (2019a) code is developed for
Algorithm 1. To avoid unbounded solutions, the following subproblem is solved:

123



404 S. K. Mishra et al.

P̄(xk) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min �(xk)

subject to g j (xk)T dNq(x) + 1
2d

T
Nq D̄q∇ f j (x)dNq(xk) ≤ �(xk),

lb ≤ xk + dNq ≤ ub,

(�(xk), dNq) ∈ R × R
n,

where j = 1, . . . ,m, lb and ub are lower and upper bounds of x . Solution of P̄(xk) is
not a descent direction, if D̄q∇ f j (xk) is not positive definite for all j . In such cases, an
approximation D̃q∇ f j (xk) = D̄q∇ f j (xk)+E(xk) is used, where E(xk) is a diagonal
matrix obtained using modified Cholesky factorization algorithm developed in [36].
The subproblem P̄(xk) is solved using MATLAB function ‘fmincon’ with ‘Algorithm
interior point’, ‘Specified Objective Gradient’,‘Specified Constraint Gradient’. Also,
|�(xk)| < 10−5 or maximum 200 iterations is considered as stopping criteria.

It is important to note that weak efficient solution of a multiobjective optimization
problem is not unique. Thus, if the users start at any initial point and execute the
algorithm, then user may reach at one of weak efficient points. The weighting method
is one of the most attractive procedures for solving multiobjective optimization prob-
lems. This is due to the fact that it reduces the original problem to a family of scalar
minimization problems.We first verify the steps of Algorithm 1 for obtaining a critical
point with the following example:

Example 1 Consider the multiobjective optimization problem:
min
x∈R2

( f1(x), f2(x)), where

f1(x) =
{

(x1 − 1)3 sin 1
x1−1 + (x1 − 1)2 + x1(x2 − 1)4, if x1 �= 1,

(x2 − 1)4, if x1 = 1.

f2(x) = x21 + x22 .

Note that ∂2 f1
∂x2i

; (i = 1, 2) does not exist at a point (1, 1)T , which indicates that f1

is not twice differentiable. Thus, second order sufficient condition can not be applied
to justify the existence of the minimizer as in the case of higher order numerical
optimization methods. Further, the Newton’s algorithm can not be applied. But, the
q-derivative can be applied as described below. For q �= 1,

D̄q∇ f1(1, 1) =
⎡
⎣3(q − 1) sin 1

q−1
(q−1)3

2

(q−1)3

2 4(q − 1)2

⎤
⎦ .

Note that D̄q∇ f1(1, 1) is positive definite when the principal minors are positive, that
is,

3(q − 1) sin
1

q − 1
> 0,
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and

det(D̄q∇ f1(1, 1)) = 12 sin
1

q − 1
− (q − 1)3

4
> 0.

In particular one may observe that, for

q ∈ (0, 1) ∩
(
1 + 1

2kπ
, 1 + 1

(2k + 1)π

)
,

where k ∈ Z
−, the above two inequalities hold. Therefore, for this selection

of q, D̄q∇ f1(1, 1) is positive definite. We have solved the problem using Algo-
rithm 1 with approximation x0 = (1.6, 1.5)T , initial parameters q = 0.93,
c1 = 10−4, c2 = 0.9, δ = 10−3 and error of tolerance ε = 10−5. We
obtain f (x0) = ( f1(x0), f2(x0)) = (0.6750, 4.81)T , g1(x0) = (2.1491, 0.5814)T ,

g2(x0) = (3.0880, 2.8950)T , D̄q∇ f1(x0) =
[
4.4794 0.3634

0.3634 2.9585

]
and D̄q∇ f2(x0) =

[
1.93 0
0 1.93

]
. Both D̄q∇ f1(x0) and D̄q∇ f2(x0) are positive definite and hence solu-

tion of P(x0) is a descent direction of f . Solution of P(x0) is obtained as �(x0) =
−0.5438 and dNq(x0) = (−0.4685,−0.1390)T . Since cos2(θ01 ) = 0.9994 > δ

and cos2(θ02 ) = 0.7991 > δ with α0 = 1 satisfying (29) and (31), then the next
iterating point is given as x1 = x0 + α0dNq(x0) = (1.1315, 1.3610)T . Clearly,
we have f (x1) = (0.0387, 3.1327)T < f (x0). The final solution is obtained as
x∗ = (1.0365, 1.0412)T after 5 iterations, using the stopping criteria |�(xk)| < 10−5.
This can also be verified that x∗ is an approximate weak efficient solution of f by
weighted sum method with weight w = (1, 0).

Generate approximate Pareto front The multiobjective optimization problems have
no single isolatedminimum point but a set of efficient points.We consider a multi-start
technique to generate an approximate Pareto front. A set of 100 uniformly distributed
randompoints is collected between lb and ub and the proposed algorithm is executed at
every initial point. The approximate Pareto front generated byAlgorithm1 is compared
with the weighted sum method using the following two test problems [37]:

(BK1) : min
(
x21 + x22 , (x1 − 5)2 , (x2 − 5)2

)
,

subject to − 5 ≤ x1, x2 ≤ 10,

and

(I M1) : min
(
2
√
x1 , x1(1 − x2) + 5

)
,

subject to 1 ≤ x1 ≤ 4, 1 ≤ x2 ≤ 2.

The single objective q-Newton method developed in [31] is used to solve single-
objective optimization problems in the weighted sum method. We have considered
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Fig. 1 Approximate Pareto fronts of BK1 and IM1

weights (1, 0), (0, 1), and 98 different random positive weights. The approximate
Pareto fronts of the test problems (BK1) and (IM1) are provided in Fig. 1. One can
observe that Algorithm 1 provides approximate Pareto fronts for both (BK1) and
(IM1). But, the weighted sum method fails to generate the approximate Pareto front
in (IM1).

Comparison with three existing schemes Algorithm 1 (q-QN) is compared with
quasi-Newton methods for multiobjective optimization problems developed in [35]
(QN1), [38] (QN2), and [39] (QN3). A set of bound constrained test problems are
collected from different sources, and solved using these methods. All algorithms are
executed, and computational details are provided in Table 1. In this table, ‘It’, ‘#F’ and
‘#G’ denote total number of iterations, function evaluations, and gradient evaluations,
respectively. Total Hessian count in Algorithm 1 is equal to ‘It’. In (QN2) and (QN3),
total gradient evaluations is equal to ‘It’. One can observe from Table 1 that Algorithm
1 takes less number of iterations than other methods in most cases (the lowest number
of iterations are indicated by bold numbers). In view of Table 1, we can also see that
(q-QN) has a significant improvement over (QN1), (QN2) and (QN3) relative to the
number of objective function evaluations, and gradient evaluations for most of the
cases. The methods (QN1), (QN2) and (QN3) update the positive definite Hessians
for all f j , where j = 1, . . . ,m, but in method (q-QN), we solve subproblem of
(MOUP) by updating q-Hessian generated by q-derivative, which takes larger steps to
get the weak efficient solutions/critical point. Hence, the q-Newton method uses better
approximations of objective functions than (QN1), (QN2) and (QN3) for solving the
sub-problem. Thus, from the numerical results, (q-QN) is superior to other existing
methods presented in this paper.

6 Conclusion

In this paper, the q-calculus is used in the Newton’s method for solving multiobjec-
tive unconstrained optimization problems for which existence of second order partial
derivatives at every point is not required. We have given the algorithm and proved its
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convergence. The sequence provided by the method converges quadratically, and the
Newton direction is chosen in the vicinity of the solution. Moreover, the quadratic
convergence in case of second derivatives is Lipschitz continuous. The q-gradient
enables the search to be carried out in a more diverse set of directions. Numerical
results show that the proposed method is more efficient as compared with the other
methods for solving multiobjective unconstrained optimization problems.
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