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Abstract
The objective of the present paper is to investigate the dynamics of an eco-
epidemiological system with predator’s hyperbolic mortality and Holling type II
functional response. The local stability, global stability of the ecosystem near bio-
logically feasible equilibria have been thoroughly investigated. The boundedness and
positivity of solutions for themodel are also derived. Threshold values for a fewparam-
eters, which determine the feasibility and stability of some equilibria are calculated
and a threshold is identified for the disease to die out. The existence of Hopf bifurca-
tion around the coexistence equilibrium is shown. Finally, numerical illustrations are
performed in order to validate some of the important analytical findings.

Keywords Eco-epidemiological system · Intra-specific competition · Hyperbolic
mortality · Persistence · Stability

Mathematics Subject Classification 92D25 · 92D30 · 92D40 · 34D23 · 37G15

1 Introduction

In the literature of mathematical biology, there are several areas of research among
which epidemiology is an emerging area which combines both ecological and eco-
epidemiological issues. In recent times, disease in the predator–prey system is one
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of the most important fields of research. The effect of disease is the crucial topic
in ecological systems from both experimental and mathematical points of view. The
pioneering work of Lotka–Volterra on predator–prey model and the popular work of
Kermack–McKendrick opened a new door to epidemiology. Then numerous mathe-
maticalmodels alreadyhavebeenproposed to study the spread and control of infectious
disease and the interactions between predator and prey population.

Functional response on prey population is the key element in predator–prey inter-
action. Functional response is the rate at which the number of prey consumed
by one predator. There are some important types of functional responses used to
model predator–prey interaction, such as Beddington–DeAngelis , Crowley–Martin,
Ivlev, Michaelis–Menten, Hassell–Varley, Holling type-I, i.e., simple mass action law,
Holling type II, III, IV. Population models with such functional responses are widely
studied in ecological literature (cf. [1–9]). Many research works on three species sys-
tems like two prey one predator are investigated in [10–14], tritrophic food chain
models in [15–17].

Important studies on infectious disease have been studied in [18–24]. Species do not
exist alone at all. They live in a community of other species. In mathematical biology,
the predator–prey model systems for transmissible disease are essential field of study
in their own right. From early papers [25], disease mainly spreading only in the prey
species are studied in [26–28] and only in predator species in [29–31]. The predator–
prey model with modified Leslie–Gower Holling type II scheme was introduced in
[32,33]. The Leslie–Gower model with Holling type II response function with disease
in predator is discussed in [34] and disease in prey in [35]. Also Leslie–Gower model
with Holling type III response mechanism with disease in predator is investigated in
[36].

The rate of mortality plays an important role in population ecology. It is observed
that when population density is low, the linear rate dominates the mortality which is
used in many biological models such as [37–39]. If population density is relatively
high, the quadratic rate dominates the mortality [40–42]. Again, if the population
density is large, hyperbolic rate dominates the mortality, [43–49].

In [50], the linear mortality of predator and strongAllee effect in prey is considered.
In [51], authors considered linearmortality of predator. The authors consideredLeslie–
Gower predator prey model and ratio dependent functional response in [52]. In [53],
disease transmission follows saturation incidence kinetics and the system includes
prey refuge.

In this paper, an eco-epidemiological model consisting of three species, namely,
the susceptible prey, the infected prey (which becomes infective by some virus) and
their common predator population is considered. The present paper deals with the
study of dynamics of an eco-epidemiological system with disease in competitive prey
species. The novelty of our study is lying on the consideration of hyperbolic mortality
of predator, Holling type II functional mechanism for predation and disease in com-
petitive prey species and hence in that sense this model is distinct from the models,
which have been studied already.

The outline of this article is as follows: In Sect. 2, an eco-epidemiological model has
been proposed with detailed explanation. Section 3 contains positivity and bounded-
ness of solutions of the model. In Sect. 4, the existence and feasibility of the equilibria
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are analyzed. The system behavior around axial and boundary equilibria are investi-
gated in Sect. 5. Persistence of the system is discussed in Sect. 6. In Sect. 7, local and
global stability of the coexistence equilibria are done. Numerical simulation has been
carried out in Sect. 8 for justification of the analytical findings. The article comes to
an end with a discussion in Sect. 9.

2 Mathematical model formulation

We consider the following assumptions in order to construct our model system:

• A transmissible disease is incorporated to only among the competitive prey species.
Let the total prey population N is divided into in two sub-classes, namely, suscep-
tible prey population (x) and the infected prey population (y) in the presence of
disease. The total prey population at any time t is N (t) = x(t) + y(t).

• The disease transmits horizontally with simple mass action incidence rate βxy,
where β is the force of infection. The susceptible prey population x grows logisti-
cally with intrinsic growth rate r1 > 0 and carrying capacity r1/s1 in the absence
of predator population.

• The infected prey population neither recover from the disease nor reproduce. They
contribute to inter and intra-specific competition at a lower rate s2 than that of sound
ones, i.e., s1 > s2.

• Predator consumes both healthy and infected prey at different rates. Since the
escape ability of healthy prey is higher than infected prey, c1 ≤ c2.

• Hyperbolic mortality rate is considered for predator population.
• Holling type-II response mechanism is considered between the interacting popu-
lations.

Thus, the model based on our assumptions takes the following form:

dx

dt
= r1x − s1x(x + y) − c1xz

x + y + k1
− βxy ≡ xF1(x, y, z), (2.1a)

dy

dt
= βxy − s2y(x + y) − c2yz

x + y + k1
− δy ≡ yF2(x, y, z), (2.1b)

dz

dt
=

(
e1c1x + e2c2y

x + y + k1
− c3z

z + k2

)
z ≡ zF3(x, y, z),

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, (2.1c)

where the term c3z2

z+k2
is for hyperbolicmortality,which dominates themortality for large

population density [45,49]. Also k1, k2 are the half saturation constants for the com-
petitive prey and predator population respectively. The parameters δ and c3 represent
the mortality rate of infected prey and hyperbolic death rate of predator respectively.
The parameters e1 and e2 are the conversion factors of consumed susceptible and
infected prey respectively. Others parameters are already specified with their biologi-
cal meanings at the beginning of model formulation. It is to be note that, all the system
parameters are positive.
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3 Preliminaries

3.1 Positive invariance

Theorem 3.1 Every solution of the system (2.1) with initial conditions exists in the
interval (0,+∞) and x(t) ≥ 0, y(t) ≥ 0, z(t) ≥ 0 for all t ≥ 0.

Proof As xF1, yF2, zF3 are completely continuous functions and locallyLipschitzian
onR3+, the solutionwith positive initial condition exists and unique on [0, ξ)where 0 <

ξ < ∞ (cf. [54]). From the system (2.1), we have x(t) = x(0)e
∫ t
0 F1(x(s),y(s),z(s))ds ≥

0, y(t) = y(0)e
∫ t
0 F2(x(s),y(s),z(s))ds ≥ 0, z(t) = z(0)e

∫ t
0 F3(x(s),y(s),z(s))ds ≥ 0, where

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0. Hence the proof of the theorem is
completed. ��

3.2 Boundedness

Theorem 3.2 All the solutions of the systemwhich initiate inR3+ areuniformly bounded
if e1 > e2 and c3 > μ > δ.

Proof Defining a function � = e1x + e2y + z, we have

d�

dt
+ μ� = e1

dx

dt
+ e2

dy

dt
+ dz

dt
+ μ(e1x + e2y + z)

≤ (μe1x + e1r1x − e1s1x
2) + (μe2 − e2δ − e2s2y)y + z

(
μ(z + k2) − c3z

)
z + k2

≤ (
(μe1 + e1r1) − e1s1x

)
x + (

(μe2 − e2δ) − e2s2y
)
y + (

μk2 − (c3 − μ)z
)
z

≤ e1(μ + r1)
2

4s1
+ e2(μ − δ)2

4s2
+ μ2k22

4(c3 − μ)
= ρ.

Therefore, one can find a positive number ρ, such that d�
dt +μ� ≤ ρ. By the theory of

differential inequality (cf. [55]), one can easily obtain the inequality 0 < �(x, y, z) ≤
ρ
μ
(1− e−ut ) + �

(
x(0), y(0), z(0)

)
e−μt . Taking limit t → ∞ on both sides, we have

lim
t→∞ � ≤ ρ

μ
.

Hence, all the solutions of the system that starting from R
3+ are confined for all future

time in the compact region

� =
{
(x, y, z) ∈ R

3+ : �(t) ≤ ρ

μ
+ ε,∀ε > 0

}
.

��
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3.3 Natural disease control

It is better to eliminate disease naturally (as [52]) from the model system. The infected
prey will be removed from the ecosystem if the per capita death rate of infected prey
exceeds βr1

s1
, where β denotes force of infection, s1 be the competition rate and δ be

the mortality rate of infected prey.

Proposition 3.3 The disease will be eradicated from the system (2.1) if the condition
βr1
s1

< δ hold.

Proof From the second sub-equation of the system (2.1), we have

dy

dt
≤ βxy − δy ≤ y

(
βr1
s1

− δ

)
, by using the upper bound of x = r1

s1
.

Hence, dydt becomes negative if βr1
s1

< δ, consequently infected prey population y(t) →
0 as t → 0. ��

4 Equilibria and their feasibility

The system (2.1) has the following equilibrium points:
(i) E0(0, 0, 0), (ii) E1(0,− δ

s2
, 0), (iii) E2(

r1
s1

, 0, 0), (iv) E3(
βδ+δs1+r1s2
β(β+s1−s2)

,
βr1−δs1−r1s2
β(β+s1−s2)

,

0), (v) E4(0, y4, z4), (vi) E5(x5, 0, z5) and (vii) E∗(x∗, y∗, z∗). The interior equilib-
rium is E∗(x∗, y∗, z∗), the components are as follows:
x∗ = y∗(c1s2−c2(s1+β))+c1δ+c2r1

c1(β−s2)+c2s1
,

z∗ = −
(
r1(s2−β)+y∗β(s1−s2+β)+s1δ

)(
c2(r1+k1s1−y∗β)+c1(−k1s2+(k1+y∗)β+δ)

)
(
c2s1+c1(−s2+β)

)2 and y∗ is a

positive root of the cubic polynomial equation

A1y
3 + 3B1y

2 + 3C1y + D1 = 0, (4.1)

where A1, 3B1, 3C1, D1 are given in Appendix (10).
The Eq. (4.1) possesses exactly one positive root if G2

1 + 4H3
1 > 0, where G1 =

A2
1D1 + 3A1B1C1 + 2B3

1 , H1 = A1C1 − B2
1 . Using Cardano’s method we obtain

the root as 1
A1

(p1 − ( H1
p1

− B1)), where p1 is one of the three values of
( 1
2 (−G1 +√

G2
1 + 4H3

1 )
) 1
3 . The interior equilibrium point exists if

( c1
c2

− s1
s2

)
>

β
s2

> 1, provided
c2r1+c1k1β+c1δ

c2k1s2
<

y∗(c2−c1)
c2k1s2

+ 1.

Obviously, the equilibrium point E1(0, − δ
s2

, 0) is not biologically feasible,
but the axial equilibrium E2(

r1
s1

, 0, 0) is feasible. The equilibrium point E3 is
biologically feasible under the conditions s1 > s2 and βr1 > δs1 + r1s2. As
z4 = − (s2y4+δ)(y4+k1)

c2
< 0, the boundary equilibrium point E4(0, y4, z4) is

not biologically feasible.
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For the equilibrium point E5(x5, 0, z5), z5 = k2e1c1x5
k1c3+(c3−e1c1)x5

and x5 is the
root of the cubic equation

A2y
3 + 3B2y

2 + 3C2y + D2 = 0, (4.2)

where A2 = c1e1s1 − c3s1, 3B2 = c1e1k1s1 − c1e1r1 − 2c3k1s1 + c3r1,
3C2 = −c21e1k2 − c1e1k1r1 − c3k21s1 + 2c3k1r1, D2 = c3k21r1.

The Eq. (4.2) has exactly one positive root if G2
2 + 4H3

2 > 0, where G2 =
A2
2D2 + 3A2B2C2 + 2B3

2 , H2 = A2C2 − B2
2 . Using Cardano’s method we

obtain the root as 1
A2

(
p2 − ( H2

p2
− B2)

)
, where p2 is one of the three values of(1

2 (−G2 +
√
G2

2 + 4H3
2 )

) 1
3 . Hence, E5 is biologically feasible if c3 > e1c1.

5 System behaviour near boundary equilibria

Let Ji denotes the Jacobianmatrix at the equilibriumpoint Ei , i = 0, 1, 2, 3, 5.

5.1 E0

The eigenvalues of the Jacobian matrix J0 are 0, r1, −δ and equilibrium point
E0 is unstable in nature.

5.2 E1

The equilibrium point E1 is not biologically feasible and so, we do not go for
stability analysis.

5.3 E2

The eigenvalues of the Jacobianmatrix J2 are−r1,
c1e1r1

(k1+ r1
s1

)s1
, − r1s2

s1
+ r1β

s1
−δ.

Since one pair of the eigenvalues of J2 are of opposite sign, E2 is saddle in
nature.

5.4 E3

One of the eigenvalues of the Jacobian matrix J3 is c1e1x3+c2e2y3
k1+x3+y3

which is
always positive and therefore, E3 is unstable.
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5.5 E4

The equilibrium point E4 is not biologically feasible and so, we do not go for
stability analysis.

5.6 E5(x5, 0, z5)

The Jacobian matrix at J5 = (ni j )3×3, i, j = 1, 2, 3, where

n11 = r1 − 2s1x5 + c1x5z5
(x5 + k1)2

− c1z5
x5 + k1

, n12 = −s1x5 + c1x5z5
(x5 + k1)2

−x5β, n13 = − c1x5
x5 + k1

,

n21 = 0, n22 = −s2x5 − c2z5
x5 + k1

+ x5β − δ, n23 = 0,

n31 = − c1e1x5z5
(x5 + k1)2

+ c1e1z5
x5 + k1

,

n32 = − c1e1x5z5
(x5 + k1)2

+ c2e2z5
x5 + k1

, n33 = c1e1x5
x5 + k1

+ c3z25
x5 + k2

− 2c3z5
x5 + k2

.

The eigenvalues of J5 are

λ1,2 = n11 + n33 ± √
(n11 + n33)2 − 4(n11n33 − n31n13)

2
, and λ3 = n22.

(5.1)

So, E5 will be stable if (i) n22 < 0, (ii) n11+n33 < 0 and (n11n33−n31n13) >
0.

Proposition 5.1 The system (2.1) experiences Hopf bifurcation around E5

while the parameter s1 crosses its critical value s1 = − c3z5(z5+2k2)
x5(z5+k2)2

+
c1(e1(x5+k1)+z5)

(x5+k1)2
= s[hb]

1 .

Proof From (5.1) we have λ3 is real, λ1, λ2 are purely imaginary iff there
is a critical value of s1 = s[hb]

1 = − c3z5(z5+2k2)
x5(z5+k2)2

+ c1(e1(x5+k1)+z5)
(x5+k1)2

. But for

i = 1, 2, the real part Re
(
dλi
ds1

)
|s1=s[hb]1

= x5 �= 0. So, the system undergoes

Hopf bifurcation around E5 for some critical value of the parameter s1 = s[hb]
1 .

��
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6 Persistence

Definition 6.1 If there exists a compact set D ⊂ � = {(x, y, z) : x > 0, y >
0, z > 0} in which all the solutions of the system (2.1) eventually enter and
remain in D, then system (2.1) is called persistent.

Proposition 6.1 The system (2.1) is persistent if the following conditions are
fulfilled:

(i) β(γ1 + γ2 + δ) > γ2s2,
(ii) s1c3(k1 + x5) < r1c1e1, βx5 > s2x5 + δ.

Proof Under the conditions (i) and (ii) the trivial, axial and boundary equlibria
are repeller. Therefore, using the method of average Lyapunav function (see
[56]), one can show that the system is persistent via considering a function of
the form V (x, y, z) = xγ1 yγ2zγ3 , where γi = 1, 2, 3 are positive constants.

��

7 System behaviour near the coexistence equilibrium E∗(x∗, y∗, z∗)

The Jacobian matrix J∗(x∗, y∗, z∗) = (αi j )3×3, where αi j are as follows:

α11 = −s1x∗ + c1x∗z∗
(x∗ + y∗ + k1)2

,

α12 = −s1x∗ + c1x∗z∗
(x∗ + y∗ + k1)2

− x∗β, α13 = − c1x∗
x∗ + y∗ + k1

,

α21 = −s2y∗ + c2y∗z∗
(x∗ + y∗ + k1)2

+ y∗β,

α22 = −s2y∗ + c2y∗z∗
(x∗ + y∗ + k1)2

, α23 = − c2y∗
x∗ + y∗ + k1

,

α31 =
( − c2e2y∗ + c1e1(k1 + y∗)

)
z∗

(x∗ + y∗ + k1)2
,

α32 =
( − c1e1x∗ + c2e2(k1 + x∗)

)
z∗

(x∗ + y∗ + k1)2
,

α33 = −k2(c1e1x∗ + c2e2y∗)
(x∗ + y∗ + k1)(z∗ + k2)

.

7.1 Local stability

The characteristic equation for J∗ is given by λ3+k1λ2+k2λ+k3 = 0, where

k1 = −α11 − α22 − α33 = trace(J∗),
k2 = α11α22 + α11α33 + α22α33 − α13α31 − α23α32 − α21α12
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= Sum of the second order principal minors ofJ∗,
k3 = α11α23α32 + α12α21α33 + α13α22α31 − α11m22α33 − α12α23α31

−α13α21α32 = − det(J∗),

If k1 > 0, k3 > 0 and k1k2 − k3 > 0, by Routh–Hurwitz criterion, the
co-existence equilibrium E∗(x∗, y∗, z∗) is locally asymptotically stable.

7.2 Global stability

Theorem 7.1 Let dX
dt = f (X) where X = (x, y, z)T and f (X) =

( f1(X), f2(X), f3(X))T. Assuming D is simply connected domain inR3+, there
exist a compact absorbing set K ⊂ D and the system (2.1) has a unique inte-
rior equilibrium E∗ = (x∗, y∗, z∗) in D, then the unique equilibrium E∗ of the
system (2.1) is globally stable in D if min

(
�1, �2

)
> 0.

Proof Define the function Q(x) = diag(1, y
z ,

yx2

z ) =
⎛
⎝
1 0 0
0 y

z 0

0 0 yx2

z

⎞
⎠ and we get

Q−1(x) =
⎛
⎝1 0 0
0 z

y 0
0 0 z

yx2

⎞
⎠. Therefore, Q f Q−1(x) =

⎛
⎜⎝
0 0 0
0 ẏ

y − ż
z 0

0 0 2ẋ
x + ẏ

y − ż
z

⎞
⎟⎠

The second compound matrix is

A[2] =
(
A11 A12 A13
A21 A22 A23
A31 A32 A33

)
=

(
a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

)

with the entries

A11 = xzc1
(x + y + k1)2

+ yzc2
(x + y + k1)2

− xs1 − ys2,

A12 = yc2
x + y + k1

, A13 = − xc1
x + y + k1

,

A21 = z(−xc1e1 + c2e2(x + k1))

x + y + k1
,

A22 = xzc1
(x + y + 1)2

− (xc1e1 + yc2e2)k2
(x + y + k1)(z + k2)

− xs1,

A23 = −xβ + xzc1
(x + y + k1)2

− xs1,

A31 = − z(−yc2e2 + c1e1(y + k1))

(x + y + k1)2
,
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A32 = yβ + zyc2
(x + y + k1)2

− ys2,

A33 = yzc2
(x + y + k1)2

− (xc1e1 + yc2e2)k2
(x + y + k1)(z + k2)

− ys2. Also,

B = Q f Q
−1 + QA[2]Q−1 =

[
B11 B12
B21 B22

]
, where B22 =

[
β11 β12
β21 β22

]
,

B11 = c1xz

(k1 + x + y) 2
+ c2yz

(k1 + x + y) 2
− s1x − s2y,

B12 =
(

− c2z

k1 + x + y
,

c1z

xy (k1 + x + y)

)
,

B21 =
(
y (c2e2 (k1 + x) − c1e1x)

(k1 + x + y) 2
, − x2y (c1e1 (k1 + y) − c2e2y)

(k1 + x + y) 2

)T

,

β11 =
c1x

(
z − e1k2(k1+x+y)

k2+z

)
(k1 + x + y) 2

− c2e2k2y

(k2 + z) (k1 + x + y)
− s1x + ẏ

y
− ż

z
,

β12 = −
β − c1z

(k1+x+y)2
+ s1

x
,

β21 = x2y

(
β + c2z

(k1 + x + y) 2
− s2

)
, β22 =

c2y
(
z − e2k2(k1+x+y)

k2+z

)
(k1 + x + y) 2

− c1e1k2x

(k2 + z) (k1 + x + y)
− s2y + 2ẋ

x
+ ẏ

y
− ż

z
.

Let (u, v, w) denote the vectors in R3+, we define its norm |.| as |x, y, z| =
max(|x | , |y + z|). Let Lozinskiǐ measure with repect to this norm be m. By
using the method of estimating m as in [57], we have

m(B) ≤ sup(g1, g2)

where

g1 = m1(B11) + |B12|,
g2 = m1(B22) + |B21|,

|B12| and |B21| are matrix norm with repect to the l1 vector norm and m1

be the Lozinskiǐ measure with repect to the l1 norm. Here

|B12| = max
(

zc2
x+y+1 ,

zc1
xy(x+y+1)

)
, and |B21| = max

(
y(−xc1e1+c2e2(x+k1))

(x+y+k1)2
,

− x2y(−yc2e2+c1e1(y+k1))
(x+y+k1)2

)
.

Since, the system is uniformly persistent there exists σ > 0 and τ > 0
such that for t > τ , x ≥ σ, y ≥ σ, z ≥ σ, and as the system is bounded
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x + y + z ≤ M , i.e., z ≤ M − (x + y) = M − 2σ = M0. Also upper bound
of x = r1

s1
and upper bound of y = βr1

s1s2
. Division of first term by second of

|B12| gives c2xy
c1

< 1, which implies σ 2 < c1
c2
. So, by this condition we obtain

|B12| = zc1
xy(x+y+1) . Subtracting second term from first term of |B21|, we have

y
(−xc1e1 + c1e2(x + k1)

(x + y + k1)2
+ x2(−yc2e2 + c1e1(y + k1))

(x + y + k1)2

)

= y(c1e2(x + k1) + c1e1(y + k1)x2) − (xc1e1 + x2)

(x + y + k1)2

< 0, if c1e2
(r1
s1

+ k1
)

+ c1e1
( βr1
s1s2

+ k1
)r21
s21

< σc1e1 + σ 3c2e2.

(7.1)

Therefore, |B21| = y(−xc1e1+c2e2(x+k1))
(x+y+k1)2

) by the condition (7.1). Thus, we

have m1(B11) = xzc1
(x+y+k1)2

+ yzc2
(x+y+k1)2

− xs1 − ys2 and m1(B22) =
max(β11 + β21, β12 + β22). Here

(β12 + β22) − (β11 + β21) = z(c1 + xyc2)

x(x + y + k1)2)

− x2yzc2
(x + y + k1)2

− zc1(3x + 2y + 2k1)

(x + y + k1)2

−(1 + x(2 + x2)y) + (1 + x2 + 2xy)s1 + xys2
x

+ 2r1 + x2ys2

<
z(c1 + xyc2)

x(x + y + k1)2)
− x2yzc2

(x + y + k1)2
+ 2r1 + x2ys2

<
M0(c1 + βc2

s2
)

σ (2σ + k1)2
− σ 4c2

( r1s1
+ βr1

s1s2
+ k1)2

+ 2r1 + βs1
r1

< 0

if
M0(c1+ βc2

s2
)

σ (2σ+k1)2
+ 2r1 + βs1

r1
< σ 4c2

(
r1
s1

+ βr1
s1s2

+k1)2
.

Using this condition one can say that

m1(B22) = 2ẋ

x
+ ẏ

y
− ż

z
− ys2 − xc1e1k2

(x + y + k1)(z + k2)

+ yc2(z − c2(x+y+k1)k2
z+k2

)

(x + y + k1)2
−

β − zc1
(x+y+k1)2

+ s1

x
.
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Now

g1 = m1(B11) + |B12|
= ẏ

y
−

(
βx − s2(x + y) − c2z

x + y + k1
− δ

)
+ xzc1

(x + y + k1)2

+ yzc2
(x + y + k1)2

− xs1 − ys2 + zc1
xy(x + y + k1)

= ẏ

y
− xs1 + xs2 − βx + δ + z(xc1 + yc2)

(x + y + k1)2
+ z(c1 + c2xy)

xy(x + y + k1)

≤ ẏ

y
−

(
xs1 − δ − xs2 − z(xc1 + yc2)

(x + y + k1)2
− z(c1 + c2xy)

xy(x + y + k1)

)

≤ ẏ

y
−

(
δs1 − s1s2

r1
− δ − M0(

s1c1
r1

+ βr1c2
s1s2

)

(2σ + k1)2
− M0(c1 + βc2

s2
)

σ 2(2σ + k1)

)

= ẏ

y
− �1,

where

�1 = δs1 − s1s2
r1

− δ − M0(
s1c1
r1

+ βr1c2
s1s2

)

(2σ + k1)2
− M0(c1 + βc2

s2
)

σ 2(2σ + k1)
;

and

g2 = m1(B22) + |B21|
= ẏ

y
+ 2ẋ

x
− ż

z
− (βx − s2(x + y) − xc1e1k2

(x + y + k1)(z + k2)

+ yc2(z − e2(x+y+k1)k2
z+k2

)

(x + y + k1)2
− ys2 −

β − zc1
(x+y+k1)2

+ s1

x

+
y
(

− xc1e1 + c2e2(x + k1)
)

x + y + k1

≤ ẏ

y
−

(
2yβ − z(c1 + xyc2)

x(x + y + k1)2
− zc3

z + k2

)

≤ ẏ

y
−

(
2σβ − M0(c1 + βc2)

s2

σ(2σ + k1)2
− M0c3

σ + k2

)

= ẏ

y
− �2, where

�2 = 2σβ − M0(c1 + βc2)
s2

σ(2σ + k1)2
− M0c3

σ + k2
.
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Taking � = min(�1, �2), then it is seen that g1 ≤ ẏ
y − �, g2 ≤ ẏ

y − �.

Since, m(B) ≤ sup(g1, g2), we have m(B) ≤ ẏ
y −�. No the average value

of m(B) is given by

1

t

∫ t

0
m(B)ds ≤ 1

t

∫ t

0
m(B)ds + 1

t
log

y(t)

y(0)
− �, (7.2)

which implies

q̄2 = lim sup
t→∞

sup
x∈K

1

t

∫ t

0
B

(
x, (s, E∗)

)
ds ≤ −� < 0 if � > 0,

Hence following Li and Muldowney [58] there exists a compact absorbing
subset K of the simply connected domain D and a non wondering point E∗ .
Hence the proof is completed. ��
Proposition 7.2 The system (2.1) undergoes Hopf bifurcation around the inte-
rior equilibrium point E∗ while the parameter c3 crosses its critical value
c3 = c[hb]

3 in the domain

Dhb =
{
c[hb]
3 ∈ R

+ : H(c[hb]
3 ) = (k1(c3)k2(c3)

−k3(c3))|c3=c[hb]
3

= 0with k2(c
[hb]
3 ) > 0, and

dH(c3)

dc3
|c3=c[hb]

3
�= 0

}
.

Proof The Jacobian matrix at the interior equilibrium E∗ is given by J∗ and
hence the characteristic equation of J∗ is

λ3 + k1λ
2 + k2λ + k3 = 0, (7.3)

where k1, k2 and k3 are defined in the Sect. (7.1).We have (k1k2−k3)|c=c[hb]
3

=
0 is a cubic equation in c[hb]

3 . From (7.3), we get (λ2 +k2)(λ+k1) = 0,which
gives three roots λ1 = i

√
k2, λ2 = −i

√
k2, λ3 = −k1. Here ±i

√
k2 be a pair

of purely imaginary eigenvalues. For all values of λ, the roots are, in general,
of the form λ1 = p(c3) + iq(c3), λ2 = p(c3) − iq(c3), λ3 = −k1(c3).
Differentiating the characteristic Eq. (7.3) with respect to c3, we get

dλ

dc3
= − λ2k̇1 + λk̇2 + k̇3

3λ2 + 2k1λ + k2
|λ=i

√
k2

= k̇3 − k2k̇1 + i k̇2
√
k2

2(k2 − ik1
√
k2)

(7.4)

= k̇3 − (k2k̇1 + k1k̇2)

2(k21 + k2)
+

√
k2(k1k̇3 + k2k̇2 − k1k̇1k2)

2k2(k21 + k2))
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= −
dH
dc3

2(k21 + k2)
+ i

(√
k2k̇2
2k2

− k1
√
k2

dH
dc3

2k2(k21 + k2)

)
. (7.5)

Here d Re(λ)
dc3

∣∣∣
c3=c[hb]

3

= −
dH
dc3

2(k21+k2)

∣∣∣
c3=c[hb]

3

�= 0. Using monotonicity condition

of the real part of the complex root d Re(λ)
dc3

∣∣∣
c3=c[hb]

3

�= 0 (cf. [59]), the transver-

sality condition dH
dc3

�= 0 of the theorem can be established for the existence
of Hopf bifurcation. ��
Lemma 7.1 The system (2.1) undergoes a transcritical bifurcation around the
equilibrium point E2 at δ = δ[tc], where δ[tc] = r1(β−s2)

s1
, provided β > s2.

Proof Writing the governing system (2.1) as dX
dt = f (X), where X =

(x, y, z)T and f (X) = ( f1(X), f2(X), f3(X))T. There is a zero eigenvalue
iff det(J2) = 0, which gives δ = r1(β−s2)

s1
= δ[tc]. The other two eigenval-

ues are −r1,
c1e1r1
r1+k1s1

. Let v and w be the eigenvectors corresponding to zero

eigenvalue of the matrices J2 and (J2)T(transpose of J2) respectively. Then
we have v = (−β+s1

s1
, 1, 0)T and w = (0, 1, 0)T. Since wT fδ(E2, δ

[tc]) =
0, wT[Dfδ(E2, δ

[tc])v] = −1 �= 0 and wT[D2 f (E2, δ
[tc])(v, v)] =

−2β(β+s1−s2)
s1

�= 0 if s1 + β �= s2. It is also found that wT[D3 f (E2, δ
[tc])

(v, v, v)] = 0 unconditionally. Hence, the system experiences neither
Saddle-Node(SN) nor Pitch-fork (PF) bifurcation. But the system experiences
Transcritical (TC) bifurcation near the equilibrium point E2 = ( r1s1

, 0, 0). ��
The expression for Df (U ), D2 f (U ,U ) and D3 f (U ,U ,U ) can be obtained
analytically (cf. Rudin [60]). Hence the system possesses a transcritical bifur-
cation (cf. Sotomayor [61]) at E2.

8 Numerical simulation

Analytical studies can never be completed if numerical verification of the
derived results is not achieved.With the help ofMATLAB-R2011a andMaple-
18 numerical simulation has been carried out. In this section,we have presented
computer simulations of some solutions of the system (2.1). The analytical
findings of the present study are summarized and represented schematically
in Table 1. The disease will be wiped out naturally when infected prey mor-
tality exceeds the value 0.172 and if the value of the parameter c3 decreases
its value from 1.2 to c3 = 0.90894556.2, the system (2.1) undergoes Hopf
bifurcation around interior equilibrium. Local stability occurs around interior
equilibrium when c3 = 1.2. For larger value of s1 = 0.0185, E5 is locally
asymptotically stable.The system experiences Hopf bifurcation around E5 for
s1 = 0.0097669.
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Table 1 Schematic representation of our analytical findings: US ≡ unstable saddle, LAS ≡ locally asymp-
totically stable, GAS ≡ globally asymptotically stable, HB ≡ Hopf bifurcation

Equilibria Feasibility condition Stability conditions Nature

E0 Always No condition US

E1 Infeasible ———— Not necessary

E2 Always ————- US

E3 s1 > s2,βr1 > δs1 + r1s2 ————- US

E4 Infeasible ————- Not necessary

E5 c3 > e1c1 (cf. Sect. (5)) LAS

E5 c3 > e1c1 (cf. Proposition (5.1)) HB

E∗
( c1
c2

− s1
s2

)
>

β
s2

> 1 (cf. Sect. (7.1)) LAS

E∗ Same (cf. Proposition (7.2)) GAS

E∗ Same (cf. Proposition (7.2)) HB

E∗ Same (cf. Proposition (6.1)) Persistent

9 Discussion

In present paper, an eco-epidemiological model is considered with hyperbolic
mortality rate of predator population. Here an infectious disease is assumed
and it is transmitted only in prey population. We have also assumed that prey
population does not reproduce, but compete with the susceptible prey popu-
lation for the same resources. The mode of disease spread follows a simple
mass action law.

It is observed that our system is bounded and possesses seven equilibria. The
equilibrium point E0, where there is the extinction of all species, exists and
is unstable. The equilibrium point E2 corresponds to extinction of infected
prey and predator populations E2 exists and it is unstable. The equilibrium
point E3 corresponds to the absence of predator population exists if s1 > s2
and βr1 > δs1 + r1s2 and it also unstable. Furthermore, the equilibrium point
E5 corresponds to nonexistence of infected prey population. Also E5 exists if
c3 > e1c1 and is locally asymptotically stable under some conditionsm22 < 0,
m11 +m33 < 0, m11m33 −m31m13 > 0. Figure 1 indicates that infected prey
population goes to extinction. The system undergoes Hopf bifurcation around
E5 as the parameter s1 crosses its critical value s

[hb]
1 (see Fig. 2). The system

(2.1) experiences transcritical bifurcation at E2 with respect to the parameter
δ.

The positive equilibrium point E∗ is locally asymptotically stable if the
Routh–Hurwitz criterion is satisfied. Stability of positive equilibrium point out
of that the existence and survival of all species in the ecosystem (see Fig. 3).
From the Biological point of view this equilibrium point is very important as it
provides actual interaction among all species of the system.Under this situation
actual balance is maintained in ecosystem. For this reason ecologists feel inter-
ested to observe the stability of positive coexistence equilibrium. The system
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Fig. 1 Stability behaviour around the equilibrium position E5 of the system (2.1) with the initial conditions
x0 = 40, y0 = 10, z0 = 270 and parameter values r = 3.25, k1 = 200, k2 = 150, c1 = 2.5, c2 =
2.84, c3 = 0.4, s1 = 0.0185, s2 = 0.0042, β = 0.0098, δ = 0.56, e1 = 0.70, e2 = 0.49. a Time
series evolution. b Phase portrait diagram
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Fig. 2 Hopf bifurcation behaviour around the equilibrium position E5 of the system (2.1) with the initial
conditions x0 = 40, y0 = 10, z0 = 270 and parameter values r = 3.25, k1 = 200, k2 = 150, c1 =
2.5, c2 = 2.84, c3 = 0.4, s1 = 0.0097669, s2 = 0.0042, β = 0.0098, δ = 0.56, e1 = 0.70, e2 = 0.49.
a Time series evolution. b Phase portrait diagram

experiences Hopf bifurcation around interior equilibrium E∗ which is shown
in Fig. 4. Conditions for persistence of the system are β(γ1 + γ2 + δ) > γ2s2
and s1c3(k1 + x5) < r1c1e1, βx5 > s2x5 + δ. Global stability around the
co-existence equilibrium E∗ is also investigated with the help of Lozinskiǐ
measure. Also Fig. 4 shows that the predator population coexists with sus-
ceptible and infected prey exhibiting oscillatory balance behavior for the set
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Fig. 3 Stability behaviour of the system (2.1) around the equilibrium position E∗ with the initial conditions
x0 = 170, y0 = 10, z0 = 150 and parameter values r = 3.25, k1 = 200, k2 = 150, c1 = 2.5, c2 =
2.84, c3 = 1.2, s1 = 0.0055, s2 = 0.0042, β = 0.0496, δ = 0.56, e1 = 0.70, e2 = 0.49. a Time
series evolution. b Phase portrait diagram
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Fig. 4 Hopf bifurcation behaviour around the equilibrium position E∗ of the system (2.1) with the initial
conditions x0 = 48, y0 = 29, z0 = 149 and parameter values r = 3.25, k1 = 200, k2 = 150, c1 =
2.5, c2 = 2.84, c3 = 0.90894556, s1 = 0.0055, s2 = 0.0042, β = 0.0496, δ = 0.56, e1 = 0.70, e2 =
0.49. a Time series evolution. b Phase portrait diagram

of system parameters: r = 3.25, k1 = 200, k2 = 150, c1 = 2.5, c2 =
2.84, c3 = 0.90894556, s1 = 0.0055, s2 = 0.0042, β = 0.0496, δ =
0.56, e1 = 0.70, e2 = 0.49. In the real world system, the population dynam-
ics certainly affected by environmental fluctuations. Natural disaster, climate
change, pollution also regulate the stability of the ecosystem and then interior
stable equilibriummay loose the stability in some ecosystems, which are prone
to face such calamities.We have derived parametric restriction βr1

s1
< δ to con-

trol disease naturally. The parameter associated with this model plays a key
role for ecological balance. The future work may be carried out to extend the
paper assuming that the disease can spread horizontally as well as vertically
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in the predator population with some delay factors like gestation or maturity
delays.
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10 APPENDIX

The coefficients of the Eq. (4.1) are as follows:

A1 = β2(c2 − c1)(β + s1 − s2)
(
(β(c2c3 − c1(c2(e1 − e2) + c3))) + (c1e1 − c2e2)

×(c1s2 − c2s1)
)
,

3B1 = c31e1
{
r1 (β − s2)

(
(β − s2) (c2k2 + δk1) + δ2

) − δs1
(
(β − s2) (δk1 − 2c2k2) + δ2

)}
+ c21

{
c2e1

{−2r1s1
(
c2k2 (s2 − β) + δ2

) + δs21 (c2k2 − δk1)

+ r21 (β − s2) (2δ + k1 (β − s2))
} +c3 (δ + k1 (β − s2))

2 (r1 (s2 − β) + δs1)
}

+ c2c1
{
c2e1r1

(
s21 (c2k2 − δk1) − r1s1 (δ + k1 (s2 − β)) + r21 (β − s2)

)
− 2c3 (k1s1 + r1) (δ + k1 (β − s2)) (r1 (β − s2) − δs1)}
+ c41δe1k2 (β − s2)

2 + c22c3 (k1s1 + r1)
2 (r1 (s2 − β) + δs1) ,

3C1 = e1k2s2 (s2 − β) 2c41 − {
e1 (β (β − s2) + s1 (2β + s2)) δ2 + e1 (s2 − β) (r1 (β + s2)

− k1 (β (β − s2) + s1 (β + s2))) δ + (s2 − β) (e1k1r1 (β − s2) s2

+ c2k2
(
e2 (s2 − β) 2 + e1

(−β2 − s1β + s2β + 3s1s2
)))}

c31

+ {
k2s1

(
3e2 (s2 − β) 2 + e1 (2β (s2 − β) + s1 (3s2 − 2β))

)
c22

+ (
e1

((
β2 − s22

)
r21 − 2k1 (β + s1) (s2 − β) 2r1 − 4βδ (β + s1 − s2) r1

+ δs1 (2βδ + s1δ − 2k1s1s2)) − e2 (s2 − β) (k1 (s2 − β) − δ)

× (δs1 + r1 (s2 − β))) c2 + βc3 (δ + k1 (β − s2)) (δ (β + 3s1 − s2)

+ (2r1 − k1 (β + s1 − s2)) (s2 − β))} c21 + c2
{−c22k2 (e1 (β + s1)

+ 3e2 (s2 − β)) s21 + 2βc3
(−s1δ

2 + 2
(
k1s

2
1 + r1 (β + s1 − s2)

)
δ

+ (s2 − β)
(−s1 (β + s1 − s2) k

2
1 + 2r1 (s2 − β) k1 + r21

))
+ c2 (δe1s1 (k1s1 (β + s1) + r1 (2β + s1)) + e2 (δs1 + r1 (s2 − β))

× ((r1 + 2k1s1) (s2 − β) − δs1) + e1r1 (k1s1 (s1 (s2 − 2β) + 2β (s2 − β))

+ r1 (s1 (s2 − 2β) + 3β (s2 − β))))} c1 + c22
{
c22e2k2s

3
1

− c2e2 (r1 + k1s1) (δs1 + r1 (s2 − β)) s1

+ βc3 (r1 + k1s1) (−2δs1 + k1 (β + s1 − s2) s1 + r1 (3β + s1 − 3s2))} ,

D1 = c31e1 {c2k2 (s2 − β) (−βr1 + r1s2 − 2δs1) + δ (−δ − βk1 + k1s2)

× (−βr1 + r1s2 + δs1)} + c21
{
c22e1k2s1 (2βr1 − 2r1s2 + δs1)

+c2e1 (−βr1 + r1s2 + δs1) (k1r1 (s2 − β) − δ (k1s1 + 2r1))

+c3 (δ + βk1 − k1s2)
2 (−βr1 + r1s2 + δs1)

}
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+c2c1
{−c2e1r1 (k1s1 + r1) (−βr1 + r1s2 + δs1) + c22e1k2r1s

2
1

−2c3 (k1s1 + r1) (−δ − βk1 + k1s2) (−βr1 + r1s2 + δs1)}
+c41δe1k2 (s2 − β)2 + c22c3 (k1s1 + r1)

2 (r1 (s2 − β) + δs1) .
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