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Abstract
The competitive interaction of tumor-immune system is very complex. We aim to
establish a simple and realistic mathematical model to understand the key factors that
impact the outcome of an antitumor response. Based on the principle that lymphocytes
undergo two stages of development (namely immature and mature), we develop a
new anti-tumor-immune response model and investigate its property and bifurcation.
The corresponding sufficient criteria for the asymptotic stabilities of equilibria and
the existence of stable periodic oscillations of tumor levels are obtained. Theoretical
results indicate that the system orderly undergoes different states with the flow rate of
mature immune cells increasing, from the unlimited expansion of tumor, to the stable
large tumor-present equilibrium, to the periodic oscillation, to the stable small tumor-
present equilibrium, and finally to the stable tumor-free equilibrium, which exhibits a
variety of dynamic behaviors. In addition, these dynamic behaviors are in accordance
with some phenomena observed clinically, such as tumor dormant, tumor periodic
oscillation, immune escape of tumor and so on. Numerical simulations are carried out
to verify the results of our theoretical analysis.
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1 Introduction

According to the report of the World Health Organization, it was estimated that about
14 million cancer cases and 8.8 million cancer-related deaths in 2015. The number of
new cases is expected to rise about 70% over the next 2 decades [1]. In particular, in
China, about 4,292,000 new cancer cases diagnosed and 2,814,000 cancer deaths in
2015. Cancer remains the second most common cause of death, accounting for nearly
1 of every 4 deaths [2]. Hence, it is very important and requisite to find out the dynamic
mechanism of initiation and development of tumor.

The growth of a cancerous tumor in vivo is a complicated process involvingmultiple
biological interactions. In recent years, growing evidences have indicated that the
immune system can recognize and eliminate malignant tumors [3,4]. The anti-tumor
immune response beginswhen tumor cells are recognized as being alien. The cytotoxic
T lymphocyte (CTL) are able to penetrate tumor parenchyma and recognize tumor-
associated antigen, and correctly choose antigen for immunization. Hence, The tumor
cells are killed by the cytotoxic T lymphocyte which can be found in all tissues in the
body and in circulating blood stream [5]. Although much research has concentrated
on how to strengthen the anti-tumor response by stimulating the immune system with
vaccines or by direct injection of T cell or cytokines, the role of the immune system
in the elimination of cancerous tissue is not fully understood [6–12].

To understand the interactions of immune system with tumor, many mathematical
models have been established to investigate the tumor immune dynamics [13–23].
Bell applied the classic predator-prey interaction system to describe the response of
effector cells to the growth of tumor cells [24]. Kuznetsov et al. [25] took into account
the penetration of tumor cells by effector cells and presented a mathematical model of
CTL cells response to the growth of immunogenic tumor, which exhibited a number
of phenomena that were observed in vivo, including “sneaking through” and “dormant
state” of the tumor. Moreover, the parameters of the targeted model were estimated
by using the experimental data of chimeric mice. Pillis et al. [26–28] applied mathe-
matical model to investigate the mechanisms of interaction between tumor cells and
various immune effector cells, and applied the numerical calculations to discuss the
treatment effects of different therapeutic regimens. Liu et al. [29] developed a math-
ematical model of tumor cells eliciting an immune response proposed by DeLisi and
Rescigno [30] to investigate the dynamics of tumor and immune system interactions.
Liu andRuanmademore realistic assumptions onmodel by requiring that lymphocytes
go through two stages of development, namely immature andmature, and claimed that
only lymphocytes in the second stage are effective in killing tumor cells. Our aim is to
develop a simple and realistic mathematical model to reflect the phenomena observed
clinically, and understand the key factors that impact the outcome of an antitumor
response as clearly as possible.

The rest of the paper is organized as follows. A new model of ordinary differential
equation is constructed to describe the interaction of tumor cell with T lymphocyte
in Sect. 2. The qualitative and bifurcation analysis of the mathematical model are
investigated in Sect. 3. Numerical simulations are carried out to illustrate the stability
of equilibriums and the existence of stable periodic solution in Sect. 4. Finally, the
conclusions are summarized in Sect. 5.
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2 Construction of themathematical model

In this paper, we follow the ideas of modelling immune reaction against the tumor pre-
sented by [29,30], and prefer to construct a simple but reasonable mathematical model
to describe some phenomena observed clinically, such as immune escape of tumor,
tumor dormant, periodic oscillations and so on. In order to facilitate the research, we
denote the number of immature T lymphocytes, the number of mature T lymphocytes
and the number of tumor cells as L1(t), L2(t) and T (t), respectively, and make the
following reasonable assumptions:

(a) A tumor admits an exponential growth model in the absence of an immune
response. This is an accepted growth model for tumors, which is also able to
fit and explain the tumor growth data [31]. The tumor growth rate is denoted by
λ2.

(b) Only mature T lymphocytes are capable of killing tumor cell [29,30]. The interac-
tion term between tumor and the mature T lymphocytes takes the form of α2T L2,
which is similar to a bilinear incidence rate in the epidemic dynamics, where α2
is the rate of tumor cells killed by mature T lymphocytes.

(c) Inactivation of cytolytic potential occurs when the mature T lymphocytes have
interacted with tumor cells several times and ceases to be effective [13].We denote
the inactivation rate of the mature T lymphocytes by α3.

(d) The mature T lymphocytes are absolutely derived from the young lymphocytes.
The transformation rate from the immature T lymphocytes to the mature T lym-
phocytes is λ1.

(e) The immature T lymphocytes are normally present in the body, even when no
tumor cells are present, since they are part of the innate immune response [32]. In
the absence of tumor cells, the young lymphocytes can be produced at a fixed rate
μ from hemopoietic system.

(f) Due to the presence of the tumor, the immature lymphocytes can be proliferated
by the stimulation of tumor cells [25]. Moreover, by fitting experimental data,
Kuznetsov and Taylor suggested that the recruitment term should be described by
α1

T L2
η+T , which is aMichaelis-Menten term, commonly used in anti-tumor immune

response models to govern cell-to-cell interactions [5,15,27], where α1 is the max-
imum recruitment rate.

From the above assumptions, the flowchart of model is depicted in Fig. 1. The
transfer diagram leads to the following model:

⎧
⎪⎨

⎪⎩

dL1
dt = μ − λ1L1 + α1

T L2
η+T ,

dL2
dt = λ1L1 − α3L2,
dT
dt = λ2T − α2T L2,

(1)

To facilitate discussion, we denote μ = λ0L0. System (1) is rewritten as the fol-
lowing
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Fig. 1 Flowchart of system (1)

⎧
⎪⎨

⎪⎩

dL1
dt = −λ1(L1 − λ0

λ1
L0) + α1

T L2
η+T ,

dL2
dt = λ1L1 − α3L2,
dT
dt = λ2T − α2T L2,

(2)

3 Qualitative and bifurcation analysis

3.1 Existence of equilibria

For the convenience of discussion, we make the following substitutions to simplify
system (2). Substituting L1 − λ0

λ1
L0 = α1

α2
x , L2 = λ1

α2
y, T = ηz and t = 1

λ1
τ , we have

the corresponding simplified system

⎧
⎨

⎩

dx
dτ

= −x + yz
1+z ,

dy
dτ

= αx − β y + γ,
dz
dτ

= δz − zy,
(3)

where α = α1
λ1
, β = α3

λ1
, γ = α2λ0

λ21
L0 and δ = λ2

λ1
.

It is easy to see that system (3) has two equilibria. In fact, the tumor-free equilibrium
E1(0, λ

β
, 0) always exists and the tumor-present equilibrium E2(

βδ−γ
α

, δ,
βδ−γ

γ+αδ−βδ
)

exists if and only ifmax{0, (β−α)δ} < γ < βδ.We can list the result in the following
Table 1.

Next, we give some theoretical results of system (3).

3.2 Stability of equilibria

Theorem 1 The tumor-free equilibrium E1 is asymptotically stable if γ > βδ , other-
wise it is not stable.
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Table 1 Existence of equilibria Conditions Existence of equilibria

0 < β < α

0 < γ < βδ E1, E2
β > α > 0

0 < γ < (β − α)δ E1
(β − α)δ < γ < βδ E1, E2

α, β > 0

γ > βδ E1

Fig. 2 The phase diagram of the
system (3) shows that the
tumor-free equilibrium E1 is a
saddle-focus point, where β > α

and 0 < γ < (β − α)δ

Proof The Jacobian matrix at E1 of system (3) is

J (E1) =
⎡

⎣

−1 0 γ
β

α −β 0
0 0 δ − γ

β

⎤

⎦ .

The characteristic equation of J (E1) is

f (λ) = (λ + 1)(λ + β)[λ − (δ − γ

β
)] = 0.

Obviously, the eigenvalues of J (E1) are

⎧
⎨

⎩

λ1 = −1,
λ2 = −β,

λ3 = − γ−βδ
β

,

respectively. Clearly, all these eigenvalues are negative when γ > βδ. Therefore, the
tumor-free equilibrium E1 is locally asymptotically stable if γ > βδ and unstable if
γ < βδ. ��

Remark When β > α and 0 < γ < (β − α)δ, system (3) only has one equilibrium,
i.e., a tumor-free equilibrium E1. In addition, J (E1) has two negative eigenvalues and

123



478 L. Pang et al.

one positive eigenvalue, then the tumor-free equilibrium E1 is unstable. In this case,
the tumor-free equilibrium E1 is a saddle-focus point with a stable two-dimensional
subspace εs and an unstable one-dimensional subspace εμ. Hence, from Fig. 2, we
know that lim

t→+∞ z(t)→ +∞ [33].

In order to investigate the stability of the tumor-present equilibrium E2, we discuss
the following two cases:

(I) The first case: β < α

In this case, the existing condition of E2 is 0 < γ < βδ.

Theorem 2 The tumor-present equilibrium E2 is locally asymptotically stable if γ ∗
1 <

γ < βδ and unstable if 0 < γ < γ ∗
1 . Wherein, γ ∗

1 is the only positive root of the
equation

f (γ ) = γ 2 + (α + αβ + αδ − 2βδ)γ + β(β − α)δ2 = 0. (4)

Proof The Jacobian matrix of system (3) at E2 is

J (E2) =
⎡

⎣
−1 z2

1+z2
y2

(1+z2)2

α −β 0
0 −z2 0

⎤

⎦ .

The characteristic equation of system (3) is given by

g(λ) = λ3 + A1λ
2 + A2λ + A3 = 0, (5)

where
A1 = 1 + β,

A2 = γ

δ
,

A3 = (βδ − γ )(γ − βδ + αδ)

αδ
,

A1A2 − A3 = αγ (1 + β) − (βδ − γ )(γ − βδ + αδ)

αδ

= γ 2 + (α + αβ + αδ − 2βδ)γ + β(β − α)δ2

αδ

= f (γ )

αδ

(6)

It is clear that A1 > 0, A2 > 0, A3 > 0 if 0 < γ < βδ and β < α. Since
f (0) = β(β − α)δ2 < 0 and f (βδ) = α(1 + β)βδ > 0, the characteristic equation
of system (3) has only one positive root which is denoted by γ ∗

1 . Clearly, γ
∗
1 < βδ.

In addition, f (γ ) > 0 when γ ∗
1 < γ < βδ, which admits A1A2 − A3 > 0 (see

Fig. 3). Therefore, the tumor-present equilibrium E2 is locally asymptotically stable
if γ ∗

1 < γ < βδ and unstable if 0 < γ < γ ∗
1 . ��

(II) The second case: β > α
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Fig. 3 The figure of the
quadratic function f (γ ), where
β < α

Fig. 4 The figure of the
quadratic function f (γ ), where
β > α and δ∗ > δ

Obviously, E2 exists only when (β −α)δ < γ < βδ and the characteristic equation
of system (3) is (5). Similarly,we know that A1, A2, A3 > 0 and the sign of A1A2−A3
is determined by the sign of f (γ ). We need to ascertain the sign of f (γ ).

From Eq. (4), we have

f ((β − α)δ) = α(1 + β)(β − α)δ > 0,

f (βδ) = α(1 + β)βδ > 0.

For the sake of convenience, we note δ∗ � α(1+β)
2β−α

. In the following, we take into
account two cases:

(1) When 0 < δ ≤ δ∗, i.e.,α+αβ +αδ−2βδ ≥ 0, the symmetry axis of the quadratic
function f (γ ) locates at the left-hand side of the curve γ = 0 or is just the curve
γ = 0. When (β − α)δ < γ < βδ, f (γ ) > 0 is always correct (see Figure 4).

(2) When δ > δ∗, i.e., α + αβ + αδ − 2βδ < 0, the symmetry axis of the quadratic
function (4) lies on the right-hand side of the curve γ = 0.

From the discriminant of the quadratic equation f (γ ) = 0, we have

h1(δ) = (α + αβ + αδ − 2βδ)2 − 4β(β − α)δ2

= α[α + αβ2 + αδ2 + 2αβ + 2αδ + 2αβδ − 4βδ − 4β2δ]
= α2δ2 + 2[α2(1 + β) − 2αβ(1 + β)]δ + α2(1 + β)2

= α2δ2 + 2(1 + β)(α − 2β)αδ + α2(1 + β)2.

(7)
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Fig. 5 The figure of quadratic
function h1(δ), where β > α

Then,

h1(δ
∗) = α4(1 + β)2

(2β − α)2
− 2α2(1 + β)2 + α2(1 + β)2

= α2(1 + β)2[ α2

(β − α)2
− 1]

= 4α2β(1 + β)2

2β − α
(α − β) < 0.

(8)

In addition, from the discriminant of the quadratic equation h1(δ) = 0

Δ = 4(1 + β)2α2(α − 2β)2 − 4α4(1 + β)2

= 4α2(1 + β)2[α2 − 4αβ + 4β2 − α2]
= 16βα2(1 + β)2(β − α) > 0,

(9)

we know that the quadratic equation h1(δ) = 0 has two roots

δ1 = (1 + β)[2β − α − √
β(β − α)]

α

δ2 = (1 + β)[2β − α + √
β(β − α)]

α
.

Obviously, δ1 < δ∗ < δ2. We know that h1(δ) < 0 if δ∗ < δ < δ2 (see Fig. 5), then
f (γ ) > 0. Hence, we can give the following result:

Theorem 3 The tumor-present equilibrium E2 is locally asymptotically stable if β >

α, 0 < δ < δ2 and (β − α)δ < γ < βδ.

Furthermore, if δ > δ2, h1(δ) > 0. Then, the equation f (γ ) = 0 has two positive
roots at the interval [(β − α)δ, βδ]

γ ∗
2 = 2βδ − α − αβ − αδ − √

h1(δ)

2
, γ ∗

3 = 2βδ − α − αβ − αδ + √
h1(δ)

2
.
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Fig. 6 The figure of the
quadratic function f (γ ), where
β > α and δ > δ2

Obviously, when β > α, δ > δ2, we have (β − α)δ < γ ∗
2 < γ ∗

3 < βδ. Furthermore,
f (γ ) > 0 if γ ∈ ((β − α)δ, γ ∗

2 ) or γ ∈ (γ ∗
3 , βδ) and f (γ ) < 0 if γ ∈ (γ ∗

2 ∗, γ ∗
3 ) and

f (γ ) = 0 if γ = γ ∗
2 or γ = γ ∗

3 (see Fig. 6). Hence, we can draw the conclusion as
follows.

Theorem 4 If β > α and δ > δ2, the tumor-present equilibrium E2 is locally asymp-
totically stable when γ ∈ ((β − α)δ, γ ∗

2 ) or γ ∈ (γ ∗
3 , βδ) and unstable when

γ ∗
2 < γ < γ ∗

3 .

3.3 Analysis of hopf bifurcation

From Theorem 2, we know that if γ = γ ∗
1 , i.e., A1A2 − A3 = 0, J (E2) has one

negative eigenvalue λ = −A1 and two purely imaginary eigenvalues λ2,3 = ±ωi
(where ω = √

A2 > 0), which suggests that system (3) may undergoes a Hopf
bifurcation around the equilibrium E2. Here, we explore the existence of the Hopf
bifurcation. First of all, we quote a useful lemma [34–37].

Lemma 1 Let Ω ∈ R
3 be an open set containing O(x1, x2, x3) and let S ⊆ R be

an open set with 0 ∈ S. Let f : Ω × S → R
3 be an analytic function such that

f (0, ρ) = 0 for any ρ ∈ S. Assume that the variational matrix D f (0, ρ) of f has one
real eigenvalue γ (ρ) and two conjugate imaginary eigenvalues α(ρ) ± iβ(ρ) with
γ (0) < 0, α(0) = 0, β(0) > 0. Furthermore, suppose that the eigenvalues cross the
imaginary axis with nonzero speed, that is, dα(0)

dρ
�= 0. Then the following differential

system
Ẋ = f (X , ρ)

undergoes a Hopf bifurcation near the equilibrium point O at ρ = 0.

Here we choose the intrinsic growth rate γ as the perturbation parameter. Without
loss of generality, we set γ (ρ) = γ ∗

1 + ρ, where γ (0) = γ ∗
1 satisfies that (A1A2 −

A3)|ρ=0 = 0. We also need to determine the sign of the real part of dλ
dρ

at ρ = 0 when
the above equation is valid. Differentiating Eq. (5) with respect to ρ, we have

3λ2
dλ

dρ
+ 2A1λ

dλ

dρ
+ 1

δ
λ + A2

dλ

dρ
+ −(2γ − 2βδ + αδ)

αδ
= 0. (10)
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which leads to
dλ

dρ
= −αλ − (2γ − 2βδ + αδ)

αδ(3λ2 + 2A1λ + A2)
. (11)

Thus

Vc = sign{−Re(
dγ

dρ
|ρ=0)}

= sign{−Re(
αωi − (2γ − 2βδ + αδ)

αδ(−3A2 + 2A1ωi + A2)
|γ=γ ∗

1
)}

= sign{−Re(
αωi − (2γ − 2βδ + αδ)

−A2 + A1ωi
|γ=γ ∗

1
)}

= sign{−[2γ + α(1 + β) + αδ − 2βδ]|γ=γ ∗
1
}

= sign{−d f (γ )

dγ
|γ=γ ∗

1
}

= −1,

which also can be seen from Fig. 3. Hence, we have the following result:

Theorem 5 If β < α and γ = γ ∗
1 , system (3) undergoes a non-degenerate Hopf

bifurcation at the tumor-present equilibrium E2.

From the proof of Theorem 4, A1A2 − A3 = 0 if γ = γ ∗
2 or γ = γ ∗

3 . Similarly,
we know that J (E2) has one negative eigenvalue λ = −A1 and two purely imaginary
eigenvalues λ2,3 = ±ωi (where ω = √

A2 > 0). Through the same calculation
process, we know that when γ = γ ∗

2 , transversality condition VC = −1, and when
γ = γ ∗

3 , transversality condition VC = −1. Hence, we have

Theorem 6 If α < β, δ > δ2 and γ = γ ∗
2 or γ = γ ∗

3 , system (3) undergoes a
non-degenerate Hopf bifurcation at the tumor-present equilibrium E2.

The results of Theorems 1–6 are listed in Table 2.

4 Numerical simulations

In this section,wewill choose suitable parameters of system (3) to numerically validate
the theoretical conclusions obtained in the previous sections.Without loss of generality,
we only present numerical results of the second case (i.e., β > α). We take the values
of α and β as 0.3 and 0.6, respectively. By calculating, we obtain δ2 = 9.325. Hence,
we take δ = 10 > δ2, then the quadratic equation f (γ ) = 0 have two positive roots,
i.e., γ ∗

2 = 3.88 and γ ∗
3 = 4.64. Moreover, (β − α)δ = 3 and βδ = 6. Next, we

will apply the results of numerical simulation to exhibit the variation rules of system
states with the normal flow rate of T lymphocyte γ increasing, and to illustrate some
biological phenomena observed clinically.

1. Choose α = 0.3, β = 0.6, δ = 10 and γ = 2, then γ < (β − α)δ. Hence,
from Theorem 1 and Remark, we know that the tumor-free equilibrium E1 is a
saddle-focus point. Hence, the number of tumor cells goes to infinity (see Fig. 7).
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Table 2 Properties of equilibria Conditions Properties of equilibria

E1 E2

0 < β < α

0 < γ < γ ∗
1 Unstable Unstable

γ ∗
1 < γ < βδ Unstable Stable

γ = γ ∗
1 Unstable Hopf bifurcation

β > α > 0

0 < γ < (β − α)δ Unstable Inexistence

0 < δ < δ2

(β − α)δ < γ < βδ Unstable Stable

δ > δ2

(β − α)δ < γ < γ ∗
2 Unstable Stable

γ ∗
2 < γ < γ ∗

3 Unstable Unstable

γ ∗
3 < γ < βδ Unstable Stable

γ = γ ∗
2 or γ = γ ∗

3 Unstable Hopf bifurcation

α, β > 0

γ > βδ Stable Inexistence

Time(day)
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x(
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Time(day)
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y(
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0 5 10 15 20 0 5 10 15 20
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z(
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×1025

0
5

2z(
t)

×1025

4

 y(t)

10 5

x(t)
1015 15

Fig. 7 The figure indicates that the number of tumor cells increases without restriction, which is in accord
with the immune escape phenomena of tumor observed clinically, where α = 0.3, β = 0.6, γ = 2, δ = 10

2. Choose α = 0.3, β = 0.6, δ = 10 and γ = 3.5, then (β − α)δ < γ <

γ ∗
2 ⇒ f (γ ) > 0. Hence, from Theorem 3, we know that the large tumor-present

equilibrium E2 is asymptotically stable (see Fig. 8).
3. Choose α = 0.3, β = 0.6, δ = 10 and γ = 4, then γ ∗

2 < γ < γ ∗
3 ⇒ f (γ ) < 0.

Hence, from Theorem 6, we know that a limit cycle will bifurcate from the tumor-
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Fig. 8 The figure exhibits the large tumor-present equilibrium E2 is asymptotically stable,which is lined
with the state of the dormancy tumor observed clinically and means that the level of the tumor cells does
not change, where α = 0.3, β = 0.6, γ = 3.5, δ = 10
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Fig. 9 The figure shows that system (3) occurs a periodic orbit around E2, which in accord with the
oscillatory phenomena in tumors observed clinically, where α = 0.3, β = 0.6, γ = 4, δ = 10

present equilibrium E2 by perturbing the value of parameters γ near 4.64, which
indicates that a periodic orbit of system (3) occurs at E2 (see Fig. 9).

4. Choose α = 0.3, β = 0.6, δ = 10 and γ = 5, then γ ∗
3 < γ < βδ ⇒ f (γ ) > 0.

Hence, from Theorem 4, we know that the small tumor-present equilibrium E2 is
asymptotically stable (see Fig. 10).

5. Choose α = 0.3, β = 0.6, γ = 6.2, δ = 10, then it is easy to know γ > βδ. From
Theorem 1, we know that the tumor-free equilibrium E1 is asymptotically stable
(see Fig. 11).
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Fig. 10 The figure illuminates the small tumor-present equilibrium E2 is asymptotically stable, which is in
accord with the state of the dormancy tumor observed clinically and means that the level of the tumor cells
does not change [25], where α = 0.3, β = 0.6, γ = 5, δ = 10 respectively
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Fig. 11 The figure clarifies the tumor-free equilibrium E1 is asymptotically stable if parameters are taken as
α = 0.3, β = 0.6, γ = 0.6, δ = 0.8, which is in accord with the spontaneous tumor regression phenomena
observed clinically

5 Discussion

In this paper, choosing γ as key parameter, we proposed a two-stage model of tumor
immune response and studied the effect of immune system on inhibiting tumor growth
based on themechanism and characteristics of anti-tumor immune response. Two cases
are discussed to investigate the dynamic behavior of system (3).
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Fig. 12 For β < α, the figure
exhibits the rules of variation of
system states with the normal
flow rate of T lymphocyte γ

increasing

Fig. 13 For β > α, the figure
represents the rules of variation
of system states with the normal
flow rate of T lymphocyte γ

increasing

For the first case (i.e., β < α), the states of system (3) successively undergo several
changes, from unstable equilibria, to periodic oscillation, to the stable tumor-present
equilibrium and to the stable tumor-free equilibrium (see Fig. 12). In other word,
in consistent with oscillatory growth phenomena of tumors observed clinically, the
number of tumor cells exhibits periodic oscillation when the strength of the immune
response to tumor is relatively weak, and the immune cells and tumor cells will reach
a positive equilibrium state as the anti-tumor immune response strengthens. Further-
more, the tumor will be eventually eliminated only if the normal flow rate of immune
cells become stronger (i.e., γ > βδ).

For another case (i.e., β > α), we obtain more plentiful kinetic properties (see
Fig. 13). In this case ,we obtain four threshold values of the normal flow rate of immune
cells γ , which are (β − α)δ, γ ∗

2 , γ ∗
3 and βδ, respectively. When the normal rate of

flow of immune cells γ is less than threshold value (β − α)δ, the tumor cells will
increase uncontrollably, which indicates that tumors development are not controlled
by the immune system any longer, which in accord with immune escape phenomena
observed clinically (see Fig. 7). When the flow rate of immune cells γ is in between
(β − α)δ and γ ∗

2 , a large tumor-present equilibrium is stable (see Fig. 8). The tumor
dormancy phenomena can be observed by numerical simulation. Furthermore, when
parameter value γ is in the interval [γ ∗

2 , γ ∗
3 ], system (3) brings birth a periodic orbit

(see Fig. 9), which indicates that the number of tumor cells will exhibit periodic
oscillations. As the parameter value γ increase continually (i.e., γ ∈ (γ ∗

3 , βδ)), a
small tumor-present equilibrium is stable (see Fig. 10). Finally, when the normal rate
of flow of immune cells γ is more than threshold value βδ, the tumor will be ultimately
extinct (see Fig. 11). It can be seen that our results are quite realistic.

Although the mathematical model is simple, the system exhibits rich dynamic
properties, which can make some phenomena observed clinically very clear, such
as immune escape of tumor, tumor dormant, oscillatory growth patterns in tumors,

123



Mathematical modeling and dynamic analysis of anti-tumor… 487

spontaneous tumor regression and so on. Numerical simulations are carried out to
verify the results of our theoretical analysis.
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