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Abstract
In this paper, we present a new numerical methods for solving large-scale differ-
ential Sylvester matrix equations with low rank right hand sides. These differential
matrix equations appear in many applications such as robust control problems, model
reduction problems and others. We present two approaches based on extended global
Arnoldi process. The first one is based on approximating exponential matrix in the
exact solution using the global extended Krylov method. The second one is based on a
low-rank approximation of the solution of the corresponding Sylvester equation using
the extended global Arnoldi algorithm. We give some theoretical results and report
some numerical experiments to show the effectiveness of the proposed methods com-
pared with the extended block Krylov method given in Hached and Jbilou (Numer
Linear Algebra Appl 255:e2187, 2018).
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1 Introduction

In this paper, we consider the differential Sylvester matrix equation (DSE in short) of
the form {

Ẋ(t) = AX(t) + X(t)B + EFT , t ∈ [t0, T f ]
X(t0) = X0

(1)

where A ∈ R
n×n , B ∈ R

p×p, and E ∈ R
n×s , F ∈ R

p×s , are full rank matrices, with
s � n, p. The initial condition is given in a factored form as X0 = Z0 Z̃ T

0 and the
matrices A and B are assumed to be large and sparse.

Differential Sylvester matrix equations play a fundamental role in many problems
in control, filter design theory, model reduction problems, differential equations and
robust control problems; see, e.g., [1,13,19] and the references therein.

The exact solution of the differential Sylvester matrix Eq. (1) is given by the fol-
lowing result.

Theorem 1 [1] The unique solution of the differential Sylvester equations (1) is defined
by

X(t) = e(t−t0)AX0e
(t−t0)B +

∫ t

t0
e(t−τ)AEFT e(t−τ)Bdτ. (2)

There are several methods for solving small or medium-sized differential Sylvester
matrix equations. One can see, for example backward differentiation formula (BDF)
and Rosenbrock method [12,31].

During the last years, there is a large variety of methods to compute the solution of
large scalematrix differential equations such as differential Lyapunovmatrix equation,
differential Sylvester equation and Riccati differential equation. For more details see
[4,5,7,18,19,26–28,35]. For large-scale problems, the effective methods are based
on Krylov subspaces. Some methods have been proposed for solving large matrix
equation, see, e.g., [2,8,9,18–20,34]. The main idea employed in these methods is
to use a extended Krylov subspace and then apply the Galerkin-type orthogonality
condition. In [19], Jbilou andHached are presented two approaches to solving the large
differential Sylvester matrix equation, by using the block extended Krylov subspaces.
The main idea in this work is using the extended global Krylov subspaces to solve (1).

The rest of the paper is organized as follows. In the next section, we give expres-
sion based on the global Arnoldi process of the unique solution X(t) of the differential
Sylvester matrix Eq. (1). In Sect. 3, we recall the extended global Arnoldi algorithm
with some of its properties. In Sect. 4, we defined EGA-expmethod based on extended
global Krylov subspaces and quadrature method to approximate matrix exponential
and computing numerical solution of Eq. (1). In Sect. 5, we present a low-rank approx-
imation of solution of differential Eq. (1) using projection onto extended global Krylov
subspaces Kg

m(A, E) and Kg
m(BT , F). Finally, Sect. 6 is devoted to numerical exper-

iments showing effectiveness of proposed methods.
Throughout the paper, we use the following notations. The Frobenius inner product

of the matrices X and Y is defined by 〈X ,Y 〉F = tr(XT Y ), where tr(Z) denotes the
trace of a square matrix Z . The associated norm is the Frobenius norm denoted by
‖ · ‖F . The Kronecker product A ⊗ B = [ai, j B] where A = [ai, j ]. This product
satisfies the properties: (A⊗ B)(C ⊗ D) = (AC ⊗ BD) and (A⊗ B)T = AT ⊗ BT .
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We also use the matrix product � defined in [11]. The following proposition gives
some properties satisfied by this product.

Proposition 1 Let A, B, C ∈ R
n×ps , D ∈ R

n×n, L ∈ R
p×p and α ∈ R. Then we

have,

1. (A + B)T � C = AT � C + BT � C.
2. AT � (B + C) = AT � B + AT � C.
3. (αA)T � C = α(AT � C).

4. (AT � B)T = BT � A.

5. AT � (B(L ⊗ Is)) = (AT � B)L.

A block matrix Vm = [V1, V2, . . . , Vm] is F-orthonormal if VT
m � Vm = Im . We have

the following result.

Lemma 1 [24] Let Vm = [V1, V2, . . . , Vm] be an n×ms F-orthonormal block matrix,
Z ∈ R

m×s and Y ∈ R
ms×q . Then we have

‖Vm (Z ⊗ Is) ‖F = ‖Z‖F and ‖VmY‖F ≤ ‖Y‖F .

2 Expression of the exact solution of the differential Sylvester
equation

In this sectionwewill give the expression of the unique solution X(t) of the differential
Sylvester matrix Eq. (1). This expression is based on the global Arnoldi process. The
modified global Arnoldi process constructs an F-orthonormal basis V1, V2, . . . , Vm
of the matrix Krylov subspace

Km(A, V ) = span
{
V , AV , A2V , . . . , Am−1V

}
.

Algorithm 1 The modified global Arnoldi process(MGA)
Inputs: A ∈ R

n×n , V ∈ R
n×s and m an integer.

1. Set V1 = V
‖V ‖F ;

2. For j = 1, . . . ,m
3. Ṽ = AVj ;
4. For i = 1, . . . , j
5. hi, j = 〈Vi , Ṽ 〉F ;
6. Ṽ = Ṽ − hi, j Vi ;
7. end for(i).
8. Compute h j+1, j = ‖Ṽ ‖F ;
9. Vj+1 = Ṽ /h j+1, j ;

10. end for(j).

Let Vm = [V1, V2, . . . , Vm] and H̃ A
m is the (m + 1) × m upper Hessenberg matrix

whose entries hi, j are defined by Algorithm 1 and H A
m is the m × m matrix obtained

from H̃ A
m by deleting its last row. We have the following relation
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AVm = Vm

(
H A
m ⊗ Is

)
+ hm+1,mVm+1

(
eTm ⊗ Is

)
,

where eTm = [0, 0, . . . , 0, 1].
Let PA be the minimal polynomial of A associated to E and PBT be the minimal

polynomial of BT associated to F , q the degree of PA and q ′ the degree of PBT . The
following result shows that the solution X of (1) can be expressed in terms of the
global Arnoldi basis.

Theorem 2 Let Vq = [
V1, V2, . . . , Vq

]
and Wq ′ = [

W1,W2, . . . ,Wq ′
]
be the F-

orthonormal block matrices obtained by applying simultaneously q and q ′ steps of
the global Arnoldi algorithm to the pairs (A, E) and (BT , F) respectively. Then the
unique solution X of (1) can be expressed as:

X(t) = Vq(Yqq ′(t) ⊗ Is)WT
q ′ , (3)

where Yqq ′(t) is the solution of the low-order differential Sylvester equation

Ẏm(t) − H A
q Ym(t) − Ym(t)

(
HB
q ′

)T − Ẽq F̃
T
q ′ = 0,

with Ẽq = ‖E‖Fe(q)
1 and F̃q ′ = ‖F‖Fe(q ′)

1 .

Proof Let Z(t) be the matrix defined by Vq(Yqq ′(t) ⊗ Is)WT
q ′ . Then we have,

Ż(t) − AZ(t) − Z(t)B − EFT

= Vq(Ẏqq ′(t) ⊗ Is)WT
q ′−AVq(Yqq ′(t) ⊗ Is)WT

q ′−Vq(Yqq ′(t) ⊗ Is)WT
q ′ B − EFT .

= Vq

[(
Ẏqq ′(t) − H A

q Yqq ′(t) − Yqq ′(t)
(
HB
q ′

)T − Ẽq F̃
T
q ′

)
⊗ Is

]
WT

q ′ .

Since Yqq ′ is the solution of the lower order differential Sylvester equation then

Ẏqq ′(t) − Tq,AYqq ′(t) − Yqq ′(t)
(
HB
q ′

)T − Ẽq F̃T
q ′ = 0. We get

Ż(t) − AZ(t) − Z(t)B − EFT = 0.

Therefore, using the fact that the solution of (1) is unique, it follows that X(t) =
Vq(Yqq ′(t) ⊗ Is)WT

q ′ . ��

3 The extended global Arnoldi process

In this section, we recall the extended global Krylov subspace and extended global
Arnoldi process. Let V be a matrix of dimension n × s. Then the extended global
Krylov subspace associated to (A, V ) is given by

Kg
m(A, V ) = span

{
V , A−1V , AV , A−2V , A2V , . . . , Am−1V , A−mV

}
(4)
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The extended global Arnoldi process constructs an F-orthonormal basis
{V1, V2, . . . , Vm} of the extended global Krylov subspace Kg

m(A, V ) [20]. The algo-
rithm is summarized as follows

Algorithm 2 The extended global Arnoldi process(EGA)
Inputs: A ∈ R

n×n , V ∈ R
n×s and m an integer.

1. Compute the global QR [V , A−1V ], i.e., [V , A−1V ] = V1(Ω ⊗ Is );
2. Set V0 = [ ];
3. For j = 1, . . . ,m

4. Set V (1)
j = Vj (:, 1 : s); V (2)

j = Vj (:, s + 1 : 2s);
5. V j = [V j−1, Vj ];U = [AV (1)

j , A−1V (2)
j ];

6. For i = 1, . . . , j
7. Hi, j = V T

i �U ;
8. U = U − Vi (Hi, j ⊗ Is );
9. end for(i).

10. Compute the global QR decomposition of U , i.e., U = Vj+1(Hj+1, j ⊗ Is );
11. end for(j).

LetVm = [V1, V2, . . . , Vm] with Vi ∈ R
n×2s and 2m×2m upper blockHessenberg

matrix

Tm,A = V
T
m � (AVm).

We have the following relation

AVm = Vm+1(Tm,A ⊗ Is)

= Vm(Tm,A ⊗ Is) + Vm+1(T
A
m+1,mE

T
m ⊗ Is),

where Tm,A = V
T
m+1 � (AVm), and ET

m = [02×2(m−1), I2] is the matrix formed with
the last 2 columns of the 2m × 2m identity matrix I2m .

4 Matrix exponential approximation and Gauss quadraturemethod

In this section, we compute a approximation of the solution of the large differential
Sylvester matrix Eq. (1). Our approach is based on two steps. First approximation
of matrix exponential is given using extended global Krylov subspace and then the
Gaussian quadrature method is applied.

The exact solution of (1) is given by

X(t) = e(t−t0)AX0e
(t−t0)B +

∫ t

t0
e(t−τ)AEFT e(t−τ)Bdτ. (5)

We use extended global Krylov subspace method to approximate e(t−τ)AE and
e(t−τ)BT

F .
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By Algorithm 2 we compute Vm = [V1, . . . , Vm] and Wm = [W1, . . . ,Wm] the
F-orthonormal matrices whose columns form an basis of the subspace Kg

m(A, E) and
Kg

m(BT , F), respectively.
The approximation Zm,A of ZA = e(t−τ)AE is obtained by

Zm,A = Vm

(
e(t−τ)Tm,AVm � E ⊗ Is

)
,

where Tm,A = V
T
m � (AVm) (see [32,33,36]).

In the same way, an approximation of ZB = e(t−τ)BT
F is given by

Zm,B = Wm(e(t−τ)Tm,BWm � F ⊗ Is),

where Tm,B = W
T
m � (BT

Wm).
That leads us to the following approximation

e(t−τ)AEFT e(t−τ)B ≈ Zm,A(t)ZT
m,B(t). (6)

Assuming that X(t0) = 0, then the approximate solution of the differential Sylvester
Eq. (1) is obtained by

Xm(t) = Vm(Xm(t) ⊗ Is)W
T
m, (7)

where

Xm(t) =
∫ t

t0
Xm,A(τ )XT

m,B(τ )dτ, (8)

with {
Xm,A(τ ) = e(t−τ)Tm,AV

T
m � E

Xm,B(τ ) = e(t−τ)Tm,BW
T
m � F .

Since m is generally very small (m << n), the factors Xm,A and Xm,B can be
computed using the expm function of Matlab, and we calculate the approximation of
the integral of (8) by Gauss quadrature formulae.

The next result shows that the 2m × 2m matrix function Xm(t) is solution of a
low-order differential Sylvester matrix equation.

Theorem 3 The matrix functionXm(t) defined by (8) satisfies the following low-order
differential Sylvester matrix equation

Ẋm(t) = Tm,AXm(t) + Xm(t)TT
m,B + Ẽm F̃

T
m , t ∈ [t0, T f ], (9)

where Ẽm = V
T
m � E and F̃m = W

T
m � F .

Proof The proof can be easily derived from the expression (8) and the result of The-
orem 1. ��

Let Rm(t) = Ẋm(t) − AXm(t) − Xm(t)B − EFT be the residual associated to the
approximation Xm(t).
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Theorem 4 If Xm(t) = Vm(Xm(t) ⊗ Is)WT
m is the approximation obtained at step

m by the extended global Arnoldi algorithm. Then the residual Rm(t) satisfies the
inequality

‖Rm(t)‖2F ≤ ‖T A
m+1,mXm(t)‖2F + ‖T B

m+1,mXm(t)‖2F , (10)

for the 2-norm, we have

‖Rm(t)‖2 ≤ max{‖T A
m+1,mXm(t)‖2, ‖T B

m+1,mXm(t)‖2},

where Xm(t) is the 2 × 2m matrix corresponding to the last 2 rows of Xm(t).

Proof We have

Rm(t) = Ẋm(t) − AXm(t) − Xm(t)B − EFT ,

where Xm(t) = Vm(Xm(t) ⊗ Is)W
T
m .

Therefore

Rm(t)=Vm
(
Ẋm(t) ⊗ Is

)
W

T
m−AVm (Xm(t) ⊗ Is)W

T
m−Vm(Xm(t)⊗Is)W

T
m B−EFT .

We use the following properties

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

AVm = Vm+1
(
T̂m,A ⊗ Is

)
,

W
T
m B =

(
T̂
T
m,B ⊗ Is

)
W

T
m+1,

Vm = Vm+1

[
I2sm
02s,2s

]
,

W
T
m = [

I2sm 02s,2s
]
W

T
m+1,

and ⎧⎪⎨
⎪⎩
T̂m,A =

[
Tm,A

T A
m+1,mE

T
m

]
,

T̂
T
m,B = [

T
T
m,B Em(T B

m+1,m)T
]
,

we obtained

Rm(t) = Vm+1

[
Ẋm(t) ⊗ Is 0

0 0

]
W

T
m+1 − Vm+1

[
Tm,AXm(t) ⊗ Is 0

T A
m+1,mE

T
mXm(t) ⊗ Is 0

]
W

T
m+1

− Vm+1

[
Xm(t)TT

m,B ⊗ Is Xm(t)Em(T B
m+1,m)T ⊗ Is

0 0

]
W

T
m+1

− Vm+1

[
V
T
m � EFT � Wm 0

0 0

]
W

T
m+1

Vm+1

( [Sm (Xm(t))−Xm(t)Em(T B
m+1,m)T −T A

m+1,mE
T
mXm(t)0

] ⊗ Is

)
W

T
m+1,where

Sm (Xm(t)) = Ẋm(t) − Tm,AXm(t) − Xm(t)TT
m,B − Ẽm F̃

T
m .
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Since Xm(t) is the exact solution of the equation

Ẋm(t) = Tm,AXm(t) + Xm(t)TT
m,B + Ẽm F̃

T
m .

Then

Rm(t) = Vm+1

( [
0 −Xm(t)Em(T B

m+1,m)T

−T A
m+1,mE

T
mXm(t) 0

]
⊗ Is

)
W

T
m+1.

If Xm(t) = ET
mXm(t), then

‖Rm(t)‖2F ≤ ‖T A
m+1,mXm(t)‖2F + ‖T B

m+1,mXm(t)‖2F .

The same way for the 2-norm, we have

‖Rm(t)‖2 ≤ max
{
‖T A

m+1,mXm(t)‖2, ‖T B
m+1,mXm(t)‖2

}
. ��

The following result shows that the approximation Xm(t) is an exact solution of a
perturbed differential Sylvester equation.

Theorem 5 Let Xm(t) be the approximate solution given by (7). Then we have

Ẋm(t) = (A − Fm,A)Xm(t) + Xm(t)(B − Fm,B) + EFT , (11)

where ⎧⎪⎨
⎪⎩

Fm,A = Vm+1

(
T A
m+1,mE

T
m ⊗ Is

) (
V
T
mVm

)−1
V
T
m,

Fm,B = W
T
m

(
WmW

T
m

)−1
[
Em

(
T B
m+1,m

)T ⊗ Is

]
WT

m+1.

Proof By multiplying (9) on the left by Vm and on the right by W
T
m , we obtained

Vm(Ẋm(t) ⊗ Is)W
T
m = Vm(Tm,AXm(t) ⊗ Is)W

T
m

+Vm(Xm(t)TT
m,B ⊗ Is)W

T
m + Vm(Ẽm F̃

T
m ⊗ Is)W

T
m

= Vm(Tm,A ⊗ Is)(Xm(t) ⊗ Is)W
T
m

+Vm(Xm(t) ⊗ Is)(T
T
m,B ⊗ Is)W

T
m

+Vm(Ẽm ⊗ Is)(F̃
T
m ⊗ Is)W

T
m .

Since {
AVm = Vm(Tm,A ⊗ Is) + Vm+1(T A

m+1,mE
T
m ⊗ Is),

W
T
m B = (TT

m,B ⊗ Is)WT
m + (Em(T B

m+1,m)T ⊗ Is)WT
m+1,
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then

Ẋm(t) = [AVm − Vm+1(T
A
m+1,mE

T
m ⊗ Is)](Xm(t) ⊗ Is)W

T
m

+Vm(Xm(t) ⊗ Is)[BWT
m − (Em(T B

m+1,m)T ⊗ Is)W
T
m+1] + EFT

= [A − Vm+1(T
A
m+1,mE

T
m ⊗ Is)(V

T
mVm)−1

V
T
m]Xm(t)

+Xm(t)[B − W
T
m(WmW

T
m)−1(Em(T B

m+1,m)T ⊗ Is)W
T
m+1] + EFT .

Finally
Ẋm(t) = (A − Fm,A)Xm(t) + Xm(t)(B − Fm,B) + EFT .

��
The next result states that the error Em(t) = X(t)−Xm(t) satisfies also a differential

Sylvester matrix equation.

Theorem 6 Let X(t) be the exact solution of (1) and let Xm(t) be the approximate
solution obtained at step m of Algorithm 2. The error Em(t) = X(t) − Xm(t) satisfies
the following equation

Ėm(t) = AEm(t) + Em(t)B − Rm(t), (12)

Proof We have

{
Ẋ(t) = AX(t) + X(t)B + EFT ,

Rm(t) = Ẋm(t) − AXm(t) − Xm(t)B − EFT ,

then

Ėm(t) = Ẋ(t) − Ẋm(t)

= AX(t) + X(t)B + EFT − AXm(t) − Xm(t)B − EFT − Rm(t)

= A(X(t) − Xm(t)) + (X(t) − Xm(t))B − Rm(t)

= AEm(t) + Em(t)B − Rm(t).

��
Notice that from Theorem 6, the error Em(t) can be expressed in the integral form as
follows

Em(t) = e(t−t0)AEm,0e
(t−t0)B +

∫ t

t0
e(t−τ)ARm(τ )e(t−τ)Bdτ, t ∈ [t0, T f ]. (13)

where Em,0 = Em(t0).
Next, we give an upper bound for the norm of the error by using the 2-logarithmic

norm defined by μ2(A) = 1
2λmax(A + AT ).
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Theorem 7 Assume that the matrices A and B are such that μ2(A) + μ2(B) �= 0.
Then at step m of the extended global Arnoldi process, we have the following upper
bound for the norm of the error Em(t),

‖Em(t)‖2 ≤ ‖Em,0‖2e(t−t0)(μ2(A)+μ2(B)) + αm
e(t−t0)(μ2(A)+μ2(B)) − 1

(μ2(A) + μ2(B))
, (14)

where
αm = max

ξ∈[t0,t]
(max{‖T A

m+1,mXm(ξ)‖2, ‖T B
m+1,mXm(ξ)‖2}).

The matrix Xm is the 2 × 2m matrix corresponding to the last 2 rows of Xm(t).

Proof We first point out that ‖et A‖2 ≤ eμ2(A)t . Using the expression (13) of Em(t),
we obtain the following relation

‖Em(t)‖2 = ‖e(t−t0)AEm,0e
(t−t0)B‖2 +

∫ t

t0
‖e(t−τ)ARm(τ )e(t−τ)B‖2dτ.

Therefore, using (13) and the fact that ‖e(t−τ)A‖2 ≤ e(t−τ)μ2(A), we get

‖Em(t)‖2 ≤ ‖Em,0‖2e(t−t0)(μ2(A)+μ2(B))

+ max
ξ∈[t0,t]

‖Rm(ξ)‖2
∫ t

t0
e(t−τ)μ2(A)e(t−τ)μ2(B)dτ

≤ ‖Em,0‖2e(t−t0)(μ2(A)+μ2(B))

+ max
ξ∈[t0,t]

‖Rm(ξ)‖2et(μ2(A)+μ2(B))

∫ t

t0
eτ(μ2(A)+μ2(B))dτ.

Using the result of Theorem 4, we obtain max
ξ∈[t0,t]

‖Rm(ξ)‖2 ≤ αm and then

‖Em(t)‖2 ≤ ‖Em,0‖2e(t−t0)(μ2(A)+μ2(B)) + αm
e(t−t0)(μ2(A)+μ2(B)) − 1

(μ2(A) + μ2(B))
.

Next, we give another upper bound for the norm of the error Em(t). ��
Theorem 8 The error Em(t) satisfies the following inequality

‖Em(t)‖2 ≤ ‖F‖2etμ2(B)Γ1,m(t) + ‖Ẽm‖2etμ2(A)Γ2,m(t), (15)

where

⎧⎨
⎩

Γ1,m(t) = ∫ t
t0
e−τμ2(B)‖ZA(τ ) − Zm,A(τ )‖2dτ,

Γ2,m(t) = ∫ t
t0
e−τμ2(A)‖ZB(τ ) − Zm,B(τ )‖2dτ.

123



Global extended Krylov subspace methods for large-scale… 167

Proof From the expressions of X(t) and Xm(t), we have

‖Em(t)‖2 = ‖X(t) − Xm(t)‖2
= ‖

∫ t

t0

(
ZA(τ )ZT

B (τ ) − Zm,A(τ )Zm,B(τ )T
)
dτ‖2

= ‖
∫ t

t0

(
ZA(τ )ZT

B (τ ) − Zm,A(τ )ZT
B (τ ) + Zm,A(τ )ZT

B (τ ) − Zm,A(τ )ZT
m,B(τ )

)
dτ‖2

= ‖
∫ t

t0
[(ZA(τ ) − Zm,A(τ ))ZT

B (τ ) + Zm,A(τ )(ZB(τ ) − Zm,B(τ ))T ]dτ‖2

≤
∫ t

t0
‖ZB(τ )‖2‖(ZA(τ ) − Zm,A(τ ))‖2 + ‖Zm,A(τ )‖2‖(ZB(τ ) − Zm,B(τ ))‖2dτ.

Now as

μ2(Tm,A) = 1

2
λmax

(
Tm,A + T

T
m,A

)

≤ 1

2
λmax(A + AT )

= μ2(A),

and since

{ ‖ZB(τ )‖2 ≤ e(t−τ)μ2(B)‖F‖2,
‖Zm,A(τ )‖2 ≤ e(t−τ)μ2(Tm,A)‖Ẽm‖2 ≤ e(t−τ)μ2(A)‖Ẽm‖2,

we also have

‖Em(t)‖2 ≤ ‖F‖2etμ2(B)

∫ t

t0
e−τμ2(B)‖ZA(τ ) − Zm,A(τ )‖2dτ

+‖Ẽm‖2etμ2(A)

∫ t

t0
e−τμ2(A)‖ZB(τ ) − Zm,B(τ )‖2dτ.

We get
‖Em(t)‖2 ≤ ‖F‖2etμ2(B)Γ1,m(t) + ‖Ẽm‖2etμ2(A)Γ2,m(t).

��
One can use some known results [22,33] to derive upper bounds for ‖ZA(τ ) −

Zm,A(τ )‖2, and ‖ZB(τ ) − Zm,B(τ )‖2, when using the extended global Krylov sub-
spaces.

Lemma 2

‖em,A(τ )‖2 := ‖ZA(τ ) − Zm,A(τ )‖2
≤ ‖Vm+1(T

A
m+1,m ⊗ Is)‖2

∫ τ

0
e(u−τ)ν2(A)‖Lm,A(u)‖2du, (16)
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where {
Lm,A(u) = ET

me
(t−u)Tm,A Ẽm ⊗ Is,

ν2(A) = λmin

(
A+AT

2

)
.

Proof We have

{
ZA(τ ) = e(t−τ)AE,

Zm,A(τ ) = Vm
(
e(t−τ)Tm,A Ẽm ⊗ Is

)
,

then

Z ′
A(τ ) = −Ae(t−τ)AE = −AZA(τ ),

and

Z ′
m,A(τ ) = −Vm(Tm,A ⊗ Is)

(
e(t−τ)Tm,A Ẽm ⊗ Is

)

= −
[
AVm − Vm+1(T

A
m+1,mE

T
m ⊗ Is)

] (
e(t−τ)Tm,A Ẽm ⊗ Is

)

= −AZm,A(τ ) + Vm+1(T
A
m+1,m ⊗ Is)Lm,A(τ ).

Therefore, the error em,A(τ ) = ZA(τ ) − Zm,A(τ ) is such that

e′
m,A(τ ) = −Aem,A(τ ) − Vm+1(T

A
m+1,m ⊗ Is)Lm,A(τ ),

which allows to give the following expression of em,A:

em,A(τ ) = −
∫ τ

0
e(u−τ)AVm+1(T

A
m+1,m ⊗ Is)Lm,A(u)du. (17)

As τ − u > 0, it follows that

‖e(u−τ)A‖2 ≤ e(τ−u)μ2(−A) = e(u−τ)ν2(A).

Then, we get

‖em,A(τ )‖2 ≤ ‖T A
m+1,m‖2

∫ τ

0
e(u−τ)ν2(A)‖Lm,A(u)‖2du.

��
Notice that if ν2(A) is not known but ν2(A) ≥ 0 (which is the case for positive
semidefinite matrices) then we get the upper bound

‖em,A(τ )‖2 ≤ ‖Vm+1(T
A
m+1,m ⊗ Is)‖2

∫ τ

0
‖Lm,A(u)‖2du.
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To define a new upper bound for the norm of the global error Em(t), we can use the
upper bounds for the errors em,A and em,B in the expression (15) stated in Theorem 8
to get

‖Em(t)‖2 ≤ ‖F‖2etμ2(B)

∫ t

t0
e−τμ2(B)‖em,A(τ )‖2dτ

+‖Ẽm‖2etμ2(A)

∫ t

t0
e−τμ2(A)‖em,B(τ )‖2dτ,

and then we obtain

‖Em(t)‖2 ≤ ‖F‖2etμ2(B)‖Vm+1(T
A
m+1,m ⊗ Is)‖2

∫ t

t0
e−τμ2(B)Sm,A(τ )dτ (18)

+‖Ẽm‖2etμ2(A)‖Wm+1(T
B
m+1,m ⊗ Is)‖2

∫ t

t0
e−τμ2(A)Sm,B(τ )‖2dτ,

(19)

where {
Sm,A(τ ) = ∫ τ

0 e(u−τ)V (A)‖Lm,A(u)‖2du,

Sm,B(τ ) = ∫ τ

0 e(u−τ)V (B)‖Lm,B(u)‖2du.

The approximate solution Xm(t) could be given as a product of two matrices of
low rank. It is possible to decompose it as Xm = Z1 ZT

2 where the matrix Z1 and Z2
are of low rank (lower than 2m). Consider the singular value decomposition of the
2m × 2m matrix

Xm(t) = G̃1Σ G̃T
2 ,

where Σ is the diagonal matrix of the singular values of Xm sorted in decreasing
order. Let X1,l and X2,l be the 2m × l matrices of the first l columns of G̃1 and G̃2
respectively, corresponding to the l singular values of magnitude greater than some
tolerance dtol . We obtain the truncated SVD

Xm(t) ≈ X1,l Σl X2,l
T ,

where Σl = diag[σ1, . . . , σl ]. Setting Z1,m = Vm

(
X1,l Σ

1/2
l ⊗ Is

)
and Z2,m =

Wm

(
X2,l Σ

1/2
l ⊗ Is

)
Leads to

Xm ≈ Z1,m ZT
2,m . (20)

This is very important for large problems when one doesn’t need to compute and
store the approximation Xm at each iteration, see [2,6,8].

We summarize the above method for solving large differential Sylvester matrix
equations (EGA-exp) in following algorithm.
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Algorithm 3 The extended global Arnoldi (EGA-exp) method for DSE’s
1. Inputs X0 = X(t0) an n × p matrix, A an n × n matrix, B an p × p matrix, E an n × s matrix and F

an p × s matrix.
2. Choose a tolerance tol > 0 and an integer mmax .
3. For m = 1 : mmax

(a) Compute Vm and Tm,A by Algorithm 2 applied to (A, E).
(b) ComputeWm and Tm,B by Algorithm 2 applied to (BT , F).

(c) Set Ẽm = ‖E‖Fe(2m)
1 , F̃m = ‖F‖Fe(2m)

1 and computeXm,A(τ ) = e(t−τ)Tm,A Ẽm ,Xm,B (τ ) =
e(t−τ)Tm,B F̃m by using the Matlab function expm.

(d) Use a quadrature method to compute the integral (8) and get an approximation of Xm (t) for each
t ∈ [t0, T f ].

(e) If ‖Rm (t)‖F < tol stop.
(f) Using (20), the approximate solution Xm (t) is given by Xm ≈ Z1,m ZT

2,m .

4. End

5 Low-rank approximate solutions by extended global Arnoldi
algorithm

We present in this section an approach that avoid exponential approximation and also
avoid quadrature method that we use in previous sections. This approach is based on
extended global Krylov projection of the differential Sylvester matrix Eq. (1). For
more details on global Krylov projection method for solving large matrix equations
see [2,8,9,24].

Recall thatwhenweApply the extendedglobalArnoldi algorithm to thepairs (A, E)

and (BT , F), we get F-orthonormal bases {V1, V2, . . . , Vm} and {W1,W2, . . . ,Wm}
of extended global Krylov subspacesKg

m(A, E) andKg
m(BT , F), respectively and we

have

Tm,A = V
T
m � (AVm) and Tm,B = W

T
m � (BT

Wm),

where

Vm = [V1, V2, . . . , Vm] and Wm = [W1,W2, . . . ,Wm].

We then consider approximate solution of the large differential Sylvester matrix Eq.
(1) that have the low-rank form

Xm(t) = Vm(Ym(t) ⊗ Is)W
T
m, (21)

where Ym(t) the solution of the reduced differential Sylvester matrix equation

Ẏm(t) − Tm,AYm(t) − Ym(t)TT
m,B − Ẽm F̃

T
m = 0. (22)

with Ẽm = ‖E‖Fe(2m)
1 and F̃m = ‖F‖Fe(2m)

1 .
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The following theorem gives a result that allows us the computation of the norm of
the residual.

Theorem 9 The Frobenius norm of the residual Rm(t) associated to the approximation
Xm(t) satisfies the relation

‖Rm(t)‖2F ≤ ‖T A
m+1,mYm(t)‖2F + ‖T B

m+1,mYm(t)‖2F , (23)

where Ym(t) is the 2 × 2m matrix corresponding to the last 2 rows of Ym.

Proof See Theorem 4. ��
To solve the reduced order differential Sylvester matrix Eq. (22) one can use Back-

ward Differentiation Formula (BDF) or Rosenbrock method, see [12,19,31].
We summarize steps of this approach in the following algorithm

Algorithm 4 The extended global Arnoldi for DSE’s (EGA)
1. Input X0, a tolerance tol > 0, an integer mmax .
2. For m = 1 : mmax

(a) Apply the extended global Arnoldi algorithm to (A, E) and (BT , F) to get the F−orthonormal
matrices Vm andWm and the upper block Hessenberg matrices Tm,A and Tm,B .

(b) Use BDF or Rosenbrock method to solve the differential Sylvester Eq. (22).
(c) If ‖Rm (t)‖F < tol stop.
(d) Compute the approximate solution Xm (t) by using (20).

3. End

6 Numerical experiments

In this section, we present some numerical experiments of large and sparse differential
Sylvester matrix equations. We compare the two approaches proposed in this work
[Algorithm 3 (EGA-exp), Algorithm 4 using BDF (EGA–BDF) andAlgorithm 4 using
Rosenbrock (EGA–ROS)] whit the extended block Arnoldi (EBA-exp) given in [19].
All the experiments were performed on a laptop with an Intel Core i5 processor and
4GB of RAM using Matlab2014. The n-by-s matrices E and F are given by random
values uniformly distributed on [0, 1].

6.1 Example 1

In this first example, the matrices A and B are obtained from the centered finite
difference discretization of the operators:

L A(u) = Δu + f1(x, y)
∂u

∂x
+ f2(x, y)

∂u

∂ y
+ f (x, y)u

LB(u) = Δu + g1(x, y)
∂u

∂x
+ g2(x, y)

∂u

∂ y
+ g(x, y)u
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Fig. 1 Residual norm versus number m of extended global Arnoldi iterations

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions.
The number of inner grid points in each direction was n0 and p0 for the operators
L A and LB , respectively. The matrices A and B were obtained from the discretization
of the operator LA and LB with the dimensions n = n20 and p = p20, respectively.
The discretization of the operator LA(u) and LB(u) yields matrices extracted from
the Lyapack package [30] using the command fdm_2d_matrix and denoted as
fdm(n0,′ f _1(x, y)′,′ f _2(x, y)′,′ f (x, y)′). For this experiment, we consider A =
fdm(n0, f1(x, y), f2(x, y), f (x, y)) and B = fdm(p0, g1(x, y), g2(x, y), g(x, y))
with f1(x, y) = −exy , f2(x, y) = − sin(xy), f (x, y) = y2, g1(x, y) = −100ex ,
g2(x, y) = −12xy and g(x, y) = √

x2 + y2. we used s = 2. The time interval
considered was [0, 2] and the initial condition X0 = X(t0) was X0 = Z0 Z̃ T

0 , where
Z0 = 0n×2 and Z̃0 = 0p×2. The tolerance was set to 10−7 for the stop test on the
residual. For the EGA–BDF and Rosenbrock methods, we used a constant timestep
h = 0.1.

In Fig. 1, we chose a size of 2500 × 2500, 2500 × 2500 for the matrices A and
B, respectively, we plotted the Frobenius norms of the residuals ‖Rm(T f )‖F at final
time T f versus the number of extended global Arnoldi iterations for the EGA-exp,
EGA–BDF and EGA–ROS methods.

In Fig. 2, the matrices A and B are obtained from the discretisation of the operator
LA(u) and LB(u)with dimensions n = 10,000 and p = 4900, respectively.we plotted
the Frobenius norms of the residuals ‖Rm(T f )‖F at final time T f versus the number
of extended global Arnoldi iterations for the EGA-exp, EGA–BDF and EGA–ROS
methods.

123



Global extended Krylov subspace methods for large-scale… 173

0 5 10 15 20 25 30 35
−8

−6

−4

−2

0

2

4

6

m iterations 

lo
g1

0(
||R

(m
)||

F
)

EGA−exp
EGA−BDF
EGA−ROS

Fig. 2 Residual norm versus number m of extended global Arnoldi iterations

6.2 Example 2

For the second set of experiments, we use the matrices add32, pde2961, and thermal
from the University of Florida Sparse Matrix Collection [15] and from the Harwell
Boeing Collection (http://math.nist.gov/MatrixMarket). The tolerance was set to 10−7

for the stop test on the residual. For the EGA–BDF and EGA–ROS methods, we used
a constant timestep h = 0.01.

In Fig. 3, thematrices A = thermal and B = add32with dimensions n = 3456 and
p = 4960, respectively, and s = 3. we plotted the Frobenius norms of the residuals
‖Rm(T f )‖F at final time T f versus the number of extended global Arnoldi iterations
for the EGA-exp, EGA–BDF and EGA–ROS methods.

In Fig. 4,weused thematrices A = pde2961 and B = fdm(90, 100ex ,
√
2x2 + y2,

y2−x2)with dimensions n = 2961 and p = 8100, respectively, and s = 4. we plotted
the Frobenius norms of the residuals ‖Rm(T f )‖F at final time T f versus the number
of extended global Arnoldi iterations for the EGA-exp, EGA–BDF and EGA–ROS
methods.

6.3 Example 3

In this last example, we compare the performances of the extended global Arnoldi
method associated to the different techniques for solving the reduced-order problem
and the EBA-exp method given in [19].
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Fig. 3 Residual norm versus number m of extended global Arnoldi iterations
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Fig. 4 Residual norm versus number m of extended global Arnoldi iterations
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Table 1 Runtimes in seconds and the residual norms

Test problem Method CPU time (s) Iterations ‖Rm (T f )‖F
n = p = 2500, h = 0.1 and s = 2 EGA-exp 0.51 15 1.47 × 10−10

A = f dm(−exy , sin(xy), 1) EGA–BDF 18.31 20 2.69 × 10−10

B = f dm(xy, 12xy,
√
x2 + y2) EGA–ROS 37.45 20 2.64 × 10−10

EBA-exp 5.09 19 1.43 × 10−10

n = 12,100 EGA-exp 2.36 14 6.53 × 10−10

p = 8100, h = 0.1 and s = 3 EGA–BDF 65.81 27 6.22 × 10−10

A = f dm(xy, y2, 1) EGA–ROS 94.43 27 6.22 × 10−10

B = f dm(xy, cos(xy), 10) EBA-exp 4.65 23 2.34 × 10−10

A = B = f dm(cos(xy), ey
2x , 100) EGA-exp 2.22 11 9.10 × 10−10

n = p = 12,100 and s = 3 EGA–BDF 48.06 18 5.40 × 10−10

h = 0.05 EGA–ROS 59.03 19 5.44 × 10−10

EBA-exp 4.03 10 8.72 × 10−10

A = pde2961, n = 2961, EGA-exp 3.21 7 2.61 × 10−10

B=fdm(100ex ,
√
2x2 + y2, y2 − x2) EGA–BDF 3.73 8 4.78 × 10−10

p = 10,000, h = 0.1 and s = 4 EGA–ROS 4.27 9 5.20 × 10−10

EBA-exp 5.13 8 5.64 × 10−10

Bold values indicate the global extended exponential method EGA-exp is very effective compared to other
methods

In Table 1, we list the Frobenius residual norms at final time T f = 2 and the
corresponding CPU time for each method. For this experiment, the algorithms are
stopped when the residual norms are smaller than 10−9.

The numerical results are promising, showing the effectiveness of the global
extended exponential method EGA-exp compared with extended block exponential
approach EBA-exp given in [19] in terms of precision and computation time.

7 Conclusion

We presented in this paper some iterative methods for computing numerical solu-
tions for large scale differential Sylvester matrix equations with low rank right-hand
sides. The first approach arises naturally from the exponential expression of the exact
solution and the use of approximation approach of the exponential of a matrix times
by extended global Krylov subspaces. The second approach is based on low-rank
approximate solutions and extended global algorithm. The approximate solutions are
given as products of two low rank matrices and allow for saving memory for large
problems. The numerical experiments show that the proposed extended global Krylov
based methods are effective for large and sparse problems.
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