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Abstract
In this investigation, a new two-step Newton method to solve convex unconstrained
optimization problems is developed. This proposed method is based on Traub’s itera-
tive scheme (Iterative methods for the solution of equations, Prentice Hall, Englewood
Cliffs, 1964) which is extended to n-variable. The presented two-step algorithm is a
modification of Newtonmethod for solving unconstrained optimization problems. The
convergence analysis for this iterative algorithm is established under suitable condi-
tions.Various numerical examples are given to illustrate the efficiency andperformance
of the newly suggested method.

Keywords Newton method · Unconstrained optimization problems · Convergence
analysis

1 Introduction

The general form of optimization problems can be written as follows:

min f (x),

s.t . ci (x) = 0, i ∈ E,

c j (x) ≥ 0, j ∈ I ,

x ∈ R
n, (1)
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where E and I are, respectively, the index set of equality and inequality constraints,
ci (x), (i = 1, . . . ,m ∈ E ∪ I ) are constraint functions. When both objective function
and constraint functions are linear functions, the problem is called linear programming.
Otherwise, the problem is called nonlinear programming.Also, a problem that does not
entail any equality or inequality constraints is said to be an unconstrained optimization
problem. Now, we consider an unconstrained optimization problem

min
x∈Rn

f (x), (2)

where f : Rn → R is a smooth and continuously differentiable function. It is not
easy to find a global minimizer of f (x), because our knowledge of the objective func-
tion is commonly only local. Therefore most algorithms are able to find only a local
minimizer, which is a point that achieves the smallest value of f (x) in its neighbor-
hood [2]. In other words, we say that a point x∗ is a local minimizer if there is a
neighborhood N (an open set that contains x∗) of x∗ such that f (x∗) ≤ f (x) for all
x ∈ N . Most of the numerical methods for unconstrained optimization problems can
be classified into two groups, line search algorithms and trust region algorithms. There
are many useful algorithms for solving the problem (2) such as the conjugate gradient
methods, the trust region methods, the quasi-Newton methods, the classical Newton
method, the Nelder–Meade simplex method for problems with noisy functions, the
Levenberg–Marquardt method and etc. [2–4]. Among the methods mentioned above,
the classical Newton method is very famous for its fast convergence property. There
are several modifications of the Newton method for unconstrained minimization to
achieve global and local convergence, see [2,4] and the references therein. In New-
ton method, the positive definiteness of the Hessian matrix of the objective function
is an essential condition to get the local minimum and the fast local convergence.
Zhou et al. [5] introduced a new algorithm for monotone equations and showed its
superliner convergence under a local error-bound assumption that is weaker than the
standard nonsingularity condition. A new trust region method for nonlinear equations
with the trust region radius converging to zero is proposed in [6], and its convergence
under some weak conditions is provided. Li et al. [7] obtained two regularized New-
ton methods for convex minimization problems in which the Hessian at solutions may
be singular and showed that if the objective function be in LC2, then the methods
possess local quadratic convergence under a local error bound condition without the
requirement of isolated nonsingular solutions. Zhou and Chen in [8] proposed a mod-
ified regularized Newton method for convex minimization problems whose Hessian
matrices may be singular. Nesterov and Polyak [9] proposed a cubic regularization of
the Newton method. At each iteration, it requires solving an unconstrained minimiza-
tion problem. Nesterov and Nemirovsky [10] presented the class of self-concordant
functions that is three time differentiable convex function with the second and third
derivatives satisfying a particular condition at each point. Polyak [11] introduced the
regularized Newton method for unconstrained convex optimization. For any convex
function, with a bounded optimal set, the RNM generates a sequence that converges
to the optimal set from any starting point. Dehghan et al. [12] inroduced a new mod-
ification of the Newton method to solve unconstrained optimization problems. Also,
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they used a new improved Newton method in trust region algorithm for unconstrained
minimization problems and analyzed its local and global convergence [13]. Recently,
Dehghan et al. [14] proposed a new regularizedNewtonmethod based onQ.I.Fmethod
to solve optimization problems. One of the applications of the above algorithms is to
solve system of nonlinear equations. For example, the system of nonlinear equations
appearing in the references [15–19] can be solved by using these methods.

In this paper, we introduce a new algorithm to solve the convex unconstrained
optimization problems. The organization of the paper is as follows: In Sect. 2, a new
algorithm for solving unconstrainedminimization problems is presented. Its associated
convergence analysis is given in Sect. 3. Some numerical results to compare the new
proposed method with the other algorithms are reported in Sect. 4 and finally the
conclusions are described in Sect. 5.

2 Description of themethod

In this section, a brief review of Newton method for unconstrained optimization prob-
lems is given which mentioned in [2]. Consider the minimization problem,

min
x∈Rn

f (x), (3)

where f : R
n −→ R is a smooth function and twice continuously differentiable.

Gradient ∇ f (x) and Hessian matrix ∇2 f (x) are denoted by g(x) and H(x), respec-
tively. In the line search method, each iteration computes a search direction pk and
then decides how far to move along that direction. Iterations are as follows:

xk+1 = xk + αk pk, (4)

where the positive scalar αk is called the step length. The success of linear search
method depends on the appropriate selections of step length αk and direction pk . Most
of the line search methods require pk to be a descent direction, because this property
guarantees that the function f (x) can be reduced along this direction. The search
direction can be defined as:

pk = −B−1
k ∇ fk, (5)

where Bk is a symmetric and nonsingular matrix.
The Newton method is a powerful technique for solving nonlinear equations. It is

an application of Taylor Polynomials for finding roots of functions. Newton method
is the iterative method for finding a simple root x∗ of nonlinear equation f (x), i.e.,
f (x∗) = 0, f ′(x∗) 
= 0, by using

xk+1 = xk − f (xk)

f ′(xk)
, k = 0, 1, . . . , (6)
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that converges quadratically in some neighborhood of x∗ [1,20–22]. Newton method
can also be used to find a minimum or maximum of a function. The derivative is zero
at a minimum or maximum, so minima and maxima can be found by applying Newton
method to the derivative. The iteration becomes:

xk+1 = xk − f ′(xk)
f ′′(xk)

, k = 0, 1, . . . . (7)

The abovemethod can be generalized to several dimensions by replacing the derivative
with the gradient,∇ f (xk), and the reciprocal of the second derivative with the inverse
of the Hessian matrix, ∇2 f (xk). So, we have the following iterative formula

xk+1 = xk −
(
∇2 f (xk)

)−1 ∇ f (xk), k = 0, 1, . . . . (8)

In the line search Newton method, Bk is the Hessian matrix ∇2 f (xk). If the Hessian
matrix is not positive definite, or is close to being singular, then we can modify this
matrix before or during the solution process. Following is a general description of this
method.

Algorithm 1. (Line Search Newton with Modification ) [2]:

For given initial point x0 and parameters α0 > 0, β > 0;
while ∇ fk 
= 0
Factorize the matrix Bk = ∇2 fk + Ek, where Ek = 0 if ∇2 fk is
sufficiently positive definite; otherwise, Ek is chosen to ensure that Bk is
sufficiently positive definite.
Solve Bk pk = −∇ fk ;
Set xk+1 = xk + αk pk ,
where αk satisfies the Wolfe, Goldstein, or Armijo backtracking conditions.
end while.

The choice of Hessian modification Ek is crucial to the effectiveness of the method.
The modified Newton method for multiple root x∗ of multiplicity m, i.e., f ( j)(x∗) =
0, j = 0, 1, . . . ,m−1 and f (m)(x∗) 
= 0, is quadratically convergent and it is written
as:

xk+1 = xk − m
f (xk)

f ′(xk)
, k = 0, 1, . . . . (9)

If themultiplicitym is unknown, the standardNewtonmethod has a linear convergence
with a rate of (m−1)

m [23]. Traub [1] used a transformation u(x) = f (x)
f ′(x) instead of f (x)

for computing a multiple root of f (x) = 0. Then the problem of finding a multiple
root is reduced to the problem of finding a simple root of the transformed equation
u(x), and thus any iterative method can be used preserving its original convergence
order. Applying the standard Newton method (6) to u(x) = 0, we can obtain
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xk+1 = xk − f (xk) f ′(xk)
f ′(xk)2 − f (xk) f ′′(xk)

, k = 0, 1, . . . . (10)

This method can be extended to n-variable functions ( f : Rn → R) as

xk+1 = xk−
(
∇ f (xk)∇ f (xk)

T − f (xk)∇2 f (xk)
)−1

f (xk)∇ f (xk), k = 0, 1, . . . .

(11)

Now, we propose a two-step algorithm to solve unconstrained optimization problems
by using methods (8) and (11).

Algorithm 2. (Proposed method)

Step 1. Given an initial point x0, τ > 0, ε > 0 and θ ∈ R.
Step 2. If ‖gk‖ ≤ ε stop, else go to Step 3.
Step 3. If

(
gkgTk − fk Hk

)
is a positive definite matrix then

Solve
(
gkgTk − fk Hk

)
pk = − fkgk ;

else
Solve

(
gkgTk − fk Hk + τ I

)
pk = − fkgk ;

Step 5. If Hk is sufficiently positive definite set Bk = Hk ;
otherwise, Ek is chosen to ensure that Bk is sufficiently positive definite,

Solve Bk p̃k = −gk ;
Step 6. xk+1 = xk + θ pk + (1 − θ) p̃k .

set k := k + 1 and go to Step 2.

It is clear that, the introduced matrix (gkgTk − fk Hk) is a symmetric matrix. Fur-
thermore, in this algorithm, there is no need to calculate the step length and αk = 1 at
each iteration.

3 Convergence analysis

In this section, we study convergence of the proposed method. The following assump-
tions are imposed throughout the paper.

Assumption 3.1

(A1): Let f : � ⊂ R
n → R be defined on the bounded and close set �. Suppose

f is twice continuously differentiable and let �(x0) denote the closure of the
level set,

�(x0) = {x : x ∈ �, f (x) ≤ f (x0)}. (12)

(A2): ∇ f (x) and∇2 f (x) are both Lipschitz continuous that is, there exists constants
L1 > 0 and L2 > 0 such that

‖∇ f (x) − ∇ f (y)‖ ≤ L1‖x − y‖, x, y ∈ R
n, (13)
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and

‖∇2 f (x) − ∇2 f (y)‖ ≤ L2‖x − y‖, x, y ∈ R
n . (14)

(A3): 2(∇ f Tk ( fk∇2 fk)−1∇ fk) ≤ 1.
(A4): L = max{L1, L2} and γ = L‖(∇2 f (x∗))−1‖ < 1.

(A5): θ ∈ R and |θ | <
1−γ
6γ .

Theorem 3.2 Suppose A is a nonsingular N × N matrix, U is N × M, V is M × N,
then A + UV is nonsingular if and only if I + V A−1U is a nonsingular M × M
matrix. If this is the case, then

(A +UV )−1 = A−1 − A−1U (I + V A−1U )−1V A−1. (15)

This is the Sherman–Morrison–Woodbury formula [3,24,25]. See [3] for further gen-
eralizations.

Proposition 3.3 [3] Let B be a nonsingular n × n matrix and let u, v ∈ R
n . Then

B + uvT is invertible if and only if 1 + vT B−1u 
= 0. In this case,

(B + uvT )−1 =
(
I − B−1uvT

1 + vT B−1u

)
B−1. (16)

Lemma 3.4 Suppose that Assumption 3.1 (A1) and (A3) hold. Then

(I)
∣∣∣ ∇ f Tk (− fk∇2 fk )−1∇ fk
1+∇ f Tk (− fk∇2 fk )−1∇ fk

∣∣∣ ≤ 1.

(II) (− fk∇2 fk + ∇ fk∇ f Tk )−1 = (− fk∇2 fk)−1
(
I − ∇ fk∇ f Tk (− fk∇2 fk )−1

1+∇ f Tk (− fk∇2 fk )−1∇ fk

)
.

Proof From Assumption 3.1 (A3), we have

2(∇ f Tk ( fk∇2 fk)
−1∇ fk) ≤ 1 
⇒ (∇ f Tk (− fk∇2 fk)

−1∇ fk) ≥ −1

2
, (17)

and hence

∣∣∣∣∣
∇ f Tk (− fk∇2 fk)−1∇ fk

1 + ∇ f Tk (− fk∇2 fk)−1∇ fk

∣∣∣∣∣ ≤ 1. (18)

According to Theorem (3.2) and Proposition (3.3), we set B = − fk∇2 fk, u = v =
∇ fk . From (17) we obtain

1 + vT B−1u = 1 + ∇ f Tk (− fk∇2 fk)
−1∇ fk ≥ 1

2
. (19)
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Therefore, the matrix B + uvT is invertible and we can get

(B + uvT )−1 = (− fk∇2 fk + ∇ fk∇ f Tk )−1

= (− fk∇2 fk)
−1 − (− fk∇2 fk)

−1∇ fk(1 + ∇ f Tk
(− fk∇2 fk)

−1∇ fk)
−1∇ f Tk (− fk∇2 fk)

−1

= −1

fk
(∇2 fk)

−1

(
I − ∇ fk∇ f Tk (− fk∇2 fk)−1

1 + ∇ f Tk (− fk∇2 fk)−1∇ fk

)
. (20)

��
Theorem 3.5 Suppose that Assumption 3.1 (A1)–(A5) hold. Assume that

(
∇ f (xk)∇ f (xk)

T − f (xk)∇2 f (xk)
)
pk = − f (xk)∇ f (xk), (21)

and

∇2 f (xk) p̃k = −∇ f (xk). (22)

Then the iteration xk+1 = xk + θ pk + (1− θ) p̃k generated by Algorithm 2 converges
to x∗, where x0 is the starting point.

Proof In this proof, fk,∇ fk and ∇2 fk denotes the f (xk),∇ f (xk) and ∇2 f (xk),
respectively. By using Lemma 3.4-II

pk = (∇2 fk)
−1

(
I − ∇ fk∇ f Tk (− fk∇2 fk)−1

1 + ∇ f Tk (− fk∇2 fk)−1∇ fk

)
∇ fk . (23)

Without loss of generality, we assume ∇2 fk positive definite matrix. According to
(22) and (23) we have

xk+1 − x∗

= xk + θ pk + (1 − θ) p̃k − x∗

= xk − x∗ + θ(∇2 fk)
−1

(
I − ∇ fk∇ f Tk (− fk∇2 fk)−1

1 + ∇ f Tk (− fk∇2 fk)−1∇ fk

)
∇ fk − (1 − θ)(∇2 fk)

−1∇ fk

= (∇2 fk)
−1

(
∇2 fk(xk − x∗) + θ

(
I − ∇ fk∇ f Tk (− fk∇2 fk)−1

1 + ∇ f Tk (− fk∇2 fk)−1∇ fk

)
∇ fk − (1 − θ)∇ fk

)

= (∇2 fk)
−1

(
∇2 fk(xk − x∗) + θ∇ fk − θ

∇ fk∇ f Tk (− fk∇2 fk)−1∇ fk

1 + ∇ f Tk (− fk∇2 fk)−1∇ fk
− (1 − θ)∇ fk

)

= (∇2 fk)
−1

(
∇2 fk(xk − x∗) + 2θ∇ fk − ∇ fk − θ

∇ fk∇ f Tk (− fk∇2 fk)−1∇ fk

1 + ∇ f Tk (− fk∇2 fk)−1∇ fk

)
, (24)
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and hence

‖xk+1 − x∗‖

=
∥∥∥∥∥(∇2 fk)

−1

(
∇2 fk(xk − x∗) + 2θ∇ fk − ∇ fk − θ

∇ fk∇ f Tk (− fk∇2 fk)−1∇ fk

1 + ∇ f Tk (− fk∇2 fk)−1∇ fk

)∥∥∥∥∥

≤ ‖(∇2 fk)
−1‖

∥∥∥∥∥∇2 fk(xk − x∗) + 2θ∇ fk − ∇ fk − θ
∇ fk∇ f Tk (− fk∇2 fk)−1∇ fk

1 + ∇ f Tk (− fk∇2 fk)−1∇ fk

∥∥∥∥∥
≤ ‖(∇2 fk)

−1‖
(
‖∇2 fk(xk − x∗) − ∇ fk‖ + 2|θ |‖∇ fk‖ + |θ |‖∇ fk‖

)

= ‖(∇2 fk)
−1‖

(
‖∇2 fk(xk − x∗) − (∇ fk − ∇ f ∗)‖ + 2|θ |‖∇ fk‖ + |θ |‖∇ fk‖

)
. (25)

Since

∇ fk − ∇ f ∗ =
∫ 1

0
∇2 f (xk + t(x∗ − xk))(xk − x∗)dt, (26)

then

‖∇2 f (xk)(xk − x∗) − (∇ fk − ∇ f ∗)‖
=

∥∥∥∥
∫ 1

0
(∇2 f (xk) − ∇2 f (xk + t(x∗ − xk)))(xk − x∗)dt

∥∥∥∥

≤
∫ 1

0
‖∇2 f (xk) − ∇2 f (xk + t(x∗ − xk))‖‖(xk − x∗)‖dt

≤ 1

2
L‖xk − x∗‖2. (27)

Now from Lemma 3.4-I, Assumption 3.1 (A2) and (27), we obtain

‖xk+1 − x∗‖ ≤ ‖(∇2 fk)
−1‖(1

2
L‖xk − x∗‖2 + 2|θ |L‖xk − x∗‖ + |θ |L‖xk − x∗‖.

(28)

Since ∇2 f (x∗) is nonsingular and ∇2 f (xk) → ∇2 f (x∗), this implies that
‖(∇2 f (xk))−1‖ ≤ 2‖(∇2 f (x∗))−1‖ for all sufficiently large k. Therefore from
Assumption 3.1 (A4)

‖xk+1 − x∗‖ ≤ γ (‖xk − x∗‖2 + 6|θ |‖xk − x∗‖). (29)

Now suppose that there exists an integer k such that (i)‖xk−x∗‖ ≤ 1 or (ii) ‖xk−x∗‖ >

1. Then we consider the following cases:
Case (i): This case implies that

‖xk+1 − x∗‖ ≤ γ (1 + 6|θ |) ‖xk − x∗‖, (30)
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and with the help of (30) we have

‖xk+1 − x∗‖ ≤ γ (1 + 6|θ |) ‖xk − x∗‖ ≤ · · · ≤ (γ (1 + 6|θ |))k+1‖x0 − x∗‖.(31)

If the starting point is sufficiently near x∗, then, by using Assumption 3.1 (A5) the
sequence of {xk} converges to x∗.
Case (ii): This case implies that

‖xk+1 − x∗‖ ≤ γ (1 + 6|θ |) ‖xk − x∗‖2, (32)

and therefore

‖xk+1 − x∗‖ ≤ γ (1 + 6|θ |) ‖xk − x∗‖2 ≤ · · · ≤ (γ (1 + 6|θ |))2k+1−1‖x0 − x∗‖2k+1
,

(33)

and similar to previous case by using Assumption 3.1 (A5) the sequence of {xk}
converges to x∗. ��
Remark 1 For θ = 0, the proposed method reduces to the standard Newton method.

4 Numerical results

In this section, we report some results on the following numerical experiments for
the proposed algorithm. Also, the effectiveness of the proposed method with classical
Newton method andModified Regularized Newton method (MRN) proposed by Zhou
and Chen in [8] are compared. We suppose τ = 10−6 and stopping condition is

‖g(xk)‖ ≤ 10−5. Moreover, we suppose p0 = 0.0001, p1 = 0.25, p2 = 0.75, μ1 =
10−2 and m = 10−8 in MRN method. N f represents the number of the objective
function evaluations and Ng represents the number of gradient evaluations. The codes
have been written in Matlab 12.0 and runs are made on 2.3v GHz PC with 8GB
memory. The following test functions with standard starting points [26,27] and [28]
are used for the comparison. The obtained numerical results are summarized inTables 1
and 2. As shown in these tables, the proposed method (PM) is preferable to classical
Newton method (NM) and MRN method. Here, we used the performance profiles
proposed by Dolan and More [29] to compare and evaluate each implementation
on the test functions. Figures 1, 2, 3, 4, 5 and 6 give the performance profiles of
the proposed method with θ = 0.25, 0.5 and 0.75, MRN method and the classical
Newton method relative to the number of objective function evaluations (N f ) and
the number of gradient evaluations (Ng). Also, “Dim” shows the dimension of the
problem. Figures 1, 2 and 3 show the performance of considered algorithms in terms
of number of function evaluations. At a glance to these figures, we observe that in
the cases θ = 0.25 and θ = 0.5 the performance of the proposed algorithm is better
than others. Also according to Figs. 4, 5 and 6, the proposed method with θ = 0.25
performe better than the other methods.
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Table 1 Numerical results

Problem/Dim PM PM PM MRN [8] NM
θ = 0.25 θ = 0.5 θ = 0.75
N f N f N f N f N f
Ng Ng Ng Ng Ng
f ∗ f ∗ f ∗ f ∗ f ∗

QUARTC/500 6 4 3 11 15

7 5 4 23 16

5.71e−5 2.78e−5 2.78e−5 7.98e−9 1.36e−8

NONSCOMP/500 6 5 6 7 9

7 6 7 15 10

7.89e−11 3.50e−11 1.55e−11 7.89e−30 2.12e−28

LIARWHD/500 8 7 9 9 12

9 8 10 19 13

4.86e−12 1.55e−8 1.04e−8 3.67e−24 1.28e−25

Broyden Tridiagonal/700 7 10 11 5 7

8 11 12 11 8

4.40e−13 8.73e−13 2.43e−12 3.52e−29 1.31e−28

Perturbed Tridiagonal Quadratic/400 1 1 1 3 2

2 2 2 7 3

1.31e−24 5.23e−24 1.18e−23 2.02e−53 4.57e−60

Extended Powell/100 18 20 35 13 17

19 21 36 27 18

1.82e−10 1.04e−9 9.71e−10 7.03e−7 4.27e−9

TRIDIA/500 1 1 1 4 2

2 2 2 9 3

1.75e−20 6.98e−20 1.57e−19 5.18e−32 2.06e−38

NONDQUAR/300 13 18 37 153 17

14 19 38 307 18

5.63e−9 5.45e−9 3.10e−8 2.39e−4 3.16e−10

ARWHEAD/500 7 1 13 5 Fail

8 2 14 11 -

4.55e−13 −2.27e−13 7.28e−12 −1.59e−12 -

Diagonal 4/300 1 1 1 4 2

2 2 2 9 3

1.38e−23 5.53e−23 1.24e−22 0 0

Extended Trigonometric/10 22 Fail Fail 3 4

23 - - 7 5

9.73e+2 - - 9.73e+2 9.73e+2
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Table 2 Numerical results

Problem/Dim PM PM PM MRN [8] NM
θ = 0.25 θ = 0.5 θ = 0.75
N f N f N f N f N f
Ng Ng Ng Ng Ng
f ∗ f ∗ f ∗ f ∗ f ∗

Extended Tridiagonal 1/200 13 16 22 11 14

14 17 23 23 15

1.62e−8 1.57e−8 3.88e−8 1.60e−9 1.38e−8

Generalized Tridiagonal 2/300 12 15 16 6 8

13 16 17 13 9

2.04e−13 2.81e−12 8.66e−11 4.03e−29 1.23e−24

POWER/500 1 1 1 4 2

2 2 2 9 3

1.71e−20 6.85e−20 1.55e−19 1.43e−44 0

NONDIA/100 1 1 1 4 70

2 2 2 9 3

8.52e−27 2.79e−26 8.93e−27 9.78e−23 1.97e−31

Tridiagonal Double Borded/200 12 13 Fail 6 24

13 14 - 13 13

4.43e−13 6.52e−11 - 1.35e−25 1.85e−17

Diagonal Double Bounded Arrow Up/300 10 31 27 Fail 11

11 32 28 - 11

7.97e−14 2.27e−13 1.51e−12 - 1.52e−25

DENSCHNF/100 7 4 15 5 7

8 5 16 11 8

2.10e−14 2.23e−16 1.94e−13 0 0

4.1 Systems of nonlinear equations

In this part, we solve systems of nonlinear equations by using the proposed algorithm.
Consider the following nonlinear system of equations

F(x) = 0, (34)

where F(x) = ( f1(x), f2(x), . . . , fn(x)) and x ∈ R
n . This system can be extended

as

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,
...

fn(x1, x2, . . . , xn) = 0. (35)
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Fig. 1 Performance profile for the number of function evaluations with θ = 0.25
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Fig. 2 Performance profile for the number of function evaluations with θ = 0.5

For solving (34) by proposed algorithm, we suppose that f (x) = ∑n
i=1 f

2

i (x). Here,
we have worked out our proposed method on the following test problems. In all
problems, the stopping criterion is given by ‖ f (xk)‖ < 10−15.

Problem 1 Consider the system of two equations [30]:

F(x) =
{
x1 + ex2 − cos x2 = 0,
3x1 − sin x1 − x2 = 0,
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Fig. 3 Performance profile for the number of function evaluations with θ = 0.75
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Fig. 4 Performance profile for the number of gradient evaluations with θ = 0.25

with the initial value x0 = (1.5, 1.5) and exact solution x∗ = (0, 0).

Problem 2 Consider the system of three equations [30]:

F(x) =
⎧⎨
⎩
10x1 + sin(x1 + x2) − 1 = 0,
8x2 − cos2(x3 − x2) − 1 = 0,
12x3 + sin x3 − 1 = 0,
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Fig. 5 Performance profile for the number of gradient evaluations with θ = 0.5
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Fig. 6 Performance profile for the number of gradient evaluations with θ = 0.75

with the initial value x0 = (−1, 1,−1) and exact solution

x∗ = (0.0689783491726666, 0.2464424186091830, 0.0769289119875370).

Problem 3 n = 16, 1 ≤ i ≤ n − 1 [31]:

F(x) =
{
xi sin(xi+1) − 1 = 0,
xn sin(x1) − 1 = 0,
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Table 3 Numerical results for Problems 1–4

Problem PM PM PM MRN method [8] NM
θ = 0.25 θ = 0.5 θ = 0.75
Nh Nh Nh Nh Nh
Ng Ng Ng Ng Ng
CPU time(s) CPU time(s) CPU time(s) CPU time(s) CPU time(s)
‖ fk − f ∗‖ ‖ fk − f ∗‖ ‖ fk − f ∗‖ ‖ fk − f ∗‖ ‖ fk − f ∗‖

1 6 6 8 7 114

5 5 7 13 113

0.156 0.129 0.178 0.173 1.789

8.26e−11 2.50e−9 7.72e−15 8.80e−18 6.01e−16

2 6 6 6 4 21

5 5 5 9 20

0.164 0.168 0.188 0.140 0.421

7.72e−14 9.13e−16 3.93e−17 7.47e−17 4.99e−17

3 4 4 4 4 13

3 3 3 7 12

0.204 0.213 0.212 0.193 0.391

1.61e−8 4.44e−11 0 8.88e−16 8.90e−16

4 4 4 4 3 5

3 3 3 5 4

46.102 42.072 46.534 33.938 0.862

6.87e−12 9.42e−16 8.19e−16 4.29e−16 2.07e−4

with the initial value x0 = (−0.85,−0.85, . . . ,−0.85) and exact solution

x∗ = (−1.114157140871930087, . . . ,−1.114157140871930087).

Problem 4 Next, consider a system of 25 equations [32]:

fi (x) = xi − cos

⎛
⎝2xi −

25∑
j=1

x j

⎞
⎠ = 0, 1 ≤ i ≤ 25.

The initial guess is x0 = (0.2, 0.2, . . . , 0.2) and the root correct up to 16 digits is given
by x∗ = (0.2142756147552158, 0.2142756147552158, . . . , 0.2142756147552158).

Table 3 shows the results about the considered nonlinear systems solved by the
proposed algorithm, MRN and classical Newton method. From Table 3, we can see
that the performance of proposed method on these problems is better than the other
two algorithms.
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5 Conclusions

In the present work, we proposed a new algorithm for solving convex unconstrained
optimization problems. This proposed method is based on Traub’s iterative algorithm
[1] which is extended to n-variable. The local convergence of the proposed method is
also provided. The best property of this method is that it does not need to calculate the
step length and αk = 1 at each iteration. The numerical results and comparison with
other algorithms confirmed the efficiency and robustness of our algorithm. In addition,
by comparing the performance profile figures for three different θ = 0.25, 0.5, 0.75,
it is seen that the numerical results for θ = 0.25 are better than two other θ values.
This algorithm is also used to solve systems of nonlinear equations, which have better
numerical results compared to MRN method and classical Newton method.
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