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Abstract
This paper addresses flow shop scheduling problems with sum-of-logarithm-
processing-times-based learning effects. The objective is to minimize the total com-
pletion time, the makespan, the total weighted completion time, and the sum of the
quadratic job completion times, respectively. Heuristic algorithms based on the opti-
mal schedules for the corresponding flow shop scheduling problems are presented and
their worst-case error bounds are also analyzed.
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1 Introduction

Scheduling problems have received considerable attention for many years (see Gon-
zalez and Sahni [1], Smutnicki [2], Hoogeveen and Kawaguchi [3], Koulamas and
Kyparisis [4], Easwaran et al. [5], Pinedo [6]). Most research of deterministic schedul-
ing assumes that processing time of a job is independent of its position in the process
schedule. However, additional constraints such as learning effects of machines (work-
ers) and flow shop machines setting are of interest to increase the efficiency of
manufacture system. In the “learning effect”, the production facility (a machine, a
worker) improves continuously over time and the production time of a given product
is shorter if it is scheduled later (Biskup [7,8], Wang et al. [9], Cheng et al. [10], Eren
[11], Lee and Wu [12], Yin et al. [13], Yin et al. [14], Wu et al. [15], Yin et al. [16],
and Zhao and Tang [17]).

Cheng et al. [10] considered single machine scheduling problems with sum-of-
logarithm-processing-times-based learning effects. However, in the manufacturing

B Ji-Bo Wang
wangjibo75@163.com

1 School of Science, Shenyang Aerospace University, Shenyang 110136, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-019-01255-0&domain=pdf


374 X.-X. Liang et al.

enterprise, the flow shop scheduling problems are important and usual. Hence, in
this paper we consider the same model as that of Cheng et al. [10], but with flow
shop scheduling setting. The objective functions are to minimize the total comple-
tion time, the makespan, the total weighted completion time, and the sum of the
quadratic job completion times, respectively. We give a heuristic for each criteria,
and analysis its worst-case error bound. For some studies about flow shop schedul-
ing with learning effects, we refer the readers to Wang and Xia [18], Xu et al.
[19], Wang and Wang [20], Li et al. [21], Sun et al. [22], Wang and Wang [23],
Sun et al. [24], Wang et al. [25], Wang and Zhang [26], He [27], Bai et al. [28],
and Wang et al. [29]. Wang and Xia [18] and Xu et al. [19] considered flow shop
scheduling with learning effect, i.e., the actual processing time pi jr of job J j on
machine Mi is pi jr = pi j (α − βr) and pi jr = pi j r δ, i = 1, 2, . . . ,m; r , j =
1, 2, . . . , n, where pi j is the normal processing time of job J j on machine Mi ,
α > 0, β ≥ 0, α − β(n + 1) > 0, and δ ≤ 0 is the learning rate. Using the three-field
notation scheme (Graham et al. [30]), Wang and Xia [18] proposed heuristic algo-
rithms with worst-case error bounds for the problems Fm

∣
∣pi jr = pi j (α − βr)

∣
∣ θ and

Fm
∣
∣pi jr = pi j r δ

∣
∣ θ , where θ ∈ {Cmax,

∑n
j=1 C j }, Xu et al. [19] proposed heuristic

algorithms with worst-case error bounds for the problems Fm
∣
∣pi jr = pi j (α − βr)

∣
∣ θ

and Fm
∣
∣pi jr = pi j r δ

∣
∣ θ , where θ ∈ {∑n

j=1 w jC j ,
∑n

j=1 C
2
j ,

∑n
j=1 w j (1−e−γC j )},

where C j (w j ) is the completion time of job J j , w j > 0 is a weight associated
with job J j , Cmax is the maximum completion time, 0 < γ < 1. Wang and Wang
[20] considered flow shop scheduling with learning effect in which pi jr = pi j br−1,

where b denotes the learning ratio with 0 < b ≤ 1. Wang and Wang [20] pro-
posed heuristic algorithms with worst-case error bounds for Fm

∣
∣pi jr = pi j br−1

∣
∣ θ ,

where θ ∈ {∑n
j=1 C j ,

∑n
j=1 w jC j ,

∑n
j=1 C

2
j ,

∑n
j=1 w j (1 − e−γC j )}. Li et al.

[21] considered flow shop scheduling with learning effect in which pi jr =
pi j

(

1 + ∑r−1
l=1 pi[l]

)a
,where a ≤ 0 denotes the learning ratio. They proposed heuris-

tic algorithmswith worst-case error bounds for Fm
∣
∣
∣pi jr = pi j

(

1 + ∑r−1
l=1 pi[l]

)a∣
∣
∣ θ ,

where θ ∈ {Cmax,
∑n

j=1 C j ,
∑n

j=1 w jC j ,
∑n

j=1 C
2
j ,

∑n
j=1 w j (1 − e−γC j )}. Sun

et al. [22] proposed new heuristic algorithms with worst-case error bounds for
Fm |A| ∑n

j=1 w jC j , where A ∈ {pi jr = pi j (α − βr), pi jr = pi j r δ, pi jr =
pi j br−1}. Wang and Wang [23] and Sun et al. [24] considered flow shop schedul-
ing with learning effect in which pi jr = pi j g(r), where g(r) is a non-increasing
function on r . Wang and Wang [23] and Sun et al. [24] proposed heuristic
algorithms with worst-case error bounds for Fm

∣
∣pi jr = pi j g (r)

∣
∣ θ , where θ ∈

{Cmax,
∑n

j=1 C j ,
∑n

j=1 C
2
j ,

∑n
j=1 w jC j ,

∑n
j=1 w j (1 − e−γC j )}. Wang et al. [25]

considered flow shop scheduling with learning effect in which pi jr = pi j max{r δ, ζ },
where ζ is a truncation parameter with 0 ≤ ζ ≤ 1. They proposed heuristic algo-
rithms with worst-case error bounds for Fm

∣
∣pi jr = pi j max{r δ, ζ }∣∣ θ , where θ ∈

{Cmax,
∑n

j=1 C j ,
∑n

j=1 C
2
j ,

∑n
j=1 w jC j ,

∑n
j=1 w j (1 − e−γC j )}. Wang and Zhang

[26] considered the problem Fm
∣
∣
∣pi jr = pi j

(

1 + ∑r−1
l=1 βl ln pi[l]

)a
rc

∣
∣
∣ λCmax +(1−

λ)
∑n

j=1 C j , where 0 < β1 ≤ β2 . . . ≤ βn , c ≤ 0, and 0 ≤ λ ≤ 1. He [27]
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considered the maximum lateness minimization flow shop scheduling with a gen-
eral exponential learning effect, he proposed a branch-and-bound algorithm, several
heuristics, and a nested-partition-based solution approach to solve this problem. Bai
et al. [28] considered the flow shop scheduling problems Fm

∣
∣pi jr = pi j g (r) , r j

∣
∣ θ ,

where θ ∈ {Cmax,
∑n

j=1 C j ,
∑n

j=1 C
2
j }, r j is the release dates of job J j . Wang et al.

[29] considered flow shop scheduling problemswith truncated exponential sum of log-
arithm processing times based and position-based learning effects. For the makespan
and total weighted completion time minimizations, they proposed several heuristics
and a branch-and-bound algorithm.

The remaining part of this paper is organized as follows. In Sect. 2 we give the
formulation of the model. In Sect. 3, we propose a heuristic with a worst-case error
bound for several regular objective functions, respectively. In Sect. 4, computational
results are given. The last section is the summary and future research.

2 Problem formulation

There is a set of n jobs J = {J1, J2, . . . , Jn} to be processed on m machines
M1, M2, . . . , Mm . Each job J j must first be prossed on M1, and then executed on
M2, and so on. As in Cheng et al. [10], in this paper, we consider flow shop scheduling
with sum-of-logarithm-processing-times-based learning effects, i.e., the actual pro-
cessing time pi jr of job J j on machine Mi is

pi jr = pi j

(

1 +
r−1
∑

l=1

ln pi[l]

)a

, i = 1, 2, . . . ,m; r , j = 1, 2, . . . , n, (1)

where pi j is the normal processing time (i.e., the processing time without any learning
effects) of job J j on machine Mi , a ≤ 0 is the learning index, ln pi j ≥ 1 and
∑0

l=1 ln pi[l] = 0.
Considering a schedule π , Ci j = Ci j (π) denotes the completion time of job J j on

machine Mi , and C j = Cmj represents the completion time of job J j ,
∑n

j=1 C j is the
total completion time, Cmax = max{C j | j = 1, 2, . . . , n} is the makespan of all jobs,
∑n

j=1 w jC j denotes the total weighted completion time (where w j > 0 is a weight

associated with job J j ),
∑n

j=1 C
2
j is the sum of the quadratic job completion times

(Townsend [31]).

3 Main results

Lemma 1 (Chenget al. [10])For theproblem1|p jr = p j

(

1 + ∑r−1
l=1 ln p[l]

)a | ∑C j ,

an optimal schedule can be obtained by sequencing the jobs in non-decreasing order
of p j (i.e., the SPT rule).

Lemma 2 (Cheng et al. [10])For the problem 1|p jr = p j

(

1 + ∑r−1
l=1 ln p[l]

)a |Cmax,

an optimal schedule can be obtained by sequencing the jobs in non-decreasing order
of p j (i.e., the SPT rule).
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Lemma 3 (Smith [32]) For the problem 1||∑w jC j , an optimal schedule can be
obtained by sequencing the jobs in non-decreasing order of

p j
w j

(i.e., the weighted

shortest processing time first (WSPT) rule).

Lemma 4 (Townsend [31]) “For the problem 1||∑C2
j , an optimal schedule can be

obtained by sequencing the jobs in non-decreasing order of p j (i.e., the SPT rule).”

Obviously, the problems Fm|prmu, pi jr = pi j
(

1 + ∑r−1
l=1 ln pi[l]

)a |Cmax (m ≥
3), Fm|prmu, pi jr = pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C j (m ≥ 2), Fm|prmu, pi jr =
pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑ w jC j (m ≥ 2), and Fm|prmu, pi jr = pi j
(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C2
j (m ≥ 2) are NP-complete, respectively.

Let Vj = ∑m
i=1 pi j , from Lemma 1, the SPT (in order of non-decreasing

Vj ) rule can be used as an approximate algorithm to solve Fm|prmu, pi jr =
pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C j .

Theorem 1 Let S∗ be an optimal schedule and S be an SPT schedule for the problem

Fm|prmu, pi jr = pi j
(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C j . Then
∑

C j (S)
∑

C j (S∗) ≤ m
(1+ln Pmax)

a ,

and this bound is tight, where ln Pmax = max{∑n
l=1 ln pil −ln pi min|i = 1, 2, . . . ,m}

and pi min = min{pi j | j = 1, 2, . . . , n}.
Proof Let V1 ≤ V2 ≤ · · · ≤ Vn , we have

C j (S) ≤ V1 + V2
(

1 + pmin{i1}
)a + V3

(

1 + pmin{i1+i2}
)a

+ · · · + Vj
(

1 + pmin{i1+i2+···+i, j−1}
)a

, (2)

where pmin{i1+i2+···+i, j−1} = min{ln pi1 + ln pi2 + · · · + ln pi, j−1|i = 1, 2, . . . ,m}
and so

n
∑

j=1

C j (S) ≤
n

∑

j=1

j
∑

l=1

Vl . (3)

Let S̄ = (J[1], J[2], . . . , J[n]) be any schedule, where [ j] denotes the job that occu-
pies the j th position in S∗, we have

C1[ j] = p1[1] + p1[2]
(

1 + ln p1[1]
)a + · · · + p1[ j]

(1 + ln p1[1] + ln p1[2] + · · · + ln p1[ j−1])a

C2[ j] ≥ p2[1] + p2[2]
(

1 + ln p2[1]
)a + · · · + p2[ j]

(1 + ln p2[1] + ln p2[2] + · · · + ln p2[ j−1])a

. . .

Cm[ j] ≥ pm[1] + pm[2]
(

1 + ln pm[1]
)a + · · · +

pm[ j]
(

1 + ln pm[1] + ln pm[2] + · · · + ln pm[ j−1]
)a

,
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hence

C[ j](S̄) ≥ 1

m

j
∑

l=1

V[ j] (1 + ln Pmax)
a , (4)

where ln Pmax = max{∑n
l=1 ln pil − ln pi min|i = 1, 2, . . . ,m} and pi min =

min{pi j | j = 1, 2, . . . , n}, and for the optimal schedule S∗, we have

n
∑

j=1

C j (S
∗) ≥ 1

m
(1 + ln Pmax)

a
n

∑

j=1

i
∑

j=1

V[ j] ≥ 1

m
(1 + ln Pmax)

a
n

∑

i=1

i
∑

j=1

Vj , (5)

as the term
∑n

i=1
∑i

j=1 L [ j] is minimized by the increasing order of L j (Lemma 1).

Consequently, form (3) and (5), we have that
∑

C j (S)
∑

C j (S∗) ≤ m
(1+ln Pmax)

a .

We show that the bound m
(1+ln Pmax)

a is tight. Consider the following instance. Learn-

ing takes place by the 100%-learning curve (a learning rate of 100% means that no
learning is taking place), thus a = 0, i.e., the bound m

(1+ln Pmax)
a = m. The boundm of

the SPT rule for Fm|prmu|∑C j is tight as shown inGonzalez andSahni [1] and there-

fore the bound for the problem Fm|prmu, pi jr = pi j
(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C j is

also tight. ��
Gonzalez and Sahni [1] proposed the ARB (any busy schedule) rule to solve

Fm|prmu|∑C j , hence, we can also use the ARB rule as an approximate algorithm

to solve Fm|prmu, pi jr = pi j
(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C j .

Theorem 2 Let S∗ (S) be an optimal (ARB rule) schedule for the problem Fm|prmu,
pi jr = pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C j . Then
∑n

j=1 C j (S)
∑n

j=1 C j (S∗) ≤ n
(1+ln Pmax)

a , and this

bound is tight, where ln Pmax = max{∑n
l=1 ln pil − ln pi min|i = 1, 2, . . . ,m} and

pi min = min{pi j | j = 1, 2, . . . , n}.
Proof Let

∑n
j=1 Vj = T , we assume that V1 ≤ V2 ≤ · · · ≤ Vn . Let C j (S) be the

completion time of job J j using SPT schedule S. Then from Theorem 1, we have

C j (S) ≤ ∑ j
l=1 Vl and so

n
∑

j=1

C j (S) ≤
n

∑

j=1

j
∑

l=1

Vl ≤ nT .

For theoptimal schedule S∗, fromTheorem1,wehaveC[ j](S∗)≥V[ j] (1+ ln Pmax)
a

and so

n
∑

j=1

C j (S
∗) ≥

n
∑

j=1

V[ j](1 + ln Pmax)
a ≥

n
∑

i=1

V[i](1 + ln Pmax)
a = T (1 + ln Pmax)

a .
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Consequently, we have

∑n
j=1 C j (S)

∑n
j=1 C j (S∗)

≤ n

(1 + ln Pmax)
a .

We show that the bound n
(1+ln Pmax)

a is tight. Consider the following instance. Learn-
ing takes place by the 100%-learning curve, i.e., a = 0 and the bound n

(1+ln Pmax)
a = n.

The bound n of the ARB rule for Fm|prmu|∑C j is tight as shown in Gon-
zalez and Sahni [1] and therefore the bound for the problem Fm|prmu, pi jr =
pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C j is also tight. ��

Gonzalez and Sahni [1] proposed the ARB rule (any busy schedule) as an approx-
imate algorithm to solve Fm|prmu|Cmax, hence, we can also use the ARB rule as an

approximate algorithm to solve Fm|prmu, pi jr = pi j
(

1 + ∑r−1
l=1 ln pi[l]

)a |Cmax.

Theorem 3 Let S∗ (S) be an optimal (ARB rule) schedule for the problem Fm|prmu,
pi jr = pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a |Cmax. Then Cmax(S)/Cmax(S∗) ≤ m
(1+ln Pmax)

a , and

this bound is tight, where ln Pmax = max{∑n
l=1 ln pil − ln pi min|i = 1, 2, . . . ,m}

and pi min = min{pi j | j = 1, 2, . . . , n}.

Proof Similar to the proof of Theorem 2 except that: Cmax(S) ≤ ∑n
j=1 Vj = T and

Cmax(S
∗) ≥ 1

m

n
∑

l=1

V[ j] (1 + ln Pmax)
a = 1

m
(1 + ln Pmax)

a T ,

hence, we have Cmax(S)/Cmax(S∗) ≤ m
(1+ln Pmax)

a .
We show that the bound m

(1+ln Pmax)
a is tight. Consider the following instance. Learn-

ing takes place by the 100%-learning curve, i.e., a = 0 and m
(1+ln Pmax)

a = m.
The bound m of the ARB rule for Fm|prmu|Cmax is tight as shown in Gon-
zalez and Sahni [1] and therefore the bound for the problem Fm|prmu, pi jr =
pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a |Cmax is also tight. ��

Since for the problem 1|p jr = p j

(

1 + ∑r−1
l=1 ln p[l]

)a |Cmax, SPT rule generates

an optimal solution (Lemma 2), so we use the SPT rule as an approximate algorithm

to solve Fm|prmu, pi jr = pi j
(

1 + ∑r−1
l=1 ln pi[l]

)a |Cmax.

Corollary 1 Let S∗ (S) be an optimal (SPT) schedule for Fm|prmu, pi jr =
pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a |Cmax. Then Cmax(S)/Cmax(S∗) ≤ m
(1+ln Pmax)

a , and this

bound is tight, where ln Pmax = max{∑n
l=1 ln pil − ln pi min|i = 1, 2, . . . ,m} and

pi min = min{pi j | j = 1, 2, . . . , n}.
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From Lemma 3, we can use the WSPT (in order of non-decreasing
Vj
w j

) rule as

an approximate algorithm for problem Fm|prmu, pi jr = pi j
(

1 + ∑r−1
l=1 ln pi[l]

)a |
∑

w jC j .

Theorem 4 Let S∗ (S) be an optimal (a WSPT) schedule for the problem Fm|prmu,
pi jr = pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑w jC j . Then
∑n

j=1 w j C j (S)
∑n

j=1 w j C j (S∗) ≤ m
(1+ln Pmax)

a , and

this bound is tight, where ln Pmax = max{∑n
l=1 ln pil − ln pi min|i = 1, 2, . . . ,m}

and pi min = min{pi j | j = 1, 2, . . . , n}.

Proof Without loss of generality we assume that V1
w1

≤ V2
w2

≤ · · · ≤ Vn
wn

. Let C j (S)

be the completion time of job J j using WSPT schedule S. Then from Theorem 1, we

have C j (S) ≤ ∑ j
l=1 Vl and so

n
∑

j=1

w jC j (S) ≤
n

∑

j=1

w j

j
∑

l=1

Vl .

Let (J[1], J[2], . . . , J[n]) be the order inwhich jobs complete in the optimal schedule

S∗. Then from Theorem 1, we have C[ j](S∗) ≥ 1
m

∑ j
l=1 V[ j] (1 + ln Pmax)

a and so

n
∑

j=1

w jC j (S
∗) ≥ (1 + ln Pmax)

a

m

n
∑

j=1

w[ j]
j

∑

l=1

V[l] ≥ (1 + ln Pmax)
a

m

n
∑

i=1

wi

i
∑

j=1

Vj ,

as the term
∑n

j=1 w[ j]
∑ j

l=1 V[l] is minimized by the increasing order of
Vj
w j

(Lemma 3). Consequently, we have

∑n
j=1 w jC j (S)

∑n
j=1 w jC j (S∗)

≤ m

(1 + ln Pmax)
a .

We show that the bound m
(1+ln Pmax)

a is tight. Consider the following instance.
Learning takes place by the 100%—learning curve, i.e., a = 0 and m

(1+ln Pmax)
a =

m. The bound m of the WSPT rule for Fm|prmu|∑w jC j is tight as shown
in Smutnicki [2] and therefore the bound for the problem Fm|prmu, pi jr =
pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑ w jC j is also tight. ��

Theorem 5 Let S∗ (S) be an optimal (ARB) schedule for the Fm|prmu, pi jr =
pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑
w jC j problem. Then

∑n
j=1 w j C j (S)

∑n
j=1 w j C j (S∗) ≤ 1+(n−1)(w/w)

(1+ln Pmax)
a ,

and this bound is tight, where w = min j∈J w j and w = max j∈J w j .
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Proof Let
∑n

j=1 Vj = T and S = (J1, J2, . . . , Jn) be any busy schedule, we have

Ci (S) ≤ ∑i
j=1 Vj and so

n
∑

i=1

wiCi (S) ≤
n

∑

i=1

wi

i
∑

j=1

Vj ≤
n

∑

i=1

wi

i
∑

j=1

L j ≤
n

∑

i=1

wi T ≤ T (w + (n − 1)w).

Let S∗ = (J[1], J[2], . . . , J[n]) be an optimal schedule. For S∗ we have C[i](S∗) ≥
V[i] (1 + ln Pmax)

a and so

n
∑

i=1

wiCi (S
∗) ≥

n
∑

i=1

w[i]V[i] (1 + ln Pmax)
a ≥ w

n
∑

i=1

V[i] (1 + ln Pmax)
a

= wT (1 + ln Pmax)
a .

Consequently, we have

∑n
j=1 w jC j (S)

∑n
j=1 w jC j (S∗)

≤ 1 + (n − 1)(w/w)

(1 + ln Pmax)
a .

We show that the bound 1+(n−1)(w/w)

(1+ln Pmax)
a is tight. Consider the following instance.

Learning takes place by the 100%-learning curve, i.e., a = 0 and 1+(n−1)(w/w)

(1+ln Pmax)
a =

1 + (n − 1)(w/w). The bound 1 + (n − 1)(w/w) of any busy schedule for
Fm|prmu|∑w jC j is tight as shown in Smutnicki [2] and therefore the bound for

the problem Fm|prmu, pi jr = pi j
(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑w jC j is also tight. ��
Theorem 6 Let S∗ (S) be an optimal (SPT) schedule for the Fm|prmu,
pi jr = pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C2
j problem.Then

∑n
j=1 C

2
j (S)

∑n
j=1 C

2
j (S

∗) ≤
(

m
(1+ln Pmax)

a

)2
,

and this bound is tight, where ln Pmax = max{∑n
l=1 ln pil −ln pi min|i = 1, 2, . . . ,m}

and pi min = min{pi j | j = 1, 2, . . . , n}.
Proof Similar to the proof of Theorem 1, we assume that V1 ≤ V2 ≤ · · · ≤ Vn , we
have C j (S) ≤ ∑ j

l=1 Vl and so

n
∑

j=1

C2
j (S) ≤

n
∑

j=1

⎛

⎝

j
∑

l=1

Vl

⎞

⎠

2

.

Let S∗ = (J[1], J[2], . . . , J[n]), we have C[ j](S∗) ≥ (1+ln Pmax)
a

m

∑ j
l=1 V[ j] and so

n
∑

j=1

C2
j (S

∗) ≥
n

∑

j=1

⎛

⎝
(1 + ln Pmax)

a

m

j
∑

l=1

V[l]

⎞

⎠

2
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Table 1 Results for Cmax and m = 3

n a Cmax(SPT )
Cmax(S∗)

m
(1+ln Pmax)a

Cmax(ARB)
Cmax(S∗)

m
(1+ln Pmax)a

Mean Max. Mean Max. Mean Max. Mean Max.

−0.15 1.063 1.221 5.021 5.135 1.562 1.991 5.021 5.135

−0.25 1.087 1.231 7.075 7.348 1.331 1.846 7.075 7.348

8 −0.35 1.066 1.208 9.942 10.515 1.521 1.727 9.942 10.515

−0.45 1.058 1.175 14.068 15.047 1.169 1.626 14.068 15.047

−0.15 1.051 1.156 5.113 5.217 1.416 1.982 5.113 5.217

−0.25 1.016 1.131 7.296 7.544 1.358 1.839 7.296 7.544

9 −0.35 1.043 1.164 10.412 10.911 1.354 1.857 10.412 10.911

−0.45 1.073 1.206 14.812 15.777 1.550 1.935 14.812 15.777

−0.15 1.071 1.217 5.197 5.292 1.391 1.914 5.197 5.292

−0.25 1.061 1.171 7.496 7.726 1.553 1.963 7.496 7.726

10 −0.35 1.062 1.156 10.814 11.281 1.211 1.654 10.814 11.281

−0.45 1.071 1.236 15.591 16.469 1.493 1.969 15.591 16.469

−0.15 1.081 1.151 5.274 5.361 1.378 1.733 5.274 5.361

−0.25 1.056 1.137 7.682 7.896 1.061 1.887 7.682 7.896

11 −0.35 1.023 1.271 11.190 11.629 1.246 1.484 11.190 11.629

−0.45 1.049 1.088 16.299 17.127 1.206 1.916 16.299 17.127

Table 2 Results for Cmax and m = 5

n a Cmax(SPT )
Cmax(S∗)

m
(1+ln Pmax)a

Cmax(ARB)
Cmax(S∗)

m
(1+ln Pmax)a

Mean Max. Mean Max. Mean Max. Mean Max.

−0.15 1.042 1.146 8.327 8.557 1.566 1.709 8.327 8.557

−0.25 1.041 1.131 11.782 12.247 1.635 1.918 11.782 12.247

8 −0.35 1.075 1.246 16.632 17.524 1.302 1.817 16.632 17.524

−0.45 1.044 1.191 23.446 25.078 1.682 1.933 23.446 25.078

−0.15 1.055 1.108 8.522 8.695 1.167 1.995 8.522 8.695

−0.25 1.048 1.086 12.121 12.572 1.589 1.896 12.121 12.572

9 −0.35 1.084 1.206 17.351 18.185 1.335 1.814 17.351 18.185

−0.45 1.047 1.201 24.762 26.293 1.141 1.443 24.762 26.293

−0.15 1.055 1.109 8.662 8.820 1.616 1.855 8.662 8.820

−0.25 1.079 1.273 12.361 12.877 1.365 1.626 12.361 12.877

10 −0.35 1.091 1.163 18.021 18.797 1.374 1.964 18.021 18.797

−0.45 1.054 1.104 25.994 27.441 1.349 1.675 25.994 27.441

−0.15 1.049 1.085 8.745 8.934 1.261 1.467 8.745 8.934

−0.25 1.089 1.113 12.677 13.166 1.276 1.636 12.677 13.166

11 −0.35 1.095 1.281 18.556 19.381 1.329 1.592 18.556 19.381

−0.45 1.083 1.162 27.166 28.545 1.458 1.804 27.166 28.545
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Table 3 Results for
∑

C j and m = 3

n a
∑

C j (SPT )
∑

C j (S∗)
m

(1+ln Pmax)a

∑
C j (ARB)

∑
C j (S∗)

n
(1+ln Pmax)a

Mean Max. Mean Max. Mean Max. Mean Max.

−0.15 1.041 1.143 5.021 5.135 1.211 2.414 13.363 13.694

−0.25 1.058 1.203 7.075 7.348 1.176 2.044 18.876 19.598

8 −0.35 1.060 1.216 9.942 10.515 1.254 2.852 26.611 28.041

−0.45 1.069 1.242 14.068 15.047 1.778 2.665 37.514 40.128

−0.15 1.049 1.121 5.113 5.217 1.466 2.118 15.332 15.651

−0.25 1.097 1.225 7.296 7.544 1.107 2.905 21.386 22.633

9 −0.35 1.076 1.218 10.412 10.911 1.517 2.924 31.237 32.725

−0.45 1.077 1.316 14.812 15.777 1.271 2.768 44.573 47.282

−0.15 1.057 1.135 5.197 5.292 1.106 2.096 17.318 17.641

−0.25 1.072 1.216 7.496 7.726 1.310 2.552 24.723 25.815

10 −0.35 1.071 1.181 10.814 11.281 1.516 2.615 36.059 37.639

−0.45 1.091 1.186 15.591 16.469 1.173 2.471 51.668 54.239

−0.15 1.085 1.219 5.274 5.361 1.225 2.111 19.119 19.625

−0.25 1.065 1.097 7.682 7.896 1.104 2.167 28.121 28.618

11 −0.35 1.058 1.112 11.190 11.629 1.366 2.646 41.031 42.641

−0.45 1.091 1.213 16.299 17.127 1.508 2.022 59.164 62.623

Table 4 Results for
∑

C j and m = 5

n a
∑

C j (SPT )
∑

C j (S∗)
m

(1+ln Pmax)a

∑
C j (ARB)

∑
C j (S∗)

n
(1+ln Pmax)a

Mean Max. Mean Max. Mean Max. Mean Max.

−0.15 1.056 1.212 8.327 8.557 1.508 2.002 13.363 13.694

−0.25 1.043 1.178 11.782 12.247 1.473 2.124 18.876 19.598

8 −0.35 1.041 1.159 16.632 17.524 1.459 2.142 26.611 28.041

−0.45 1.042 1.121 23.446 25.078 1.596 2.828 37.514 40.128

−0.15 1.037 1.079 8.522 8.695 1.665 2.575 15.332 15.651

−0.25 1.072 1.165 12.121 12.572 1.425 2.126 21.386 22.633

9 −0.35 1.071 1.162 17.351 18.185 1.438 2.019 31.237 32.725

−0.45 1.057 1.153 24.762 26.293 1.657 2.505 44.573 47.282

−0.15 1.065 1.236 8.662 8.820 1.477 2.180 17.318 17.641

−0.25 1.065 1.159 12.361 12.877 1.492 2.481 24.723 25.815

10 −0.35 1.059 1.136 18.021 18.797 1.773 2.036 36.059 37.639

−0.45 1.069 1.154 25.994 27.441 1.442 2.133 51.668 54.239

−0.15 1.085 1.118 8.745 8.934 1.544 2.914 19.119 19.625

−0.25 1.072 1.117 12.677 13.166 1.311 2.497 28.121 28.618

11 −0.35 1.085 1.175 18.556 19.381 1.359 2.250 41.031 42.641

−0.45 1.042 1.078 27.166 28.545 1.444 2.895 59.164 62.623
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Table 5 Results for
∑

w j C j and m = 3

n a
∑

w j C j (WSPT )
∑

w j C j (S∗)
m

(1+ln Pmax)a

∑
w j C j (ARB)

∑
w j C j (S∗)

1+(n−1)(w/w)

(1+ln Pmax)a

Mean Max. Mean Max. Mean Max. Mean Max.

−0.15 1.115 1.729 5.021 5.135 1.816 2.793 121.801 294.589

−0.25 1.135 1.469 7.075 7.348 1.621 2.313 173.913 431.110

8 −0.35 1.137 1.407 9.942 10.515 1.513 2.054 248.865 616.905

−0.45 1.173 1.454 14.068 15.047 1.430 2.193 356.118 882.772

−0.15 1.242 1.715 5.113 5.217 1.899 3.194 138.068 349.546

−0.25 1.251 1.714 7.296 7.544 1.662 2.516 197.253 505.488

9 −0.35 1.326 2.668 10.412 10.911 1.915 2.578 281.246 730.995

−0.45 1.264 2.047 14.812 15.777 1.345 2.697 401.812 1057.117

−0.15 1.148 1.629 5.197 5.292 1.715 2.361 157.652 398.681

−0.25 1.183 1.749 7.496 7.726 2.054 3.133 227.408 582.065

10 −0.35 1.283 2.077 10.814 11.281 1.923 2.774 328.033 849.803

−0.45 1.151 1.526 15.591 16.469 1.745 2.671 473.173 1240.687

−0.15 1.197 1.441 5.274 5.361 1.926 2.421 177.558 448.607

−0.25 1.194 1.368 7.682 7.896 2.074 2.958 258.635 660.662

11 −0.35 1.105 1.359 11.190 11.629 1.744 2.287 376.734 972.989

−0.45 1.313 1.861 16.299 17.127 1.917 2.867 548.759 1432.954

Table 6 Results for
∑

w j C j and m = 5

n a
∑

w j C j (WSPT )
∑

w j C j (S∗)
m

(1+ln Pmax)a

∑
w j C j (ARB)

∑
w j C j (S∗)

1+(n−1)(w/w)

(1+ln Pmax)a

Mean Max. Mean Max. Mean Max. Mean Max.

−0.15 1.171 1.737 8.327 8.557 1.695 2.487 120.818 296.591

−0.25 1.164 1.634 11.782 12.247 1.443 2.351 175.925 432.152

8 −0.35 1.167 1.544 16.632 17.524 1.694 3.048 251.851 617.925

−0.45 1.336 2.172 23.446 25.078 1.526 3.372 345.182 886.721

−0.15 1.241 2.218 8.522 8.695 2.014 3.234 137.081 348.561

−0.25 1.204 1.577 12.121 12.572 1.485 2.045 199.231 514.498

9 −0.35 1.183 1.521 17.351 18.185 1.548 2.234 280.261 731.954

−0.45 1.128 1.959 24.762 26.293 1.549 2.534 405.825 1076.174

−0.15 1.270 1.785 8.662 8.820 1.577 2.229 155.625 399.618

−0.25 1.230 1.476 12.361 12.877 1.533 2.456 229.481 583.055

10 −0.35 1.331 2.171 18.021 18.797 1.654 2.017 321.031 850.831

−0.45 1.258 2.119 25.994 27.441 1.774 3.016 470.134 1241.677

−0.15 1.135 1.808 8.745 8.934 1.781 2.117 176.585 449.671

−0.25 1.221 1.546 12.677 13.166 1.541 2.272 260.653 661.664

11 −0.35 1.267 1.602 18.556 19.381 1.574 1.769 377.743 973.991

−0.45 1.146 1.501 27.166 28.545 1.801 2.424 549.796 1434.944
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Table 7 Results for
∑

C2
j and m = 3

n a

∑
C2
j (SPT )

∑
C2
j (S

∗)

(
m

(1+ln Pmax)a

)2
∑

C2
j (ARB)

∑
C2
j (S

∗)

(
n

(1+ln Pmax)a

)2

Mean Max. Mean Max. Mean Max. Mean Max.

−0.15 1.131 1.412 25.210 26.368 3.449 6.651 178.570 187.526

−0.25 1.119 1.452 50.056 53.993 3.124 5.819 356.303 384.082

8 −0.35 1.108 1.601 98.843 110.565 2.578 5.733 708.145 786.298

−0.45 1.156 1.482 197.9086 226.412 1.346 3.853 1407.300 1610.256

−0.15 1.102 1.348 26.143 27.217 2.613 5.663 235.070 244.954

−0.25 1.103 1.319 53.232 56.912 2.002 8.448 457.361 512.253

9 −0.35 1.221 1.831 108.410 119.050 2.396 4.514 975.750 1070.926

−0.45 1.112 1.345 219.395 248.914 2.656 6.326 1986.752 2235.588

−0.15 1.115 1.263 27.009 28.005 2.767 5.062 299.913 311.205

−0.25 1.116 1.421 56.190 59.691 3.196 9.987 611.227 666.414

10 −0.35 1.035 1.251 116.942 127.261 3.039 8.109 1300.251 1416.694

−0.45 1.177 1.553 243.079 271.228 3.136 5.577 2669.582 2941.869

−0.15 1.115 1.202 27.815 28.740 3.219 9.718 365.536 385.141

−0.25 1.239 1.488 59.013 62.347 2.168 4.908 790.791 818.990

11 −0.35 1.024 1.391 125.216 135.234 2.872 4.995 1683.543 1818.255

−0.45 1.081 1.155 265.657 293.334 2.446 4.226 3500.379 3921.640

≥
(

(1 + ln Pmax)
a

m

)2 n
∑

j=1

⎛

⎝

j
∑

l=1

V[l]

⎞

⎠

2

≥
(

(1 + ln Pmax)
a

m

)2 n
∑

j=1

⎛

⎝

j
∑

l=1

Vl

⎞

⎠

2

,

as the term
∑n

j=1

(
∑ j

l=1 Vl
)2

is minimized by the increasing order of Vj (Lemma

5). Consequently, we have

∑n
j=1 C

2
j (S)

∑n
j=1 C

2
j (S

∗)
≤

(
m

(1 + ln Pmax)
a

)2

.

We show that the bound
(

m
(1+ln Pmax)

a

)2
is tight. Consider the following instance.

Learning takes place by the 100%—learning curve (a learning rate of 100% means

that no learning is taking place), thus a = 0, that is, the bound
(

m
(1+ln Pmax)

a

)2 = m2.

The bound m2 of the SPT rule for Fm|prmu|∑C2
j is tight as shown in Koula-
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Table 8 Results for
∑

C2
j and m = 5

n a

∑
C2
j (SPT )

∑
C2
j (S

∗)

(

m
(

αaPmax+β
)

bn−1

)2 ∑
C2
j (ARB)

∑
C2
j (S

∗)

(
n

(1+ln Pmax)a

)2

Mean Max. Mean Max. Mean Max. Mean Max.

−0.15 1.053 1.153 69.339 73.222 2.059 4.623 178.570 187.526

−0.25 1.112 1.530 138.816 149.989 2.238 5.181 356.303 384.082

8 −0.35 1.072 1.278 276.623 307.091 2.277 5.208 708.145 786.298

−0.45 1.107 1.827 549.715 628.906 2.276 4.331 1407.300 1610.256

−0.15 1.051 1.157 72.624 75.603 3.341 9.863 235.070 244.954

−0.25 1.117 1.318 146.919 158.055 2.025 4.321 457.361 512.253

9 −0.35 1.023 1.307 301.057 330.694 2.648 4.605 975.750 1070.926

−0.45 1.091 1.303 613.157 691.322 2.215 5.576 1986.752 2235.588

−0.15 1.128 1.427 75.030 77.792 1.683 2.233 299.913 311.205

−0.25 1.018 1.302 152.794 165.817 1.613 3.844 611.227 666.414

10 −0.35 1.119 1.433 324.756 353.327 2.191 4.857 1300.251 1416.694

−0.45 1.153 1.531 675.688 753.009 2.451 5.673 2669.582 2941.869

−0.15 1.061 1.181 76.475 79.816 2.823 5.865 365.536 385.141

−0.25 1.133 1.367 160.706 173.344 1.204 2.219 790.791 818.990

11 −0.35 1.073 1.216 344.325 375.623 2.072 3.451 1683.543 1818.255

−0.45 1.108 1.244 737.992 814.817 2.315 4.316 3500.379 3921.640

mas and Kyparisis [4] and therefore the bound for the problem Fm|prmu, pi jr =
pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C2
j is also tight. ��

Theorem 7 Let S∗ (S) be an optimal (ARB rule) schedule for the problem Fm|prmu,
pi jr = pi j

(

1 + ∑r−1
l=1 ln pi[l]

)a | ∑C2
j . Then

∑n
j=1 C

2
j (S)

∑n
j=1 C

2
j (S

∗) ≤
(

n
(1+ln Pmax)

a

)2
, and

this bound is tight, where ln Pmax = max{∑n
l=1 ln pil − ln pi min|i = 1, 2, . . . ,m}

and pi min = min{pi j | j = 1, 2, . . . , n}.
Proof Similar to the proof of Theorems 2 and 6. ��

4 Computational study

Computational experiments were employed here to evaluate the performance of the
heuristic algorithms, and were coded in VC++ 6.0 and tested on a Pentium 4 with 2
GB RAM personal computer. The parameters of the test problems were generated as
follows:

1. pi j (w j ) were generated from a uniform distribution over [3, 100] ([1, 50]);
2. For small-sized instances n=8,9,10,11, m = 3, 5;
3. a = − 0.15,− 0.25,− 0.35,− 0.45;.

123



386 X.-X. Liang et al.

For small-sized instances of the studied problems, the percentage error of the
solution produced by the heuristic algorithm is calculated as F(Heur)

F(Opt) , where F ∈
{Cmax,

∑n
j=1 C j ,

∑n
j=1 w jC j ,

∑n
j=1 C

2
j }, Heur ∈ {ARB, SPT, WSPT}, F(Heur) is

the objective value of the solution generated by the heuristic Heur and F(Opt) is the
objective value for the optimal solution (can be obtained by an enumerative algorithm).
The experiments are run for each problem size, and 20 instances were randomly gen-
erated. The results are shown in Tables 1, 2, 3, 4, 5, 6, 7 and 8. From Tables 1, 2, 3, 4, 7
and 8, it can be seen that the performance of the SPT rule is more effective than the
ARB rule for Cmax,

∑
C j and

∑
C2

j . From Tables 5 and 6, it can be seen that the
performance of the WSPT rule is more effective than the ARB rule for

∑
w jC j .

5 Conclusion

In this paper, we studied flow shop scheduling with sum-of-logarithm-processing-
times-based learning effects. We developed heuristic algorithms with tight worst-case
bound for the flow shop scheduling with four regular objective functions, numerical
experiments demonstrate the effectiveness of the heuristic algorithms. In addition,
future research may focus on proposing more sophisticated and efficient heuristics,
considering two-stage assembly flow shop (Wu et al. [33], andWu et al. [34]), studying
the other learning effect models (Wang et al. [35], Niu et al. [36], and Yin [37]), or
addressing deterioration effects problems (Fan and Zhao [38], Li and Zhao [39],Wang
et al. [40], Wang and Zhao [41], and Huang [42]).

Acknowledgements This research was supported by the Support Program for Innovative Talents in Liaon-
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