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Abstract
We assign a companion sequence to a given companion matrix. Given a companion
matrix C, we make use of the associated companion sequence to provide a sim-
ple closed-form expression for Cn , the nth power of C. We determine conditions
under which a given companion matrix C is a primitive matrix. A systematic method
for obtaining the limit values of a companion sequence is provided. A new class of
primitive companion matrices is introduced for which the limit values of the related

companion sequences are connected with the Golden ratio τ = 1+√
5

2 . In fact, a
new generalization of the well-known Q-matrix and the ordinary Fibonacci numbers
are presented in this paper. This generalized form of the Fibonacci numbers will be
referred to as the Golden-Fibonacci sequence. We show that the limit values of a
Golden-Fibonacci sequence are powers of the Golden ratio. We apply primitive com-
panion matrices as encoder matrices and introduce a type of error-correcting codes to
be called companion coding.We show that the error-correcting relations of companion
coding are connected with the limit values of the related companion sequence.
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102 M. Mousavi et al.

1 Introduction

A type of applicable matrices in linear algebra is known as companion matrices [1,2].
An p × p companion matrix is defined by

Cp = Com(u p, u p−1, . . . , u2, u1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0
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. . .
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.
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.
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 0 1
u p u p−1 · · · · · · u2 u1

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

wherein u1, u2, . . . , u p are some integer numbers with ui ≥ 0, 1 ≤ i ≤ p − 1, and
u p > 0. In this paper, the (i, j)th entry of a companion matrix Cp is denoted by
cp(i, j).

In linear algebra [2,3], a matrix A with non-negatives entries is called prim-
itive, denoted Am > 0, if for some integer m all entries of Am are positive
integer numbers. In Sect. 3 we determine the values of ui ’s of a companion matrix
Cp = Com(u p, u p−1, . . . , u1) such that Cp is a primitive matrix.

The classical Fibonacci sequence is defined by fn = fn−1 + fn−2, for n ≥ 2, with
the initial values f0 = 0 and f1 = 1 [4]. The limit value of this Fibonacci sequence is

called the Golden ratio and is defined by τ := limn→∞ fn+1
fn

= 1+√
5

2 [4]. The Golden
ratio has various applications in mathematics for instance in coding and information
theory [5–7].

One of the important matrices related to the extension of Fibonacci sequence is the
Q-matrix [4]. By (1), the Q-matrix is denoted by C2 = Com(1, 1). It is well-known
that the nth power of the Q-matrix can be obtained by Fibonacci numbers [4]. In this
paper,we introduce anewFibonacci sequence tobe calledGolden-Fibonacci sequence.
A recursively constructed sequence of numbers is a Golden-Fibonacci sequence if its
limit values are connected with the Golden ratio.We introduce an extended class of the
Q-matrix and refer to them as the Golden primitive companion matrices (GPCM). We
prove that the sequence associated with a GPCM is a Golden-Fibonacci sequence. We
introduce a polynomial-based method to construct some types of GPCM. In addition,
we provide a relation between the roots of the characteristic polynomial of a companion
matrix Cp and the limit values of the assigned sequence to Cp.

The Q-matrix has been used in [5] to give a coding and decoding technique
referred to as Fibonacci coding theory. Moreover, in [8,9] the authors have used
Cp = Com(1, 1, . . . , 1) as the encoder matrix in the Fibonacci coding system with
two different sequence of numbers. Based on the Q-matrix and the Fibonacci cod-
ing method a quantum cryptography, quantum key distribution protocol and quantum
blind digital signature scheme with error detection are presented in [10–12], respec-
tively. In this paper we apply a companion matrix as an encoder matrix and introduce
a coding method, to be called companion coding, for encoding integer numbers. The
companion coding is a type of error-correcting method in which the encoder matrix
needs to be a primitive matrix. The introduced companion coding method is based on
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Companion matrices and Golden-Fibonacci sequences 103

the fact that to any primitive companion matrix we can assign a recursive sequence
of numbers whose limit values can be used to obtain some error-correcting relations
which are useful in decoding a received message.

The rest of the paper is organized as follows. Companion matrices and their asso-
ciated companion sequences are studied in Sect. 2. A new closed-form expression
is given in Sect. 2 for the nth powers of Cp and C−1

p by the aid of the associated
companion sequences. Some limit values related to a given companion sequence are
presented in Sect. 2. In Sect. 3 we classify companion matrices that are primitive.
Construction of GPCM’s and Golden-Fibonacci sequences is considered in Sect. 4.
In Sect. 5 the companion coding method based on companion matrices is introduced
and some relations among the entries of an encoded matrix E are provided which are
independent of massage matrices. A summary is given in Sect. 6.

2 A companion sequence for Cp and a closed-form expression for Cnp
and C−n

p

In this section, we assign a recursive sequence of numbers, called the companion
sequence, to a given companionmatrixCp anduse it to obtain a closed-formexpression
for Cn

p. We also obtain a closed-form expression for C−n
p which is applied in the

decoding process. Moreover, we introduce a systematic method to obtain the limit
values of a companion sequence.

2.1 The companion sequence and the structure of Cnp

In this part, we assign a sequence, called companion sequence, to a given matrix Cp.
The sequence is a generalization of the Fibonacci sequence. We represent Cn

p by the
associated companion sequence. The matrix Cn

p is used as an encoder matrix in the
companion coding method described in Sect. 5.

Definition 1 (The companion sequences) The nth term of the companion sequence of
order p assigned to Cp is defined by

k(p)
n = u1 k

(p)
n−p + u2 k

(p)
n−2p + · · · + u p k

(p)
n−p2

, n ≥ p2, (2)

wherein ui , 1 ≤ i ≤ p, are any integer numbers satisfying ui ≥ 0 for 1 ≤ i ≤ p − 1,
and u p > 0, and the p2 initial terms of the sequence are defined by k(p)

p(i−1)+ j−1 =
cp(i, j) for 1 ≤ i, j ≤ p.

Example 1 The companion sequence of order p = 2 with u1 = u2 = 1, has the
general term k(2)

n = k(2)
n−2 + k(2)

n−4 with initial values defined by C2 = Com(1, 1). The

sequence k(2)
n generates the classical Fibonacci numbers.

Lemma 1 The determinant of a matrix Cp is det(Cp) = u p (−1)p+1.
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104 M. Mousavi et al.

Proof Consider the matrix Cp given by (1). Using the cofactor expansion along the
first column of Cp, we get det(Cp) = u p (−1)p+1 det(Ip−1) = u p (−1)p+1, where
Ip−1 is the identity matrix of order p − 1. ��

Now we apply Definition 1 to get a closed-form expression for Cn
p, and by AT we

mean the transpose of A.

Theorem 1 The (i, j)th entry of the nth power of matrix Cp, denoted cnp(i, j), is:

cnp(i, j) = k(p)
p(n+i−2)+ j−1, 1 ≤ i, j ≤ p, (3)

and hence the entries of Cn
p are a set of elements of the companion sequence defined

by (2).

Proof The proof is by induction on n. For n = 1, by Definition 1, we have C1
p = Cp.

Assume that (3) holds for a positive integer n ≥ 1. We determine the first column of
Cn+1

p ; the other columns are determined by the same process. From Cn+1
p = Cp Cn

p
and the first column of the matrixCn

p that is given by (3), we see that we need to show
that the following relation holds.

(k(p)
pn k(p)

p(n+1) . . . k(p)
p(n+p−1))

T

= Com(u p, u p−1, . . . , u1) (k(p)
p(n−1) k(p)

pn . . . k(p)
p(n+p−2))

T (4)

It can be checked that the i th entry, 1 ≤ i ≤ p − 1, of the first column of Cn+1
p ,

the left side of (4), is equal with the inner product of the i th row of Cp and the first
column of Cn

p. The inner product of the pth row of Cp and the first column of Cn
p

is u1 k
(p)
p(n+p−2) + u2 k

(p)
p(n+p−3) + · · · + u p−1 k

(p)
pn + u p k

(p)
p(n−1) which is equal with

k(p)
p(n+p−1) according to relation (2). ��

2.2 The C−1
p -sequence and the inverse matrix C−n

p

In this subsection, we introduce a sequence, called C−1
p -sequence, and use it for a

representation of the inverse matrix C−n
p . It can be verified that if v = (− u p−1

u p
−

u p−2
u p

. . . − u1
u p

) and 0 stands for the all-zero column vector of length p − 1 then

C−1
p =

(
v 1/u p

Ip−1 0

)
. Now, we define a sequence of numbers that will be used in

calculating C−n
p .

Definition 2 (The C−1
p -sequence) Consider a matrix C−1

p . The companion sequence

asigned to C−1
p , called C−1

p -sequence and denoted l(p)n , is defined by

l(p)n := 1

u p
l(p)
n−p2

− u1
u p

l(p)n−p(p−1) − · · · − u p−2

u p
l(p)n−2p − u p−1

u p
l(p)n−p, (5)
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Companion matrices and Golden-Fibonacci sequences 105

where the p2 initial terms of the sequence are defined by l(p)p(p−i+1)− j = c−1
p (i, j) for

1 ≤ i, j ≤ p.

The inverse matrixC−n
p is used in the decoding process. The next theorem gives the

structure of this matrix. The proof of Theorem 2 is by induction on n and is precisely
the same as the method used in the proof of Theorem 1, and hence we omit the details.

Theorem 2 The (i, j)th entry of the nth power of matrix C−1
p , is c−n

p (i, j) =
l(p)p(n+p−i)− j for 1 ≤ i, j ≤ p. Hence, the entries of C−n

p are elements of the C−1
p -

sequence given by (5).

2.3 Some limit values related to a companion sequence

In the decoding process of the companion coding method, we encounter with some
limit values αi which are related to the associated companion sequence. We define αi

by

α1 := lim
n→∞

k(p)
pn

k(p)
pn+1

, α2 := lim
n→∞

k(p)
pn+1

k(p)
pn+2

, . . . , αp := lim
n→∞

k(p)
pn+p−1

k(p)
pn+p

. (6)

In the rest, we give a systematic method for calculating αi , 1 ≤ i ≤ p. First note that
if u1, u2, . . . , u p are some integer numbers with ui ≥ 0, 1 ≤ i ≤ p − 1, and u p > 0,
then it can be checked that the following polynomial f (z) has a unique positive real

root z ∈ (0, u
p−1
p

p ].

f (z) = z p + u p−1 z
p−1 + u p−2 u p z

p−2 + · · · + u2 u
p−3
p z2 + u1 u

p−2
p z − u p−1

p .

(7)

Theorem 3 Consider a companion sequence k(p)
n given by (2). The limit values defined

by (6) are as follows: αp = 1
u p

and the values of αi , for 1 ≤ i ≤ p − 1, are:

αi = u p

(
zi−1 + u p−1 zi−2 + u p−2 u p zi−3 + · · · + u p−i+2 ui−3

p z + u p−i+1 ui−2
p

zi + u p−1 zi−1 + u p−2 u p zi−2 + · · · + u p−i+1 u
i−2
p z + u p−i u

i−1
p

)
,

(8)
where z is the unique positive real root of the polynomial f (z) defined by (7).

Proof From equation Cn
p = Cn−1

p Cp, we can conclude that another representation

for the companion sequence k(p)
n given by (2) can be given by

k(p)
n =

⎧⎪⎨
⎪⎩
u p k

(p)
n−1 if n = 0 (mod p)

k(p)
n−p−1 + u p−i k

(p)
n−(i+1) if n = i (mod p) for 1 ≤ i ≤ p − 1,

(9)
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106 M. Mousavi et al.

where k(p)
0 = 0, k(p)

1 = 1 and k(p)
j = 0 for 2 ≤ j ≤ p. By using (9), we can verify

that the αi ’s defined by (6), satisfy the following system of non-linear equations:

α1α2 . . . α2
i . . . αp−1 + u p−i α1α2 . . . αi = u p, 1 ≤ i ≤ p − 1.

Now to complete the proof we just need to set z = α1α2 · · ·αp−1 and apply the proof
process used in the Appendix part in [9]. ��
Example 2 Consider the companion sequence k(4)

n = 5 k(4)
n−4 + 4 k(4)

n−8 + 3 k(4)
n−12 +

2 k(4)
n−16. From relations given by (6) the related limit values are αi = limn→∞

k(4)
4n+i−1

k(4)
4n+i

,

1 ≤ i ≤ 4. By Theorem 3 we get

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α1 = u4

(
1

z + u3

)
= 2

(
1

z + 3

)
= 0.5978375830,

α2 = u4

(
z + u3

z2 + u3 z + u2 u4

)
= 2

(
z + 3

z2 + 3 z + 8

)
= 0.7307963491,

α3 = u4

(
z2 + u3 z + u2 u4

z3 + u3 z2 + u2 u4 z + u1 u
2
4

)
= 2

(
z2 + 3 z + 8

z3 + 3 z2 + 8 z + 20

)
= 0.7905520086,

and α4 = 1
2 . In the above relations, z = 0.3453902144 is the unique positive real root

of

f (z) = z4 + u3 z
3 + u2 u4 z

2 + u1 u
2
4 z − u34 = z4 + 3 z3 + 8 z2 + 20 z − 8.

Consider a companion sequence k(p)
n whose initial values are defined by a com-

panion matrix Cp. In Definition 1 we assumed that the coefficients ui , 1 ≤ i ≤ p, in

k(p)
n are non-negative integer numbers which implies that some ui ’s can be zero. In the
next section, we show Cp is a primitive companion matrix if and only if the non-zero

coefficients of k(p)
n satisfy a special condition.

3 A connection between primitive and companionmatrices

For a companion sequence k(p)
n = ∑p

i=1 ui k
(p)
n−i p given by (2) we can define its

limit values defined by (6) when there exists a positive integer r such that k(p)
n > 0

for n ≥ r . Consider the companion matrix Cp = Com(u p, u p−1, . . . , u1) which is

related to k(p)
n . By Theorem 1 the entries of Cm

p are a set of elements of the sequence

k(p)
n , for somem > 1. Therefore, if there exists a positive integerm such thatCm

p > 0,

then we conclude that its associated companion sequence satisfies k(p)
n > 0 for n ≥

p(m + p − 1). For instance, in this section we prove that there is no positive integer
m such that Cm

2p > 0 if C2p = Com(u2p, 0, u2p−2, 0, . . . , u2, 0).
We said that a matrix A with non-negatives entries is called a primitive matrix if

Am > 0 for some m ≥ 1. Now we want to see with what values of ui ’s a companion
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Companion matrices and Golden-Fibonacci sequences 107

matrix Cp = Com(u p, u p−1, . . . , u1) is a primitive matrix. To answer this, we need
to introduce some basic concepts of graph theory. Given a non-negative n × n matrix
A = (ai, j ), we assign a weighted directed graphG toAwith vertices {v1, v2, . . . , vn}
such that if ai, j 
= 0 then a directed edge connects vertex vi to v j with weight ai, j
[13]. In graph theory, the matrix A is called the adjacency matrix of G.

In the rest of this paper, by a graph G, we mean a weighted directed graph G. A
cycle in a graph G is a directed path having the same initial and terminal vertex with
no repeated vertex on it. The number of edges in a cycle is called the length of the
cycle. A graph G is called strongly connected if and only if for every two vertices vi
and v j there is a directed path from vi to v j . A relation between a non-negative matrix
A and its associated graph G is provided in the following theorem.

Theorem 4 ([3])AmatrixA is primitive if and only if its associated graphG is strongly
connected and has two cycles of relatively prime lengths.

We derive a corollary from Theorem 4 which is used in determination of companion
matrices that are primitive. In Corollary 1, by gcd we mean greatest common divisor.

Corollary 1 Consider a companion matrix Cp = Com(u p, . . . , u1) for ui ≥ 0, 1 ≤
i ≤ p − 1, and u p > 0. Assume that among ui ’s, 1 ≤ i ≤ p − 1, just the entries
u j1, u j2 , . . . , u jt are non-zero, and hence the other ui ’s are zero. ThenCp is a primitive
matrix if and only if gcd(p, j1, j2, . . . , jt ) = 1.

Proof The graph G associated with Cp is given below wherein we have edges with
weights ui for 1 ≤ i ≤ p.

vp vp−1 vp−2 vp−(i−1) v1
1 1

u2
u3

ui
u p

u1

The graph G is strongly connected since we have u p > 0. Further, based on the
assumption, among ui ’s, 1 ≤ i ≤ p−1, just the entries u j1 , u j2 , . . . , u jt , t ≤ p−1, are
non-zero which results in that the graph G has only cycles of length p, j1, . . . , jt−1,
and jt .

IfCp is a primitivematrix it follows fromTheorem4 that the graphG has two cycles
of relatively prime lengths implying that gcd(p, j1, j2, . . . , jt ) = 1. It is obvious that
if gcd(p, j1, j2, . . . , jt ) = 1 then the graph G has at least two cycles of relatively
prime lengths. Now it follows from Theorem 4 that Cp is a primitive matrix. ��
Example 3 Based on Corollary 1, if in a companionmatrixCp = Com(u p, u p−1, . . . ,

u1) there exists a non-zero entry ui , 1 ≤ i ≤ p − 1 such that gcd(p, i) = 1,
then Cp is a primitive matrix. For instance, Cp = Com(u p, u p−1, . . . , u1) with
u p−1 
= 0 or u1 
= 0, is a primitive matrix. Moreover, the companion matrix C2p =
Com(u2p, 0, . . . , u2, 0) is not a primitive matrix since gcd(2p, 2p − 2, . . . , 2) = 2.
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108 M. Mousavi et al.

In the next section, we introduce some types of primitive companionmatriceswhich
are connected with golden ratio.

4 Golden sequences andmatrices

In this section, we introduce some recursive sequences and primitive companionmatri-
ces such that they are connected with the Golden ratio. In fact a new extension of the
sequence of Fibonacci numbers and the Q-matrix are given in this section. We obtain
a relation between the roots of the characteristic polynomial of a companion matrix
Cp and the limit values of its associated companion sequence.

4.1 A generalization of the Q-matrix and the Fibonacci numbers

In this subsection, we introduce three special types of primitive companion matrices
such that the limit values of their assigned companion sequences are connected with
the Golden ratio.

Definition 3 A recursive sequence of numbers is called a Golden-Fibonacci sequence

if its limit values is equal to τk for some integer number k where τ = 1+√
5

2 .

In this paper, all limit values of the considered Golden-Fibonacci sequences are
in the form of 1, τ, 1

τ , τ2 and 1

τ2
. For instance, the companion sequence k(2)

n given

in Example 1, is a Golden-Fibonacci sequence, since it can be checked that its limit
values are 1 and 1

τ .

Definition 4 The 2p × 2p matrix Com(1, 1, 0, 1, 0, 1, . . . , 0, 1) is denoted by EC2p
and is referred to as the GPCM of even size 2p.

Example 4 For p = 1, the matrix EC2 is the Q-matrix. Consider EC6 =
Com(1, 1, 0, 1, 0, 1) with u1 = u3 = u5 = u6 = 1 and u2 = u4 = 0. Therefore, the
companion sequence assigned to EC6 is k

(6)
n = k(6)

n−6 + k(6)
n−18 + k(6)

n−30 + k(6)
n−36, whose

initial values are defined by EC6. Based on (8), the limit values of EC6 are

α1 = 1

z + 1
, α2 = z + 1

z2 + z
= 1

z
, α3 = z2 + z

z3 + z2 + 1
, α4 = z3 + z2 + 1

z4 + z3 + z
= 1

z
,

α5 = z4 + z3 + z

z5 + z4 + z2 + 1
, α6 = 1

u6
,

where, based on (7), z is the positive real solution of f (z) = z6 + z5 + z3 + z−1. The
polynomial f (z) has factorization f (z) = (z4 + z2 + 1)(z2 + z − 1). Therefore, the
only positive real root of f (z) is z = 1

τ . It follows from z2 + z−1 = 0 that z+1 = 1
z

which results in α1 = 1
τ , α2 = τ, α3 = 1

τ , α4 = τ, α5 = 1
τ , and α6 = 1.

Now, byEC2p, we introduce a new extension of the sequence of Fibonacci numbers
of even size.
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Companion matrices and Golden-Fibonacci sequences 109

Lemma 2 The companion sequence associated with EC2p is a Golden-Fibonacci
sequence.

Proof From (2), the companion sequence asigned to EC2p is:

k(2p)
n = k(2p)

n−2p+k(2p)
n−3(2p)+k(2p)

n−5(2p)+· · ·+k(2p)
n−(2p−3)(2p)+k(2p)

n−((2p−1)(2p))+k(2p)
n−(2p)2

.

(10)
Now, we prove that the limit values of the companion sequence k(2p)

n given in (10)
are:

αi = lim
n→∞

k(2p)
2pn+i−1

k(2p)
2pn+i

=
⎧⎨
⎩

τ i = 0 (mod 2),

1
τ i = 1 (mod 2),

1 ≤ i ≤ 2p − 1, α2p = 1.

From Definition 4 we have (u2p, u2p−1, u2p−2, u2p−3, . . . , u2, u1) = (1, 1, 0, 1,

. . . , 0, 1). Hence by (8) the limit values of k(2p)
n are:

αi = zi−1 + zi−2 + zi−4 + · · · + u2p−i+2 z + u2p−i+1

zi + zi−1 + zi−3 + · · · + u2p−i+1 z + u2p−i
, 1 ≤ i ≤ 2p − 1,

wherein, based on (7), z is the positive real solution of the following polynomial f (z):

f (z) = z2p + z2p−1 + z2p−3 + z2p−5 + · · · + z3 + z − 1

= (z2p−2 + z2p−4 + · · · + z2 + 1)(z2 + z − 1).

The equation
∑p−1

i=0 z2i = 0 has no positive real solution. Therefore, the unique
positive real root of f (z) is z = 1

τ . If i = 2l, for some positive integer l, then
α2l = 1

z = τ. For i = 2l − 1 we get

α2l−1 = z2l−2 + z2l−3 + z2l−5 + · · · + z3 + z

z2l−1 + z2l−2 + z2l−4 + · · · + z2 + 1
.

We have z2 + z − 1 = 0, which implies that z + 1 = 1
z . First we prove that

z2l−2 + z2l−3 + z2l−5 + · · · + z3 + z = 1; to do this, first note that: z2l−2 + z2l−3 +
z2l−5 = z2l−3(z + 1) + z2l−5 = z2l−6. By iteratively applying this method, we get
z2l−2 + z2l−3 + z2l−5 + · · · + z3 + z = 1. By the same method, we can show that
z2l−1 + z2l−2 + z2l−4 + · · · + z2 + 1 = 1

z , which results in that α2l−1 = 1
τ . Also,

from Theorem 3 we get α2p = 1
u2p

= 1. ��

Next we define a set of odd-size Golden primitive companion matrices.

Definition 5 The GPCM of odd size 2p + 1 is defined by OC2p+1 := Com(1, 1, 0,
1, 0, . . . , 1, 0, 2, 0).
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110 M. Mousavi et al.

Example 5 For p = 1, we get OC3 = Com(1, 2, 0). We have OC5 = Com(1, 1, 0,
2, 0)which results in u1 = 0, u2 = 2, u3 = 0 and u4 = u5 = 1. Hence the companion
sequence assigned to OC5 is k

(5)
n = 2 k(5)

n−10 + k(5)
n−20 + k(5)

n−25. Similar to Example 4,

we can get α1 = 1
τ , α2 = τ, α3 = 1

τ2
, α4 = τ, and α5 = 1.

By usingOC2p+1, we propose an extension of the classical Fibonacci sequence of
odd size.

Lemma 3 The companion sequence assigned to OC2p+1 is a Golden-Fibonacci
sequence.

Proof From (2) the companion sequence connected with OC2p+1 is:

k(2p+1)
n = 2 k(2p+1)

n−2(2p+1) + k(2p+1)
n−4(2p+1) + · · · + k(2p+1)

n−(2p−2)(2p+1) + k(2p+1)
n−((2p)(2p+1)) + k(2p+1)

n−(2p+1)2
.

(11)

Similar to the proof of Lemma 2, one can show that the limit values of k(2p+1)
n given

in (11) are:

αi =
{

τ i = 0 (mod 2),
1
τ i = 1 (mod 2),

, 1 ≤ i ≤ 2p − 2,

and also α2p−1 = 1

τ2
, α2p = τ and α2p+1 = 1. ��

Next we introduce a set of Golden primitive companion matrices of general size.

Definition 6 The GPCM of arbitrary size p, p ≥ 4, is defined by GCp :=
Com(1, 2, 1, . . . , 1, 0).

Example 6 For p = 4, we have GC4 = Com(1, 2, 1, 0) with u1 = 0, u2 = 1,
u3 = 2 and u4 = 1. Therefore, the companion sequence assigned to GC4 is k(4)

n =
k(4)
n−8 + 2 k(4)

n−12 + k(4)
n−16, with initial values defined byGC4. From (8) the limit values

ofGC4 are α1 = 1
z+2 , α2 = z+2

z2+2z+1
, α3 = z2+2z+1

z3+2z2+z
= 1

z , where z is the positive

real solution of f (z) = z4 + 2 z3 + z2 − 1. The polynomial f (z) is factored as
f (z) = (z2 + z + 1)(z2 + z − 1), which implies that the positive real root of f (z) is
z = 1

τ . From z2 + z − 1 = 0, we get α1 = 1

τ2
, α2 = 1, α3 = τ, and α4 = 1.

Lemma 4 The companion sequence associated with GCp is a Golden-Fibonacci
sequence.

Proof From (2) the companion sequence related to GCp is:

k(p)
n = k(p)

n−2p + k(p)
n−3p + · · · + k(p)

n−(p−2)p + 2 k(p)
n−(p−1)p + k(p)

n−p2
. (12)

Similar to the proof of Lemma 2, one can show that the limit values of k(p)
n given in

(12) are:
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α1 = 1

τ2
, αi = 1 for 2 ≤ i ≤ p − 2, αp−1 = τ, αp = 1. ��

In the next subsection, we introduce a method to construct a GPCM by making use
of a special polynomials having integer coefficients.

4.2 Construction of GPCM via polynomials

Assume we want to obtain an arbitrary GPCM, denoted C̃p, such that its assigned
companion sequence is a Golden-Fibonacci sequence. To construct C̃p, we need a
polynomial g(z) of degree p − 2 which has no positive real root and satisfies the
following condition:

f (z) = g(z) (z2 + z − 1) = z p + u p−1 z
p−1 + u p−2 z

p−2 + · · · + u1 z − 1, (13)

where ui ∈ {0, 1, 2} for 1 ≤ i ≤ p − 1.
Now consider C̃p = Com(1, u p−1, u p−2, . . . , u1). From (2), the companion

sequence associated with C̃p is

k(p)
n = u1 k

(p)
n−p + u2 k

(p)
n−2p + · · · + u p−1 k

(p)
n−(p−1)p + k(p)

n−p2
, n ≥ p2, (14)

where its p2 initial terms are defined by C̃p. It follows from (8) that the limit values

of k(p)
n given in (14) for 1 ≤ i ≤ p − 1 are:

αi = zi−1 + u p−1 zi−2 + u p−2 zi−3 + · · · + u p−i+2 z + u p−i+1

zi + u p−1 zi−1 + u p−2 zi−2 + · · · + u p−i+1 z + u p−i
, (15)

where, based on (7), z in (15) is the positive real root of f (z), which is equal to z = 1
τ .

Now the primitive companion matrix C̃p is a GPCM if the companion sequence k(p)

given in (14) is a Golden-Fibonacci sequence or equivalently the values of αi ’s in (15)
are powers of the Golden ratio.

One of the main reasons for the condition ui ∈ {0, 1, 2}, given in (13), is that the
inverse of the Golden ratio z = 1

τ satisfies equations z + 1 = 1
z and z + 2 = 1

z2
,

which implies that the values of αi ’s in (15) can be in the form of power of Golden
ratio τ (such as αi ’s obtained in Lemmas 2, 3 and 4).

Example 7 Consider polynomial g1(z) = z2p−2 + z2p−3 + z2p−5 + · · · + z3 + z + 1.
The polynomial g1(z) has no positive real root and also satisfies relation (13), since
we have

g1(z) (z2 + z − 1) = z2p + 2 z2p−1 + z2p−4 + z2p−6 + · · · + z6 + z4 + 2 z2 − 1.

Now if we set C̃2p = Com(1, 2, 0, 0, 1, 0, . . . , 1, 0, 2, 0), then it can be verified that
the companion sequence assigned to C̃2p is a Golden-Fibonacci sequence. Moreover,
it can be checked that (13) is satisfied by polynomial g2(z) = z2p−1+z2p−2+z2p−4+
· · · + z4 + z2 + 1.
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In (13), instead of polynomial z2+z−1,wemay use a polynomial r(z) = z2+nz−1
for somepositive integern. The polynomial r(z)has a positive real root z̃ = 1

n+
√

n2+4
2

=
1

τ̃
in the interval (0, 1) and a negative root. By using r(z) in (13), we get results similar

to those obtained for the case of polynomial z2 + z − 1 in Lemmas 2, 3 and 4.

Lemma 5 Assume f̃ (z) = (
∑p−1

i=0 z2i )(z2 + nz − 1) = z2p + nz2p−1 + nz2p−3 +
· · · + nz − 1 and set ẼC2p = Com(1, n, 0, n, 0, n, . . . , 0, n). Then the limit values

of companion sequence related to ẼC2p are αi =
{

τ̃ i = 0 (mod 2),
1

τ̃
i = 1 (mod 2),

if 1 ≤ i ≤
2p − 1 and α2p = 1.

Proof The proof process is similar to that given in Lemma 2. ��

4.3 A relation between the roots of the characteristic polynomial of Cp and the
related limit values

Consider a companion matrix Cp = Com(u p, u p−1, . . . , u2, u1). The characteristic
polynomial [2] of Cp, denoted h(z), is h(z) = det(zIp − Cp) = z p − u1z p−1 −
u2z p−2−· · ·−u p−1z−u p. Based on (7) we assigned a polynomial f (z) toCp where

f (z) = z p + u p−1 z p−1 + u p−2 u p z p−2 + · · · + u2 u
p−3
p z2 + u1 u

p−2
p z − u p−1

p .

Assume that k(p)
n is the companion sequence related to Cp. Based on (8), the limit

values of k(p)
n are obtained by the positive real root of f (z). In the next lemma, we get

a connection between the roots of h(z) and f (z).

Lemma 6 A number z is a root of f (z) if and only if
u p
z is a root of h(z).

Proof It is easy to see that that f (z) = − z p
u p

h(
u p
z ), which completes the proof. ��

It follows from Theorem 3 that f (z) has a unique positive real root. Therefore, it
follows from Lemma 6 that by the positive real root of the characteristic polynomial
of a companion matrix Cp, we can obtain the limit values of the companion sequence
assigned to Cp.

Example 8 Consider C3 = Com(1, 0, 1), then we get h(z) = z3 − z2 − 1 and f (z) =
z3 + z − 1. It follows from Lemma 6 that f (z) = −z3h( 1z ). The positive real root of
h(z) is 1.465571232 and hence the positive real root of f (z) is z = 0.6823278040.
The companion sequence assigned toC3 is k

(3)
n = k(3)

n−3+k(3)
n−9. Based on (8), the limit

values of k(3)
n are α1 = 1

z = 1.465571232 and α2 = ( z
z2+1

) = z2 = 0.465571232.

5 Error-correcting process of Companion codingmethod

The process of companion coding method is similar to Fibonacci coding system
explained in [5,9]. To make this paper more self-contained, we provide a brief descrip-

123



Companion matrices and Golden-Fibonacci sequences 113

tion of encoding and decoding process of this method here by giving an illustrating
example. In this paper, we consider Fibonacci coding based on the ground matrix Cp.

The measure of error-correcting capability of the companion coding is based on
the limit values of the companion sequence assigned to a given companion matrix
Cp. In fact, the companion coding is a coding of integer numbers and we have no
binary operations in its encoding and decoding process. In other words, the metric
of the companion coding is not related to binary form of massages and just directly
associated with some real numbers that are called limit values. First, we explain how
to encode a massage matrix.

Encoding process For encoding in companion coding method, we take a matrix Cp

given by (1) wherein ui ’s, 1 ≤ i ≤ p, are arbitrary integer numbers with ui ≥ 0 for
1 ≤ i ≤ p − 1, and u p > 0. The companion sequence assigned to (1) is given by
(2). Then, we consider a positive integer n and employCn

p given by (3) as the encoder
matrix. The message to be encoded is considered as a p × p matrix M referred to as
the message matrix. The encoded matrix E is defined by E := MCn

p. Suppose the
encoded matrix E is in the form

E =
⎛
⎜⎝

e1 e2 · · · ep−1 ep
ep+1 ep+2 · · · e2p−1 e2p

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ep2−p+1 ep2−p+2 · · · ep2−1 ep2

⎞
⎟⎠ .

In companion coding system, we assume that the entries of encoded matrix E together
with the determinant of the message matrix, det(M), are transmitted through a com-
munication channel, and assume that the entries ei , 1 ≤ i ≤ p2, may be received
with error but the value of det(M) is received correctly. In fact, if det(M) is transmit-
ted several times, using majority logic decoding, then we may assume that det(M) is
received correctly.

Decoding process It follows from E = MCn
p that

det(E) = det(M) × det(Cn
p) = det(M) × unp (−1)n(p+1). (16)

The receiver reconstruct an estimated matrix E′ by using the received entries and
then checks for (16). The relation (16) is a means of error-detection. We say that no
errors have occured if this relation is satisfied by E′ (note that when using a linear
code with parity-check matrix H, a received word x is considered as a codeword if
and only if Hx = 0).

If the received matrix dose not satisfy (16), then we say that some entries of the
encodedmatrix are received with error.We need to get some relations correcting errors
in the received matrix. In Theorem 5, we obtain some relations between the elements
of the encoded matrix E and the limit values of the companion sequence assigned to
the encoder matrix.

Theorem 5 Consider an encodedmatrixE = MCn
p, whereM andCn

p are themessage
and encoder matrices, respectively. Then the relations between the entries of E and
the limit values αi ’s given by (6), are as follows
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ei ≈ αi αi+1 . . . α j−1 e j , 1 ≤ i < j ≤ p, the first row of E,

ep+i ≈ αi αi+1 . . . α j−1 ep+ j , 1 ≤ i < j ≤ p, the second row of E,
...

...
...

ep2−p+i ≈ αi αi+1 . . . α j−1 ep2−p+ j , 1 ≤ i < j ≤ p, the pth row of E.

(17)

Proof Consider the nth power of companion matrix,Cn
p, given by (3). Now, similar to

the proof of Theorem 4 in [9], it can be shown that the following relations hold among
the entries of the first row of E:

k(p)
p(n−1)+i−1

k(p)
p(n−1)+i

≤ ei
ei+1

≤ k(p)
pn+i−1

k(p)
pn+i

, 1 ≤ i ≤ p − 1. (18)

It follows from (6) and (18) that the following relations hold between the elements
of the first row of E:

e1
e2

≈ α1,
e2
e3

≈ α2, · · · ,
ep−1

ep
≈ αp−1.

Applying the same process on the other rows of E, we get the following relationships
between the entries of E for 1 ≤ i ≤ p − 1:

ei
ei+1

= ep+i

ep+i+1
= · · · = ep2−p+i

ep2−p+i+1
≈ αi . (19)

Now, consider v = h p with 0 ≤ h ≤ p − 1; it follows from (19) that

ev+i

ev+ j
= ev+i

ev+i+1
× ev+i+1

ev+i+2
× · · · × ev+ j−1

ev+ j
≈ αi αi+1 . . . α j−1 for 1 ≤ i < j ≤ p,

which is the system given by (17). ��
The set of relations given by (17) is called the checking relation and is used for

checking and correcting errors in the received matrix. Consider EC2p introduced in
Definition 4. In the next corollary, we prove if the nth power of EC2p is used as an
encoder matrix in Theorem 5, then the error-correcting relations are connected with

the golden ratio τ = 1+√
5

2 .

Corollary 2 Assume that E = M (EC2p)
n, then for 1 ≤ i ≤ 2p − 1, we have

ei
ei+1

= e2p+i

e2p+i+1
= · · · = e4p2−2p+i

e4p2−2p+i+1
≈

{
τ i = 0 (mod 2),
1
τ i = 1 (mod 2).

(20)

Proof The proof is derived from Lemma 2 and Theorem 5. ��
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ConsidermatricesOC2p+1 andGCp introduced inDefinitions 5 and 6. By applying
OCn

2p+1 and GCn
p as encoder matrices in Theorem 5, we can obtain relations similar

to those given by (20).
SupposeE is transmitted andE′ is received and assume that det(M) is sent correctly

to the receiver. If Eq. (16) holds byE′, we considerE′ as the transmitted encodedmatrix
E, otherwise we move on to the error-correcting process. The number of errors in E′
varies from one to p2. We begin by assuming that it has just one error and try to find
and correct the erroneous element; in case of not being successful, we then consider
the existence of error patterns of size two in the received matrix E′, and so on. More
details about error-correcting process are available in [5,9].

Example 9 Consider the following message matrix M and the matrix C3 =
Com(1, 0, 1):

M =
⎛
⎝
27 99 89
53 62 20
46 74 54

⎞
⎠ , C3 =

⎛
⎝
0 1 0
0 0 1
1 0 1

⎞
⎠ .

Consider C30
3 as an encoder matrix and let E and E′ be the transmitted and received

messages, respectively.

E = M × C30
3 =

⎛
⎝
6742004 4600257 9880887
3467442 2365932 5081783
5019344 3424838 7356206

⎞
⎠ ,

E′ =
⎛
⎝
9548124 4600257 9880887
3467442 6127897 5081783
5019344 3424838 2187946

⎞
⎠ .

We can verify that the relation (16) is not satisfied by E′ meaning that some entries of
E′ are received with error (E′ 
= E). According to (17), the checking relation for this
example is ⎧⎨

⎩
ei ≈ αi αi+1 . . . α j−1 e j ,
e3+i ≈ αi αi+1 . . . α j−1 e3+ j , 1 ≤ i < j ≤ 3.
e6+i ≈ αi αi+1 . . . α j−1 e6+ j .

(21)

From Example 8, the values of αi ’s in (21) are α1 = 1.465571232 and α2 =
0.465571232. It can be checked that by the decoding algorithm for one and two
errors, we cannot obtain a matrix satisfying (16). As for error patterns of size three,
assume that the eronious elements are the entries of the main diagonal of E′ (i.e. e′

1, e
′
5

and e′
9) and that the other entries of E′ are received correctly. Now from (21) we get

e′
1 ≈ e′

2 α1 ≈ 6742004, e′
5 ≈ e′

4
α1

≈ 2365932 and e′
9 ≈ e′

8
α2

≈ 7356206. Now, it can
be checked that the values e′

1, e
′
5 and e′

9 together with the other entries of E′ satisfy
(16). In addition, no other three-error case may end up with a matrix satisfying (16).
Therefore, the matrix E′ contains just three erroneous entries and we have guessed
correctly the position of the errors and corrected the erroneous entries.
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6 Summary

The class of companion matrices was considered and a companion sequence was
assigned to each companionmatrixCp .We introduced a simplemethod for calculating
some limit values of a companion sequence.We provided a closed-form expression for
the nth power of Cp by making use of its associated companion sequence. We gave a
condition under which a companion matrix is a primitive matrix. We introduced some
special cases of primitive companion matrices such that are related to the Golden
ratio. A new extension of the sequence of Fibonacci numbers was introduced and
it was shown that the limit values of the introduced sequences are powers of the
Golden ratio. Based on the theory of the primitive companion matrices and their
associated companion sequences, a class of error-correcting codes was introduced.
The availability of a large class of encoder matrices is a result of this approach as far
as the theory of error-correcting codes is concerned.
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