
Journal of Applied Mathematics and Computing (2019) 60:191–200
https://doi.org/10.1007/s12190-018-1208-6

ORIG INAL RESEARCH

New oscillation criterion for Emden–Fowler type nonlinear
neutral delay differential equations

Hui Li1 · Yige Zhao1 · Zhenlai Han1

Received: 27 April 2018 / Published online: 20 July 2018
© Korean Society for Computational and Applied Mathematics 2018

Abstract
In this paper, we consider the following Emden–Fowler type nonlinear neutral delay
differential equations

(
r(t)(z′(t))α

)′ + q(t)yβ(σ (t)) = 0,

where z(t) = y(t) + p(t)y(τ (t)). Some new oscillatory and asymptotic properties
are obtained by means of the inequality technique and the Riccati transformation. It is
worth pointing out that the oscillatory and asymptotic behaviors for our studied equa-
tion are ensured by only one condition and α, β ∈ R are arbitrary quotients of two odd
positive integers, which are completely new compared with previous references. Thus,
this paper improves and generalizes some known results. Two illustrative examples
are presented at last.
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1 Introduction

The Emden–Fowler differential equation is derived from the study of the electrody-
namic potential inside the atomic nucleus. It is widely applied in many important
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fields, such as nuclear physics, astrophysics, fluid mechanics and gas dynamics. In
1973, Wong [1] firstly established the oscillation criteria for the classical Emden–
Fowler differential equation as follows:

x ′′(t) + a(t)|x(t)|γ sgnx(t) = 0,

in the super-linear case, i.e., γ > 1. These results were generalized by Philos [2]
for general super-linear case. Since then, a number of researches on this class of
differential equations have been carried out and attracted enormous attentions.

The neutral functional differential equation arises in the design of high-speed com-
puter lossless transmission lines. It also finds wide applications in certain high-tech
fields, such as control, communication,mechanical engineering, biomedicine, physics,
mechanics, economics and so on. What has to be mentioned here is, the first work
devoted of the oscillatory properties of the neutral equations [3].

From what have been discussed above, we can see that the investigation of oscil-
latory and asymptotic behaviors for the Emden–Fowler type neutral delay differential
equations is of great significance in both theory and application. They have attracted
increasing interest of numerous scholars successfully because of their general appli-
cations in both engineering and natural science. During the last three decades, lots of
papers and monographs about the oscillation of delay differential equations have been
published. Among the many notable results, it is worthwhile to stress the pioneers’
work, we refer the reader to [4–9] and the references cited therein. However, during the
past decade, there are few papers considering the oscillatory and asymptotic behaviors
of the Emden–Fowler type differential equations, see [10–12], the Emden–Fowler type
neutral delay differential equations, see [13–18] and the references cited therein.

In 2007, Han et al. [10] studied the second-order Emden– Fowler delay dynamic
equations on time scales

x��(t) + p(t)xγ (τ (t)) = 0,

where γ is a quotient of two odd positive integers. They established some new oscil-
lation criteria by means of the Riccati transformation and the inequality technique.
Results in this paper unify the oscillation of the second-order Emden–Fowler delay
differential and difference equations.

At the same year, Xu and Liu [13] presented some Philos-type oscillation criteria
for the Emden–Fowler neutral delay differential equations

[|x ′(t)|γ−1x ′(t)]′ + q1(t)|y(t − σ)|α−1y(t − σ) + q2(t)|y(t − σ)|β−1y(t − σ) = 0,

where x(t) = y(t)+ p(t)y(t −τ). The results obtained improved some known results
in the literature.

In 2016, Agarwal et al. [14] considered a second-order nonlinear neutral differential
equation of the following form

(
r(t)

(
(x(t) + p(t)x(τ (t)))′

)α)′ + q(t)xα(σ (t)) = 0,
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where α is a quotient of two odd positive integers. They established a new criterion
which amended some known results. They proved that if there exist two functions
ρ, δ ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s) − ((ρ′(s))+)r(σ (s))

(α + 1)α+1ρα(s)(σ ′(s))α

]
ds = ∞

and

lim sup
t→∞

∫ t

t0

[
ψ(s) − δ(s)r(s)((ϕ(s))+)α+1

(α + 1)α+1

]
ds = ∞,

then the equation above is oscillatory.
Recently, Džurina and Jadlovská [15] studied a second-order half-linear delay dif-

ferential equation of the following form

(r(t)(y′(t))α)′ + q(t)yα(τ (t)) = 0,

where α is a quotient of two odd positive integers. The oscillation of the studied
equation was attained via only one condition. A particular example of Euler type
equation is provided in order to illustrate the significance of their main results.

We think that the mathematical conclusions should be concise and easy to be veri-
fied. Therefore, in this paper, we are committed to obtain a criterion which depends on
only one condition. The conclusions in this paper are simpler and the method is dif-
ferent from others. We mainly consider the following Emden–Fowler type nonlinear
neutral delay differential equations

(
r(t)(z′(t))α

)′ + q(t)yβ(σ (t)) = 0, (1.1)

where z(t) = y(t) + p(t)y(τ (t)), α and β are quotients of two odd positive integers,
r(t) > 0, p(t) ≥ 0, τ(t), σ (t) ≤ t , σ ′(t) ≥ 0, τ(t), σ (t) → ∞ as t → ∞, q(t) ≥ 0
and q(t) �≡ 0.

From the description above, we can see that, firstly, equation in this paper is neutral
form in comparison to [10] and [15]. Secondly, the delays in our equation are variable
compared with [13]. Moreover, the indices α and β are mutual independent with each
other in contrast to [14] and [15]. In addition, since the oscillation conditions in this
paper are simpler than the references above, it is easy to verify. In summary, the
research object in this paper is more general while the conclusions are easier to verify.

Set ta = τ(tb) for some tb ≥ t0 and tc = σ(td) for some td ≥ t0. By a solution
of Eq. (1.1), we mean a function y which is continuous and satisfies Eq. (1.1) on
[t1,∞) with t1 = min{ta, tc} (By the derivative at t = t1, we mean the right-hand side
derivative). We only discuss these solutions of Eq. (1.1) which exist on some half-line
[t1,∞) and satisfy sup{|x(t)| : te ≤ t < ∞} > 0 for any te ≥ t1. As usual, such a
solution y of Eq. (1.1) is said to be oscillatory, if it is neither eventually positive nor
eventually negative. Otherwise, it is called non-oscillatory. Equation (1.1) is called
oscillatory, if all its solutions are oscillatory. Otherwise, it is called non-oscillatory.
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Themain work of this paper can be presented as follows: Firstly, the new oscillation
criterion obtained is simple and concise since we do not need any other auxiliary
functions. Secondly, we are concerned with a more general model. More concretely,
we add a neutral term in the studied equation and the constantsα andβ are independent
with each other. We investigate the oscillation criteria for a nonlinear differential
equation rather than a half-linear one. Thirdly, by a new inequality technique, we
obtain our oscillation criterion.

This paper is organized as follows. InSect. 2,wepresent somenecessary knowledge.
Section 3 is dedicated in addressing our main results. At last, we give some illustrative
examples.

2 Preliminaries

In this section, we will present some necessary knowledge.

Definition 2.1 Equation (1.1) is called in the non-canonical form if π(t0) < ∞, where

π(t) =
∫ ∞

t
r−1/α(s)ds < ∞. (2.1)

Throughout this paper, we will investigate the oscillatory and asymptotic properties
of Eq. (1.1) in the non-canonical form, i.e., Eq. (1.1) which satisfies condition (2.1).
And we assume that the neutral coefficient p(t) satisfies that p(t)π(τ(t))

π(t) < c < 1 for
large t , where c is a positive constant and π(t) is defined as above.

3 Main results

We are now in a position to state and prove our main results in this paper.

Theorem 3.1 Suppose that

∫ ∞ (
1

r(t)

∫ t

q(s)ds

)1/α

dt = ∞. (3.1)

Then every solution y(t) of Eq. (1.1) is oscillatory or satisfies lim
t→∞ y(t) = 0.

Proof By contradiction, suppose that Eq. (1.1) is nonoscillatory and y(t) is a nonoscil-
latory solution for Eq. (1.1). Without loss of generality, we will assume that y(t) is
eventually positive. Then there exists some t2 > t0 such that for any t > t2, we have
y(t) > 0, y(τ (t)) > 0 and y(σ (t)) > 0. Then from Eq. (1.1) we know that

(
r(t)(z′(t))α

)′ = −q(t)yβ(σ (t)) < 0. (3.2)

Thus, r(t)(z′(t))α is decreasing for all t ≥ t2, which implies that r(t)(z′(t))α does
not change sign eventually, neither does z′(t). That is, there exists a t3 ≥ t2 such that
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either z′(t) < 0 or z′(t) > 0 for any t ≥ t3. In what follows, we will discuss the two
cases above, respectively.

Case (i) z′(t) > 0 for all t ≥ t3. On one hand, since z(t) = y(t) + p(t)y(τ (t)), we
can obtain

y(t) = z(t) − p(t)y(τ (t)) ≥ z(t) − p(t)z(τ (t)).

From (3.2), we know that r(t)(z′(t))α is decreasing. Then for any s ≥ t ≥ t2, it follows
that

r(t)(z′(t))α ≥ r(s)(z′(s))α,

i.e.,

z′(s) ≤
(
r(t)

r(s)

)1/α

z′(t).

Integrating this inequality from t to v with respect to s, then we have

z(v) − z(t) ≤ r1/α(t)z′(t)
∫ v

t
r−1/α(s)ds.

Letting v → ∞, we have z(t) ≥ −r1/α(t)z′(t)π(t). Then

(
z(t)

π(t)

)′
= z′(t)π(t) − z(t)π ′(t)

π2(t)
= z′(t)π(t) + z(t)r−1/α(t)

π2(t)
≥ 0,

which means that z(t)
π(t) is nondecreasing. Therefore,

z(t)
π(t) ≥ z(τ (t))

π(τ(t)) , i.e.,

z(τ (t)) ≤ π(τ(t))

π(t)
z(t). (3.3)

On the other hand, by means of (3.3), we get

y(t) ≥ z(t) − p(t)z(τ (t))

≥ z(t) − p(t)π(τ(t))
π(t) z(t) =

(
1 − p(t)π(τ(t))

π(t)

)
z(t).

From Eq. (1.1) and the inequality above, we have

(
r(t)(z′(t))α

)′ = − q(t)yβ(σ (t)) ≤ − q(t)

(
1 − p(σ (t))

π(τ(σ (t)))

π(σ (t))

)β

zβ(σ (t)).

(3.4)
Letting w(t) = r(t)(z′(t))α

zβ(σ (t))
, we have
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w′(t) = (r(t)(z′(t))α)′zβ(σ (t))−βr(t)(z′(t))αzβ−1(σ (t))z′(σ (t))σ ′(t)
z2β(σ (t))

≤ − q(t)
(
1 − p(σ (t))π(τ(σ (t)))

π(σ (t))

)β − βr(t)(z′(t))αz′(σ (t))σ ′(t)
zβ+1(σ (t))

≤ − q(t)
(
1 − p(σ (t))π(τ(σ (t)))

π(σ (t))

)β

.

Integrating the inequality above from t3 to t , one has

w(t) − w(t3) ≤ −
∫ t

t3
q(s)

(
1 − p(σ (s))

π(τ(σ (s)))

π(σ (s))

)β

ds.

It follows from (2.1) and (3.1) that
∫ ∞

t3
q(s)ds = ∞,

and so
∫ ∞

t3
q(s)

(
1 − p(σ (s))

π(τ(σ (s)))

π(σ (s))

)β

ds = ∞.

In fact, since p(t)π(τ(t))
π(t) < c < 1, we know that 0 < 1 − c < 1 − p(σ (t))π(τ(σ (t)))

π(σ (t)) ,
which implies that

∫ ∞

t3
q(s)

(
1 − p(σ (s))

π(τ(σ (s)))

π(σ (s))

)β

ds = ∞.

Thus

w(t) ≤ w(t3) −
∫ t

t3
q(s)

(
1 − p(σ (s))

π(τ(σ (s)))

π(σ (s))

)β

ds.

Letting t → ∞. we obtain a contradiction.
Case (ii) z′(t) < 0 for all t ≥ t3. We claim that lim

t→∞ z(t) = 0. In fact, if we assume

that lim
t→∞ z(t) = L �= 0, then L > 0. So for any M with 0 < M < L , we have

z(t) > M . Similarly to the calculation of (3.3) and (3.4), one has

(
r(t)(z′(t))α

)′ ≤ − q(t)
(
1 − p(σ (t))π(τ(σ (t)))

π(σ (t))

)β

zβ(σ (t))

< − q(t)Mβ
(
1 − p(σ (t))π(τ(σ (t)))

π(σ (t))

)β

.

Integrating the inequality above from t3 to t , we can obtain

r(t)(z′(t))α − r(t3)(z
′(t3))α < −Mβ

∫ t

t3
q(s)

(
1 − p(σ (s))

π(τ(σ (s)))

π(σ (s))

)β

ds.

Since z′(t) < 0, we get
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r(t)(z′(t))α < −Mβ

∫ t

t3
q(s)

(
1 − p(σ (s))

π(τ(σ (s)))

π(σ (s))

)β

ds,

i.e.,

z′(t) < −Mβ/α

(
1

r(t)

∫ t

t3
q(s)ds

)1/α

.

Integrating the above inequality from t3 to t , we obtain

z(t) < z(t3) − Mβ/α

∫ t

t3

(
1

r(s)

∫ s

t3
q(v)dv

)1/α

ds,

which is a contradiction when t → ∞. Therefore, lim
t→∞ z(t) = 0. By the property of

the limit, we know that lim
t→∞ y(t) = 0. The proof is completed.

In what follows, we will present a corollary for the following equation

(r(t)(y′(t))α)′ + q(t)yα(σ (t)) = 0, t ≥ t0, (3.5)

where α > 0 is a quotient of odd positive integers, r ∈ C1([t0,∞), [0,∞)), q ∈
C([t0,∞), (0,∞)) and q(t) �≡ 0, σ(t) ≤ t , σ ′(t) ≥ 0 and lim

t→∞ σ(t) = ∞ on the

half-line of the form [t∗, ∞), t∗ ≥ t0.

Corollary 3.1 Suppose that (3.1) holds, then every solution y(t) of Eq. (3.5) is oscil-
latory or satisfies lim

t→∞ y(t) = 0.

This is a result of [15] without any additional conditions, since p(t)π(τ(t))
π(t) <

c < 1 is naturally satisfied when p(t) ≡ 0, which implies that our paper is a direct
generalization of [15, Theorem 1].

4 Examples

Two examples will be presented in this section to illustrate our main results.

Example 4.1 Consider the following second-order nonlinear neutral delay differential
equation

⎛

⎝t

((
y(t) + 1

8t
y

(
t

2

))′) 1
3

⎞

⎠

′
+ (t − 1)y

(
t

3

)
= 0, t ≥ 1. (4.1)

Compared with (1.1), we can see that r(t) = t , τ(t) = t
2 , p(t) = 1

8t , σ(t) = t
3 , α = 1

3 ,
β = 1 and q(t) = t − 1. We will verify the conditions of Theorem 3.1, respectively.
Firstly, it is obvious that α and β are quotients of two positive odd integers, p(t) ≥ 0,
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τ(t), σ (t) ≤ t , σ ′(t) = 1
3 > 0, q(t) ≥ 0 and q(t) �≡ 0 for all t ≥ 1. Moreover,

lim
t→∞ τ(t) = lim

t→∞ σ(t) = ∞. Secondly, we will show that (4.1) is in the non-canonical

form, i.e., (2.1) holds. In fact,

∫ ∞

t

1

r1/α(s)
ds =

∫ ∞

t
s−3ds = 1

2t2
< ∞ for any t ≥ 1.

Thirdly,

p(t)
π(τ(t))

π(t)
= 1

8t

t2

τ 2(t)
= 1

2t
≤ 1

2
< 1.

Next, we verify the condition (3.1), i.e.,

∫ ∞ (
1

r(t)

∫ t

q(s)ds

)1/α

dt =
∫ ∞

1

(
1

t

∫ t

1
(s − 1)ds

)3

dt = ∞.

It implies that every solution y(t) of Eq. (4.1) is oscillatory or satisfies lim
t→∞ y(t) = 0.

Example 4.2 Consider the second-order nonlinear delay differential equation

(
t
3
2 y′(t)

)′ + y(t) = 0, t ≥ 1. (4.2)

Compared with (1.1), it is obvious that r(t) = t
3
2 , σ(t) = t , α = 1, β = 1 and

q(t) = 1. we will verify the conditions of Corollary 3.1, respectively. We can see that
α and β are two quotients of two positive odd integers, σ(t) ≤ t , σ ′(t) = 1 > 0,
q(t) �≡ 0 for all t ≥ 1. What is more, lim

t→∞ σ(t) = ∞. Next, we will show that (4.2)

is in the non-canonical form, i.e., (2.1) holds. In fact,

∫ ∞

t

1

r1/α(s)
ds =

∫ ∞

t
s− 3

2 ds = 2t−
1
2 < ∞ for any t ≥ 1.

Since p(t)π(τ(t))
π(t) < c < 1 is naturally satisfied when p(t) ≡ 0, we only need to verify

the condition (3.1). Then

∫ ∞ (
1

r(t)

∫ t

q(s)ds

)1/α

dt =
∫ ∞

1

1

t
3
2

∫ t

1
dsdt =

∫ ∞

1

(
t−

1
2 − t−

3
2

)
dt = ∞.

It implies that every solution y(t) of Eq. (4.2) is oscillatory or satisfies lim
t→∞ y(t) = 0

(the image of the solution y(t) and y′(t) is shown in Fig. 1).
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Fig. 1 The trajectory of the solution of Eq. (4.2) and its derivative

5 Conclusion

A new oscillation criterion is presented in this paper by means of the Riccati trans-
formation and some new inequality techniques. The oscillation criterion established
here depends only on one condition, which is simpler compared with [14]. Moreover,
we investigate a nonlinear neutral delay equation where α and β are independent,
which is more general than equations in [14,15]. Thus, this is an improvement and
generalization of [14,15] and some other related references.
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