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Abstract
For distinct odd primes N and p, we view the N -periodic binary Legendre sequence
as a p-ary sequence and present its trace representation via trace functions over Fp.
We use a skill to calculate the Mattson–Solomon polynomials of Legendre sequences
and then describe theMattson–Solomon polynomials bymeans of trace functions over
Fp.
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1 Introduction

For an odd prime number N , the N -periodic Legendre sequence is defined as

su =
{

1+( u
N )

2 , if gcd(u, N ) = 1,
0, otherwise,

u ≥ 0, (1)

where ( ·
N ) is the Legendre symbol. Let g be a (fixed) primitive root modulo N , one

can define the cyclotomic classes

D0 = {g2k (mod N ) : 0 ≤ k < (N − 1)/2}
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and

D1 = gD0 = {g2k+1 (mod N ) : 0 ≤ k < (N − 1)/2}.

Then we get an equivalent definition of the Legendre sequence

su =
{
0, if u mod N ∈ D1 ∪ {0},
1, if u mod N ∈ D0,

u ≥ 0. (2)

The Legendre sequences (su) have been extensively studied in the literature. They
have strong pseudorandomness properties: equidistribution, optimal correlation, high
linear complexity, etc., see [3,4,6,9,10,14,18,23].Aly,Winterhof [1] studied the k-error
linear complexity (over FN ) by viewing the N -periodic (su) as a sequence over FN .

In particular, for certain applications to coding theory, some binary sequences are
discussed over different finite fields (not in F2) [7,8]. Partially motivated by the study,
Wang et al considered the N -periodic Legendre sequence (su) inFp, where p is an odd
prime (or a prime-power) with gcd(p, N ) = 1, and investigated the linear complexity
and minimal polynomials over Fp in [11,21,22]. Certain work had actually been done
by He in [13]. In this work, we will continue this project to investigate the trace
representation of N -periodic Legendre sequence (su) in Fp (not in F2). We should
remark that, the trace representation of (su) of Mersenne prime period and of any
prime period have been described via trace functions from F2n to F2, where n is the
order of 2 modulo N , by No et al in [19] and by Kim et al in [15], sequentially. Some
special cases have been studied in [20] recently.

We will compute the Mattson–Solomon polynomial (see definition below) of (su)

and present the trace representation by using trace functions over Fp. For any N -
periodic p-ary sequence (tu), there always exists a polynomial G(X) defined over
finite fields of characteristic p such that

tu = G(βu), u ≥ 0,

whereβ is an N th root of unity in an extensionfield ofFp .G(X) is unique if its degree is
smaller than N , see [16]. SuchG(X) is called theMattson–Solomon polynomial of (tu)

in coding theory [17]. Dai et al called G(X) as a defining polynomial and (G(X), β)

as the defining pair of (tu) in [5], where they discussed trace representation and linear
complexity of certain binary sequences.

Throughout the work, we always let p be an odd prime and co-prime to N , the
period of Legendre sequences.

2 Mattson–Solomon polynomials

Define polynomials

dl(X) =
∑
u∈Dl

Xu ∈ Fp[X ], l = 0, 1.
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We need the following technical lemma.

Lemma 1 Let β be a primitive Nth root of unity in an extension field of Fp. For any
fixed pair of integers i, j with 0 ≤ i, j < 2, we have

di (β)d j (β) + di+1(β)d j+1(β) + N − 1

2
=

{
N , if N−1

2 + i − j ≡ 0 (mod 2),
0, otherwise.

Here and hereafter, the subscript of d is performed modular 2.

Proof We calculate

di (β)d j (β) + di+1(β)d j+1(β) =
1∑

k=0

∑
u∈D0

βugi+k ∑
v∈D0

βvg j+k

=
1∑

k=0

∑
u∈D0

βugi+k ∑
w∈D0

βuwg j+k

(we use v = uw)

=
1∑

k=0

∑
u∈D0

∑
w∈D0

βug j+k (gi− j +w)

=
∑

w∈D0

1∑
k=0

∑
z∈D j+k

γ z
w

(
we use z = ug j+k, γw = βgi− j +w

)

=
∑

w∈D0

N−1∑
z=1

γ z
w.

Let ord(γw) denote the order of γw. We note that ord(γw)|N since β is a primitive
N th root of unity. If ord(γw) = N , then we have

N−1∑
z=1

γ z
w =

N−1∑
z=0

γ z
w − 1 = 1 − γ N

w

1 − γw

− 1 = −1 ∈ Fp.

If ord(γw) = 1, then we have

N−1∑
z=1

γ z
w = N − 1 ∈ Fp.

Now we need to determine the number of w ∈ D0 with ord(γw) = 1 and the number
of w ∈ D0 with ord(γw) = N .
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We have ord(γw) = 1 if and only if gi− j +w ≡ 0 (mod N ), which is equivalent to
w ≡ g(N−1)/2+i− j (mod N ). This implies that 2|((N − 1)/2+ i − j) since w ∈ D0.
That is to say, there exists an w ∈ D0 such that gi− j + w ≡ 0 (mod N ), which holds
if and only if 2|((N − 1)/2 + i − j). In this case w is unique. We conclude that if
2|((N − 1)/2 + i − j), then there are (N − 1)/2 − 1 elements w ∈ D0 such that
ord(γw) = N and onew ∈ D0 such that ord(γw) = 1, while if 2 � (N −1)/2+ i − j),
all w ∈ D0 satisfy ord(γw) = N .

Putting everything together, we derive

di (β)d j (β) + di+1(β)d j+1(β) =
{ N+1

2 , if 2| ( N−1
2 + i − j

)
,

− N−1
2 , otherwise.

This completes the proof. ��
Theorem 1 Let β be a primitive Nth root of unity in an extension field of Fp. Then the
Mattson–Solomon polynomial of (su) defined in Eq. (1) or Eq. (2) is

G(X) = N−1
(

d0(β)d0(X) + d1(β)d1(X) + N − 1

2

)

if N ≡ 1 (mod 4), and otherwise

G(X) = N−1
(

d0(β)d1(X) + d1(β)d0(X) + N − 1

2

)
.

Proof We get from Lemma 1 that

(d0(β))2 + (d1(β))2 + N − 1

2
=

{
N , if N ≡ 1 (mod 4),
0, if N ≡ −1 (mod 4),

and

2d0(β)d1(β) + N − 1

2
=

{
0, if N ≡ 1 (mod 4),
N , if N ≡ −1 (mod 4).

Note that di (β
u) = di+ j (β) if u ∈ D j , where i, j ∈ {0, 1} and the subscript of d

is performed modulo 2. Now, we discuss the Mattson–Solomon polynomial of (su).
Case 1 N ≡ 1 (mod 4).
For u ∈ D0, we have

G(βu) = N−1
(

d0(β)d0(β
u) + d1(β)d1(β

u) + N − 1

2

)

= N−1
(

(d0(β))2 + (d1(β))2 + N − 1

2

)
= N−1 · N = 1 = su .
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For u ∈ D1, we have

G(βu) = N−1
(

d0(β)d0(β
u) + d1(β)d1(β

u) + N − 1

2

)

= N−1
(

d0(β)d1(β) + d1(β)d0(β) + N − 1

2

)

= N−1
(
2d0(β)d1(β) + N − 1

2

)
= N−1 · 0 = 0 = su .

For u = 0, we note that

d0(1) = d1(1) = N − 1

2
,

and

d0(β) + d1(β) =
N−1∑
u=1

βu =
N−1∑
u=0

βu − 1 = 1 − βN

1 − β
− 1 = −1.

Then, we get

G(β0) = N−1
(

d0(β)d0(1) + d1(β)d1(1) + N − 1

2

)

= N−1
(

− N − 1

2
+ N − 1

2

)
= 0 = su .

Putting everything together, we derive that

G(X) = N−1
(

d0(β)d0(X) + d1(β)d1(X) + N − 1

2

)

is the Mattson–Solomon polynomial of (su) when N ≡ 1 (mod 4).
Case 2 N ≡ −1 (mod 4).
It can be verified in a similar way. ��
Now we further consider the values of d0(β) and d1(β) in Theorem 1.

Lemma 2 Let β be a primitive Nth root of unity in an extension field of Fp and p a
quadratic residue class modulo N (i.e., p ∈ D0). If N satisfies one of the following
two conditions

(1) N ≡ 1 (mod 4) and N ≡ 1 (mod p),
(2) N ≡ −1 (mod 4) and N ≡ −1 (mod p),
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then we have {
d0(β) = 0,
d1(β) = −1,

or

{
d0(β) = −1,
d1(β) = 0,

and otherwise we have

d0(β), d1(β) ∈ Fp\{0},

which means that both d0(β) and d1(β) are non-zero.

Proof Firstly, we have d0(β) = d0(β p) = (d0(β))p since p ∈ D0. That is to say
d0(β) ∈ Fp. Similarly, we have d1(β) ∈ Fp.

For N ≡ 1 (mod 4), we see that in the proof of Theorem 1

(d0(β))2 + (d1(β))2 = N + 1

2
= 1

if and only if N ≡ 1 (mod p). So together with d0(β) + d1(β) = −1, we get for
N ≡ 1 (mod p)

2d0(β)d1(β) = 0,

which derives that either d0(β) or d1(β) is zero. Then, it is easy to get that

{
d0(β) = 0,
d1(β) = −1,

or

{
d0(β) = −1,
d1(β) = 0.

For N ≡ −1 (mod 4), we get similarly 2d0(β)d1(β) = N+1
2 = 0 if and only if

N ≡ −1 (mod p) and then the result is derived.
The proof above also tells us that

2d0(β)d1(β) 	= 0

for other N . ��
Lemma 3 Let β be a primitive Nth root of unity in an extension field of Fp and p a
quadratic non-residue class modulo N (i.e., p ∈ D1). Then both d0(β) and d1(β) are
non-zero.

Proof Since p ∈ D1, we have for i = 0, 1

(di (β))p = di (β
p) = di+1(β) = −1 − di (β),

which indicates both d0(β) and d1(β) are non-zero. ��
From Theorem 1 and Lemmas 2 and 3, we immediately get the following results.
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Theorem 2 Let β be a primitive Nth root of unity in an extension field of Fp, p a
quadratic residue class modulo N (i.e., p ∈ D0) and (su) defined in Eq. (1) or Eq. (2).

(1) For N satisfying N ≡ 1 (mod 4) and N ≡ 1 (mod p), if we suppose d0(β) = 0
(of course we can also suppose d1(β) = 0), then the Mattson–Solomon polynomial
of (su) is

G(X) = −N−1d1(X).

(2) For N satisfying N ≡ −1 (mod 4) and N ≡ −1 (mod p), if we suppose
d0(β) = 0 (of course we can also suppose d1(β) = 0), then the Mattson–Solomon
polynomial of (su) is

G(X) = −N−1d1(X) + N−1.

(3) For other N, the Mattson–Solomon polynomial of (su) is

G(X) = N−1
(
ρd1(X) − (1 + ρ)d0(X) + N − 1

2

)
.

where ρ = d0(β) and ρ(1 + ρ) 	= 0.

Theorem 3 Let β be a primitive Nth root of unity in an extension field of Fp and p
a quadratic non-residue class modulo N (i.e., p ∈ D1). Then the Mattson–Solomon
polynomial of (su) defined in Eq. (1) or Eq. (2) is

G(X) = N−1
(
ρd1(X) − (1 + ρ)d0(X) + N − 1

2

)
,

where ρ = d0(β) and ρ(1 + ρ) 	= 0.

3 Trace representation

In this section, we describe the trace representation of (su). For n|m, the trace function
from finite field Fpm to Fpn is defined as

Trm
n (X) = X + X pn + X p2n + · · · + X p(m/n−1)n

.

The trace functions play an important role in sequences design [12].

Theorem 4 Let β be a primitive Nth root of unity in an extension field of Fp , p a
quadratic residue class modulo N (i.e., p ∈ D0) and (su) defined in Eq. (1) or Eq. (2).
Let � be the order of p modulo N.

123



748 C. Wu, C. Xu

(1) For N satisfying N ≡ 1 (mod 4) and N ≡ 1 (mod p), if we suppose d0(β) = 0,
then the trace representation of (su) is

su = −N−1

N−1
2� −1∑
j=0

Tr�1
(
βg2 j+1

)
.

(2) For N satisfying N ≡ −1 (mod 4) and N ≡ −1 (mod p), if we suppose d0(β) =
0, then the trace representation of (su) is

su = −N−1

N−1
2� −1∑
j=0

Tr�1
(
βg2 j+1

)
+ N−1.

(3) For other N, the trace representation of (su) is

su = N−1

⎛
⎜⎝ρ

N−1
2� −1∑
j=0

Tr�1
(
βg2 j+1

)
− (1 + ρ)

N−1
2� −1∑
j=0

Tr�1
(
βug2 j

)
+ N − 1

2

⎞
⎟⎠ .

where ρ = d0(β) and ρ(1 + ρ) 	= 0.

Proof To get the trace presentation of s(u), we only need to describe d0(X) and d1(X)

in Theorem 2 using trace functions.
Let U be set generated by p modulo N , i.e.,

U = 〈p〉 = {pk (mod N ) : 0 ≤ k < �}.

Since p ∈ D0, we see that U is a subgroup of D0 (under the multiplication). Then
D0, D1 can be written as the union

D0 =
N−1
2� −1⋃
k=0

g2kU , D1 =
N−1
2� −1⋃
k=0

g2k+1U .

Write polynomial

u(X) =
∑
u∈U

Xu .

Using the fact that

Tr�1(X) = X + X p + X p2 + · · · + X p�−1 ≡ u(X) (mod X N − 1),
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we derive

d0(X) =
N−1
2� −1∑
j=0

u
(

X g2 j
)

≡
N−1
2� −1∑
j=0

Tr�1
(

X g2 j
)

(mod X N − 1)

and

d1(X) =
N−1
2� −1∑
j=0

u
(

X g2 j+1
)

≡
N−1
2� −1∑
j=0

Tr�1
(

X g2 j+1
)

(mod X N − 1).

Then, replacing d0(X) and d1(X) in Theorem 2 and noting that su = G(βu), we finish
the proof. ��

Theorem 5 Let β be a primitive Nth root of unity in an extension field of Fp and p a
quadratic non-residue class modulo N (i.e., p ∈ D1). Let � be the order of p modulo
N. Then, the trace representation of (su) defined in Eq. (1) or Eq. (2) is

su = N−1

⎛
⎜⎝ρ

N−1
�

−1∑
j=0

Tr�2
(
βug2 j+1

)
− (1 + ρ)

N−1
�

−1∑
j=0

Tr�2
(
βug2 j

)
+ N − 1

2

⎞
⎟⎠ .

where ρ = d0(β) and ρ(1 + ρ) 	= 0.

Proof The proof is similar to that of Theorem 4. From the condition p ∈ D1, we see
that p2 ∈ D0 and the order of p2 modulo N is �

2 . We remark here that � is even.
Indeed, if p ≡ g2k+1 (mod N ) for some k, we get p� ≡ g(2k+1)� ≡ 1 (mod N ),
which indicates that (N − 1)|�(2k + 1). Then � is even since N − 1 is even.

Now write

V = 〈p2〉 =
{

p2k (mod N ) : 0 ≤ k <
�

2

}
.

Then V is a subgroup of D0 and D0, D1 can be represented as

D0 =
N−1

�
−1⋃

k=0

g2k V , D1 =
N−1

�
−1⋃

k=0

g2k+1V .

Similar to the proof of Theorem 4, we have

Tr�2(X) = X + X p2 + X p2×2 + · · · + X p2×( �
2−1) ≡ v(X) (mod X N − 1),
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where v(X) = ∑
u∈V

Xu . Then we describe d0(X) and d1(X) as follows

d0(X) =
N−1

�
−1∑

j=0

v
(

X g2 j
)

≡
N−1

�
−1∑

j=0

Tr�2
(

X g2 j
)

(mod X N − 1)

and

d1(X) =
N−1

�
−1∑

j=0

v
(

X g2 j+1
)

≡
N−1

�
−1∑

j=0

Tr�2
(

X g2 j+1
)

(mod X N − 1).

Then, replacing d0(X) and d1(X) in Theorem 3 and noting that su = G(βu), we finish
the proof. ��

4 Remarks and conclusions

In this work, we view N -periodic Legendre sequences in F2 as in Fp and considered
their trace representation by calculating Mattson–Solomon polynomials. The results
extended the early work of No et al and Kim et al on trace representation over F2.

The way in this work also can be used to consider the trace representation if we
put N -periodic Legendre sequences in rings, for example in Z4, the residue class ring
modulo 4.

We finally remark that, there is a relationship between Mattson–Solomon polyno-
mials of prime periodic sequences and their linear complexity[12, Theorem 6.3]. The
linear complexity LC(tu) of an N -period sequence (tu) over Fp is the least order L of
a linear recurrence relation over Fp

tu+L + c1tu+L−1 + · · · + cL−1tu+1 + cL tu = 0 for u ≥ 0,

where c1, c2, . . . , cL ∈ Fp. By [2], LC(tu) equals the number of nonzero coefficients
of the Mattson–Solomon polynomial G(x) of degree < N . So from Theorems 2 and
3, we immediately derive the linear complexity of N -periodic Legendre sequences
studied in [13,22].
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