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1 Introduction

Semidefinite optimization (SDO) problems are convex optimization problems over
the intersection of an affine set and the cone of positive semidefinite matrices. They
have received considerable attention and become one of the most active research areas
in mathematical programming. Due to the success of interior-point methods (IPMs) in
solving linear optimization (LO), primal-dual IPMswere extended to SDO, whichwas
an important contribution made by Nesterov and Todd [16,17]. One may distinguish
different IPMs by whether they are feasible or infeasible. Feasible IPMs start with a
strictly feasible point and maintain feasibility during the solution process. Different
from feasible IPMs, interior-point algorithms that accept infeasible initial points are
often referred to IIPMs, see more in [9,12,22].

Earlier, all primal-dual IPMsused theNewton direction as the search direction. Peng
et al. [19] presented a new class of feasible IPMs. They used a direction determined
by a so-called self-regular barrier function. Bai et al. [4] introduced a new class of
kernel function. Based on the properties of these kernel functions, they derived many
new and tight estimates that greatly simplified the analysis of feasible IPMs. By using
an algebraic equivalent transformation of the central path, Darvay [5] explored a new
technique in finding a class of search directions. Pan et al. [20] found the connection
between Darvay’s approach and the method based on kernel functions.

Roos [21] designed a new IIPMforLObased onusing the perturbed problems. Since
the algorithm uses only full-Newton steps, it has the advantage that no line searches
are needed. Later on,Mansouri and Roos [14] extended the proposed algorithm [21] to
SDO. Using a new proximity measure to overcome the difficulty of obtaining an upper
bound of updated proximity after one full-Newton step, Zhang et al. [30] presented a
simplified analysis of the full-Newton step IIPM for SDO. By another definition for
feasibility step, Kheirfam [8] generalized the simplified full-Newton step IIPM for LO
[13] to SDO.

The aim of this paper is to investigate the kernel function, which has a finite value
at the boundary of feasible region:

ψ(t) = (t − 1)2. (1)

The search direction determined by the kernel function in (1) is the same as the one
introduced by Darvay [5]. Liu and Sun [11] proposed a full Nesterov–Todd(NT) step
IIPM for SDO, where the feasibility step was induced by a specific kernel function.
The kernel function in (1) is only up to a constant comparing with the one in [11]. It
is also discussed by Wang and Bai [26] for feasible IPM, and used by Zhang and Xu
[28] for LO to determine the search directions and measure the proximity of iterates
to center path. However, the properties of the kernel function, such as exponential
convexity, are not discussed in these papers.

Recently, Wang et al. [27] used the property of exponential convexity of the kernel
function to simplify the analysis of full-Newton step feasible IPMs for LOproblems. In
this paper, based on using Nesterov–Todd search direction, the definition of feasibility
step by Khierfam [8], and motivated by Wang et al. [27], we not only use the kernel
function to determine the centering step, but also apply the property of exponential
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convexity of the kernel function to derive new estimates, which simplify the analysis
of a full NT-step IIPM for SDO.

The article is organized as follows. In Sect. 2, we introduce the concept of some
special matrix functions and basic results of feasible IPM for SDO. In Sect. 3, we
present the search directions and describe our algorithm in detail. In Sect. 4, we
introduce the kernel function and study the properties of barrier function. In Sect. 5,
we analyze the algorithm and derive the complexity bound. In Sect. 6, we give a simple
numerical example for the algorithm. Finally, some concluding remarks can be found
in Sect. 7.

The following notations are used in the paper. Rn denotes the n-dimensional
Euclidean space. The set of all m × n matrices with real entries is denoted by R

m×n .
AT denotes the transpose of A ∈ R

m×n . The set of all symmetric n × n real matrices
is denoted by Sn . Sn++ (Sn+) denotes the set of all matrices in Sn which are posi-
tive definite(positive semidefinite). I denotes n × n identity matrix. A � 0 (A � 0)
means that A is positive definite (positive semidefinite). For any V ∈ Sn , we denote
by λ(V ) the vector of eigenvalues of V arranged in non-increasing order, that is,
λmax(V ) = λ1(V ) ≥ λ2(V ) ≥ · · · ≥ λn(V ) = λmin(V ). For any matrix M , we
denote by σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) the singular values of M . For Q ∈ Sn++,
we use Q

1
2 to denote the symmetric square root of Q. The sign ∼ denotes similarity

of two matrices. Given G, H ∈ R
m×n , the inner product between them is defined as

〈G, H〉 := Tr(GT H), the trace of thematrixGT H . The Frobenius norm ofM ∈ R
n×n

is ‖M‖ := 〈M, M〉1/2.

2 Preliminaries

2.1 Special matrix functions

Since we need to use some special matrix functions that are useful in the analysis of
the algorithm, we review some facts.

Definition 2.1 [25, Definition 2.2] Let V ∈ Sn++ and

V = QT (λ(V ))Q,

where Q is an arbitrary orthogonal matrix that diagonalizes V , and let ψ(t) be the
function in (1). The matrix function ψ(V ) : Sn++ → Sn is defined by

ψ(V ) = QT diag(ψ(λ1(V )), ψ(λ2(V )), . . . , ψ(λn(V )))Q. (2)

Definition 2.2 [25,Definition 2.3] The real valuematrix functionΨ (V ) : Sn++ → R+
is defined by

Ψ (V ) = Tr(ψ(V )) =
n∑

i=1

ψ(λi (V )). (3)

Replacingψ(λi (V )) in (2) byψ ′(λi (V )), we obtain the matrix functionψ ′(V ). We
call Ψ (V ) matrix barrier function and ψ(t) the kernel function for it.

123



448 W. Wang et al.

Lemma 2.1 Ψ (V ) is strictly convex with respect to V � 0 and vanishes at its global
minimal point V = I , i.e., ψ(I ) = ψ ′(I ) = 0n×n. Moreover, Ψ (I ) = 0.

Proof Since ψ(t) = (t − 1)2, we have ψ ′(t) = 2(t − 1), ψ ′′(t) = 2 > 0. We can see
that ψ(t) is strictly convex with respect to t > 0 and vanishes at its global minimal
point t = 1, i.e., ψ(1) = ψ ′(1) = 0. By using the strictly convex of ψ(t), definitions
2.1 and 2.2, the rest proof of the lemma is similar to the proof of Proposition 5.2.6 (i)
in [19]. �


2.2 The central path for SDO

We consider the standard form of the SDO problem:

(P) min〈C, X〉, s.t. 〈Ai , X〉 = bi , i = 1, 2, . . . ,m, X � 0, (4)

where C, X ∈ Sn, b ∈ R
m , and Ai ∈ Sn, i = 1, 2, . . . ,m. We call problem (P) the

primal form of SDO problem, and X is the primal variable.
The dual problem of (P) is given by

(D) max bT y, s.t.
m∑

i=1

yi Ai + S = C, S � 0, (5)

where y ∈ R
m and S ∈ Sn are the dual variables.

The set of primal-dual feasible solutions is denoted by

F := {(X, y, S) ∈ Sn+ × R
m × Sn+ : 〈Ai , X〉 = bi , i = 1, 2, . . . ,m,

m∑

i=1

yi Ai + S = C},

and the relative interior of the primal-dual feasible set is

F0 := {(X, y, S) ∈ Sn++ × R
m × Sn++ : 〈Ai , X〉 = bi , i = 1, 2, . . . ,m,

m∑

i=1

yi Ai + S = C}.

We assume that both (P) and (D) satisfy the interior point condition (IPC), i.e., F0 is
nonempty and the matrices Ai , i = 1, 2, . . . ,m, are linearly independent. It is well
known [6] under the IPC the optimality conditions for (P) and (D) can be written as
follows:

〈Ai , X〉 = bi , i = 1, 2, . . . ,m, X � 0,
m∑

i=1

yi Ai + S = C, S � 0,

XS = 0,

(6)
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where the last equality is called the complementarity equation. The basic idea of
primal-dual IPMs is to replace the complementarity condition XS = 0 by the param-
eterized equation XS = μI with μ > 0. Then we get the perturbed system

〈Ai , X〉 = bi , i = 1, 2, . . . ,m, X � 0,
m∑

i=1

yi Ai + S = C, S � 0,

XS = μI.

(7)

It is proved in [10,15] that there is a unique solution (X (μ), y(μ), S(μ)) to the cen-
tral path equations (7) for any barrier parameter μ > 0. Moreover, the limit point
(X∗, y∗, S∗), as μ goes to 0, is a primal-dual optimal solution of the corresponding
SDO problem.

2.3 The classic NT search direction

We consider the symmerization scheme yielding the Nesterov–Todd (NT) direction
[17], or simply theNewton-direction [23]. The direction is determined by the following
system:

〈Ai ,�X〉 = 0, i = 1, 2, . . . ,m,
m∑

i=1

�yi Ai + �S = 0,

�X + P�SPT = μS−1 − X,

(8)

where (�X,�y,�S) ∈ Sn ×R
m ×Sn is the search direction, and the choice of P is

P = X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2. (9)

Let D = P1/2. Then D can be used to scale X and S to the same matrix V defined
by

V := 1√
μ
D−1XD−1 = 1√

μ
DSD. (10)

Obviously

V 2 = 1

μ
D−1XSD. (11)

After we define
Āi : = DAi D, i = 1, 2, . . . ,m,

DX : = 1√
μ
D−1�XD−1,

DS : = 1√
μ
D�SD,

(12)
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the system (8) is reduced to

〈 Āi , DX 〉 = 0, i = 1, 2, . . . ,m,
m∑

i=1

�yi Āi + DS = 0,

DX + DS = V−1 − V,

(13)

which gives the usual scaled NT search direction.

3 Infeasible full NT step IPM

We call the triple (X, y, S) an ε-optimal solution of (P) and (D) if the norms of the
residuals

bi − Tr(Ai X), i = 1, . . . ,m

and

C −
m∑

i=1

yi Ai − S

do not exceed ε and the duality satisfies Tr(XS) ≤ ε.
As usual, we assume (P) and (D) have an optimal solution (X∗, y∗, S∗) with

Tr(X∗S∗) = 0, and we choose the initial iterate (X0, y0, S0) with

X0 = S0 = ζ I, y0 = 0, μ0 = ζ 2, (14)

where ζ is a positive number such that

X∗ + S∗ � ζ I. (15)

3.1 The perturbed problems

Wedenote the initial values of the primal and dual residuals by r0b and R
0
C , respectively:

(r0b )i = bi − Tr(Ai X0), i = 1, . . . ,m,

R0
C = C −

m∑

i=1

y0i Ai − S0. (16)

For any ν with 0 < ν ≤ 1, we consider the perturbed problem (Pν)

min{〈C − νR0
C , X〉 : 〈Ai , X〉 = bi − ν(r0b )i , X � 0},
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and its dual problem (Dν)

max

{
m∑

i=1

(bi − ν(r0b )i )yi :
m∑

i=1

yi Ai + S = C − νR0
C , S � 0

}
.

Note that if ν = 1, then X = X0 yields a strictly feasible solution of (Pν), and
(y, S) = (y0, S0) yields strictly feasible solution of (Dν). We conclude that if ν = 1,
then (Pν) and (Dν) are strictly feasible. Generally, we have the following lemma.

Lemma 3.1 [14, Lemma 4.1] Let the original problems (P) and (D) be feasible. Then
for each ν satisfying 0 < ν ≤ 1, the perturbed problems (Pν) and (Dν) are strictly
feasible.

Assuming that (P) and (D) are both feasible, for each ν such that 0 < ν ≤ 1,
Lemma 3.1 implies that the problems (Pν) and (Dν) satisfy IPC, then their central
paths exist. This means that the system

〈Ai , X〉 = bi − ν(r0b )i , i = 1, 2, . . . ,m, X � 0,
m∑

i=1

yi Ai + S = C − νR0
C , S � 0,

XS = μI

(17)

has a unique solution for every μ > 0. We denote it by (X (μ, ν), y(μ, ν), S(μ, ν)),
which is the μ-center of (Pν) and (Dν). Next, we will always have μ = νζ 2.

3.2 Search directions

3.2.1 Search directions for centering steps

We define

Dc
X := 1√

μ
D−1�cXD−1, Dc

S := 1√
μ
D�cSD. (18)

For centering steps, by the Definitions 2.1 and 2.2, following [19] we replace the
right-hand side V−1 − V in the third equation in system (13) by −ψ ′(V ), then the
scaled search direction (Dc

X ,�c y, Dc
S) is given by the system

〈 Āi , Dc
X 〉 = 0, i = 1, 2, . . . ,m,

m∑

i=1

�c yi Āi + Dc
S = 0,

Dc
X + Dc

S = DV ,

(19)

with DV = −ψ ′(V ). The search directions ΔcX and ΔcS are computed by (18).
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3.2.2 Search directions for feasibility step

Following [8] the search direction (Δ f X,Δ f y,Δ f S) is given by the following sys-
tem:

〈Ai ,� f X〉 = θν(r0b )i , i = 1, 2, . . . ,m,
m∑

i=1

� f yi Ai + � f S = θνR0
C ,

� f X + P� f SPT = 0,

(20)

where θ is a fixed barrier update parameter.
We define

D f
X := 1√

μ
D−1� f X D−1, D f

S := 1√
μ
D� f SD. (21)

Then the system (20) can be written as

〈 Āi , D
f
X 〉 = 1√

μ
θν(r0b )i , i = 1, 2, . . . ,m,

m∑

i=1

1√
μ
Δ f yi Āi + D f

S = 1√
μ
θνDR0

C D,

D f
X + D f

S = 0.

(22)

3.3 An iteration of the algorithm

Initially X0 = S0 = ζ I and μ0 = ζ 2, whence V 0 = I and Ψ (V 0) = 0. We assume
that at the start of each iteration, just before a μ-update, Ψ (V ) is smaller than or equal
to a (small) threshold value τ > 0. This obviously holds at the start of the first iteration.

Nowwedescribe amain iteration of our algorithm. Suppose that for someμ ∈ (0, 1]
we have (X, y, S) is strictly feasible for the perturbed problems (Pν) and (Dν), where
μ = νζ 2, and such that Ψ (V ) ≤ τ . We first perform a feasibility step to generate
iterates (X f , y f , S f ) which is strictly feasible for the perturbed problems (Pν+) and
(Dν+), where ν+ = (1 − θ)ν with θ ∈ (0, 1), and close to the μ+-center of (Pν+)

and (Dν+) with μ+ = ν+ζ 2, i.e., Ψ (V f ) = Ψ (X f , S f , μ+) ≤ τ f for some suitable
value of τ f . After the feasibility step, we perform some centering steps to get a strictly
feasible triple (X+, y+, S+) of (Pν+) and (Dν+) such that Ψ (X+, S+, μ+) ≤ τ . The
algorithm stops if the norms of the residuals and the duality gap are less than the
accuracy parameter ε.

We now summarize the generic full NT-step IIPM for SDO in Fig. 1.

4 The properties of the barrier function

By ψ ′(t) = 2(t − 1) we get DV = −ψ ′(V ) = 2(I − V ). We also use the norm-based
proximity measure δ(V ) defined by

δ(V ) := 1

2
‖ψ ′(V )‖ = 1

2

√∑n

i=1
(ψ ′(λi (V )))2. (23)
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Algorithm 1 Full NT-step IIPM
Input:
An accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a threshold parameter τ > 0;
an initialization parameter ζ > 0.
begin:
X := ζ I ; y = 0; S := ζ I ;μ := ζ 2; ν = 1;
while max X, S , rb , RC ε do
feasibility step:
(X, y, S) := (X, y, S) + (Δ f X,Δ f y, Δ f S);
update of μ and ν:
μ := (1− θ)μ;
ν := (1− θ)ν;
centering steps:
while Ψ (V ) > τ do

(X, y, S) := (X, y, S) + (Δc X, Δc y,ΔcS);
end while

end while
end

Fig. 1 The algorithm

By Lemma 2.1, we have

Ψ (V ) = 0 ⇔ δ(V ) = 0 ⇔ V = I. (24)

Lemma 4.1 ψ(t) = ψ ′(t)2/4, and Ψ (V ) = δ(V )2 with δ(V ) = ‖DV ‖/2.
Proof Since ψ(t) = (t − 1)2, it is straightforward that ψ(t) = ψ ′(t)2/4. By ψ(t) =
ψ ′(t)2/4, the definition 2.2 and (23), we obtain

Ψ (V ) = Tr(ψ(V )) =
n∑

i=1

ψ(λi (V )) = 1

4

n∑

i=1

(
ψ ′(λi (V ))

)2 = δ(V )2.

�

In order to discuss the property of exponential convexity, we need the following

lemma. The lemma is a direct consequence of conclusion (d) of Theorem 3.3.14 in [7,
pp.176-177]. We cite it here without proof, see [7] for more details.

Lemma 4.2 Let M, N ∈ Sn be two nonsingular matrices and f (t) a real-valued
function such that f (et ) is a convex function. Then

n∑

i=1

f (σi (MN )) ≤
n∑

i=1

f (σi (M)σi (N )),

where σi (M), σi (N ) and σi (MN ), i = 1, 2, . . . , n, denote the singular values of
M, N and MN arranged in non-increasing order, respectively.
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Lemma 4.3 Let t1 ≥ 1/2 and t2 ≥ 1/2. Then

ψ(
√
t1t2) ≤ (ψ(t1) + ψ(t2))/2.

Proof By some simple calculation, the above inequality is equivalent to
√
t1 +√

t2 ≥√
2. The expression holds if t1, t2 ≥ 1/2. �

Similarly as in [3,4], we say that ψ(t) is e-convex whenever t ≥ 1/2. It is easily

verified that ψ(et ) is a convex function, so we can apply the Lemma 4.2 to ψ(t).

Lemma 4.4 Suppose that matrices V1, V2 are symmetric positive definite. Let
λmin(V1) ≥ 1/2 and λmin(V2) ≥ 1/2, then

Ψ

(
[V

1
2
1 V2V

1
2
1 ] 12

)
≤ 1

2
(Ψ (V1) + Ψ (V2)) .

Proof By the definition of the singular values of a matrix, for any nonsingular matrix
V ∈ Sn ,

σi (V ) =
(
λi (V

T V )
) 1

2 =
(
λi (VV T )

) 1
2
, i = 1, 2, . . . , n.

Hence,

σi

(
V

1
2
1 V

1
2
2

)
=

(
λi (V

1
2
1 V2V

1
2
1 )

) 1
2 = λi

(
[V

1
2
1 V2V

1
2
1 ] 12

)
, i = 1, 2, . . . , n.

Since V1, V2 are symmetric positive definite, we have

σi (V1) = λi (V1), σi (V2) = λi (V2), i = 1, 2, . . . , n.

By the Definition 2.2, Lemmas 4.2 and 4.3, we obtain

Ψ

(
[V

1
2
1 V2V

1
2
1 ] 12

)
=

n∑

i=1

ψ

(
σi (V

1
2
1 V

1
2
2 )

)

≤
n∑

i=1

ψ

(
σi (V

1
2
1 )σi (V

1
2
2 )

)

≤ 1

2

n∑

i=1

(
ψ

(
σ 2
i (V

1
2
1 )

)
+ ψ

(
σ 2
i (V

1
2
2 )

))

= 1

2

n∑

i=1

(ψ(σi (V1)) + ψ(σi (V2)))

= 1

2
(Ψ (V1) + Ψ (V2)) .

�
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Lemma 4.5 ‖V ‖ ≤ √
n + δ(V ).

Proof It follows from ‖V ‖ = ‖I − DV /2‖ ≤ ‖I‖ + ‖DV ‖/2. �

Lemma 4.6 1 − δ(V ) ≤ λi (V ) ≤ 1 + δ(V ), 1 ≤ i ≤ n.

Proof By Lemma 4.1 we have δ(V ) = √
Ψ (V ) =

√∑n
i=1(1 − λi (V ))2, then |1 −

λi (V )| ≤ δ(V ), so the lemma follows. �

The following lemma shows the effect of a μ-update on the value of Ψ (V ).

Lemma 4.7 Let 0 < θ < 1, for any positive definite matrix V :

Ψ

(
V√
1 − θ

)
≤ Ψ (V ) + θ

1 − θ
‖V ‖2. (25)

Proof Let β ≥ 1, define vi := λi (V ), 1 ≤ i ≤ n, then v > 0. From the definition of
Ψ (V ), we have

Ψ (βV ) =
n∑

i=1

ψ(βλi (V )) =
n∑

i=1

ψ(βvi ) = Ψ (βv).

By the definition of ψ(t) in (1),

ψ(βt) = (t − 1)2 + (β2 − 1)t2 + 2(1 − β)t ≤ ψ(t) + (β2 − 1)t2. (26)

Let β = 1/
√
1 − θ , then

Ψ

(
V√
1 − θ

)
= Ψ

(
v√
1 − θ

)
≤ Ψ (v) + θ

1 − θ
‖v‖2

=
n∑

i=1

ψ(vi ) + θ

1 − θ

n∑

i=1

v2i

=
n∑

i=1

ψ(λi (V )) + θ

1 − θ

n∑

i=1

(λi (V ))2

= Ψ (V ) + θ

1 − θ
‖V ‖2.

�


5 Analysis of the algorithm

5.1 Analysis of the centering step

After a centering step, the new iterates are given by

X+ := X + ΔcX, y+ := y + Δc y, S+ := S + ΔcS.
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The new V -matrix is

(V+)2 = 1

μ
D−1X+S+D. (27)

The following results are crucial in the analysis of the algorithm. We list them
without proof.

Lemma 5.1 [29, Lemma 4.2] The new iterates (X+, y+, S+) are strictly feasible if
Ψ (V ) < 1.

Theorem 5.1 [29, Theorem 4.5] If Ψ (V ) < 1, then Ψ (V+) < Ψ (V )2.

Theorem 5.1 implies that the centering step is quadratically convergent.

5.2 Analysis of the feasibility step

After a feasibility step, the new iterates are given by

X f := X + � f X, y f := y + � f y, S f := S + � f S. (28)

By (20) and (28), it is easy to show that the iterates are feasible for the new perturbed
problems. A key point in the analysis is to show that X f and S f are positive definite
and satisfy Ψ (V f ) ≤ τ f (τ f < 1).

By using (21), we obtain

� f X = √
μDD f

X D,� f S = √
μD−1D f

S D
−1.

It follows from (28) that

X f = X + � f X = √
μD

(
V + D f

X

)
D,

S f = S + � f S = √
μD−1

(
V + D f

S

)
D−1.

(29)

Therefore
X f S f = μD

(
V + D f

X

) (
V + D f

S

)
D−1, (30)

which implies that

X f S f ∼ μ
(
V + D f

X

) (
V + D f

S

)
. (31)

Let
D f

XS : = 1
2

(
D f

X D
f
S + D f

S D
f
X

)
,

M : =
(
D f

XV − V D f
X

)
+ 1

2

(
D f

X D
f
S − D f

S D
f
X

)
.

(32)

Note that D f
XS is a symmetric matrix and M a skew-symmetric matrix. From the third

equation in system (22), by multiplying both sides from the left with V , we get

V D f
X + V D f

S = 0. (33)

123



Simplified full Nesterov–Todd step infeasible interior… 457

Therefore

X f S f

μ
∼

(
V + D f

X

) (
V + D f

S

)

= V 2 + V D f
S + D f

XV + D f
X D

f
S

= V 2 + 1

2

(
D f

X D
f
S + D f

S D
f
X

)
+

(
D f

XV − V D f
X

)

+ 1

2

(
D f

X D
f
S − D f

S D
f
X

)

= V 2 + D f
XS + M.

(34)

The following lemma shows the sufficient condition of the strict feasibility of the
new iterates (X f , y f , S f ).

Lemma 5.2 Let X � 0 and S � 0. Then the iterates (X f , y f , S f ) are strictly feasible
if

λmin(V ) >

∣∣∣λi
(
D f

X

)∣∣∣ , 1 ≤ i ≤ n.

Proof By Lemma 10 in [8], (X f , y f , S f ) are strictly feasible if V 2 + D f
XS � 0.

Using D f
S = −D f

X we have λi

(
D f

XS

)
= −λ2i

(
D f

X

)
, therefore V 2 + D f

XS � 0 if

λmin(V ) >

∣∣∣λi
(
D f

X

)∣∣∣ , 1 ≤ i ≤ n. This completes the proof. �


Before μ-update, by (10), the new V -matrix is given by

V̂ = 1√
μ

(
D−1X f S f D

) 1
2
. (35)

Now we want to find an upper bound for Ψ (V̂ ) by applying exponential convexity,
so we assume the eigenvalues of the matrices V + D f

X and V + D f
S are at least 1/2,

i.e.

λi

(
V + D f

X

)
≥ 1

2
and λi

(
V + D f

S

)
≥ 1

2
, 1 ≤ i ≤ n. (36)

It is obvious that (36) holds if

λmin(V ) −
∣∣∣λi

(
D f

X

)∣∣∣ ≥ 1

2
, 1 ≤ i ≤ n. (37)

By (35) we have V̂ 2 ∼ 1
μ
X f S f ∼ 1

μ

(
X f

) 1
2 S f

(
X f

) 1
2 , from (31),

V̂ 2 ∼ V̄ 2 :=
(
V + D f

X

) 1
2
(
V + D f

S

) (
V + D f

X

) 1
2
. (38)
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Lemma 5.3 Ψ (V̂ ) ≤ Ψ (V ) +
∥∥∥D f

X

∥∥∥
2
.

Proof Using (38), the definition of ψ(V ) and Ψ (V ), Lemma 4.4 and D f
S = −D f

X ,
we have

Ψ (V̂ ) = Ψ (V̄ ) = Ψ

((
(V + D f

X )
1
2 (V + D f

S )(V + D f
X )

1
2

) 1
2
)

≤ 1

2

(
Ψ (V + D f

X ) + Ψ (V + D f
S )

)

= 1

2

(
Tr

(
ψ(V + D f

X )
)

+ Tr
(
ψ(V + D f

S )
))

= 1

2
Tr

(
ψ(V + D f

X ) + ψ(V + D f
S )

)

= 1

2
Tr

(
2(V − I )2 + (D f

X + D f
S )(V − I )

+ (V − I )(D f
X + D f

S ) + (D f
X )2 + (D f

S )2
)

= 1

2
Tr

(
2(V − I )2 + 2(D f

X )2
)

= Tr
(
(V − I )2

)
+ Tr

(
(D f

X )2
)

= Tr(ψ(V )) + Tr
(
(D f

X )2
)

= Ψ (V ) +
∥∥∥D f

X

∥∥∥
2
.

�


5.3 Upper bound for
∥
∥
∥D

f
X

∥
∥
∥

By a similar argument given in [8, Section 5], we have

∥∥∥D f
X

∥∥∥ ≤ θ

ζλmin(V )
Tr(X + S). (39)

Next, we denote δ(V ) simply as δ.

Lemma 5.4 ∥∥∥D f
X

∥∥∥ ≤ (
√
n + δ)2 + n

1 − δ
θ. (40)

Proof In [14, Lemma 5.15], it is shown that

νζTr(X + S) ≤ 〈X, S〉 + νnζ 2. (41)

By XS ∼ μV 2 and Lemma 4.5 we have

Tr(XS) = μ‖V ‖2 ≤ νζ 2(
√
n + δ)2. (42)
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The lemma follows from (39) and Lemma 4.6. �


By (37) and Lemma 4.6 we obtain that the e-convex holds if
∣∣∣λi (D f

X )

∣∣∣ ≤
∥∥∥D f

X

∥∥∥ ≤
1/2 − δ, 1 ≤ i ≤ n, then using Lemma 5.4 we have

θ ≤ (1/2 − δ)(1 − δ)

(
√
n + δ)2 + n

. (43)

Note that the right-hand side of the above inequality is monotonically decreasing with
respect to δ.

5.4 The choice of τ , θ and τ f

Theorem 5.2 Let μ+ = (1 − θ)μ, where 0 < θ < 1 and V f = V̂√
1−θ

, then

Ψ (V f ) ≤ 1

1 − θ

(
Ψ (V ) + 2θ

√
nΨ (V ) + θn + (1 − 2θ)/4

)
. (44)

Particularly, if Ψ (V ) ≤ τ = 1
16 and θ = 1

13n , then

Ψ (V f ) ≤ τ f = 1

2
.

Proof Beforeμ-update, by Lemma 5.3 we haveΨ (V̂ ) ≤ Ψ (V )+
∥∥∥D f

X

∥∥∥
2
. From (34)

and (35),

V̂ 2 ∼
(
V 2 + D f

XS + M
)

. (45)

Then
‖V̂ ‖2 = Tr

(
V̂ 2

)
= Tr

(
V 2 + D f

XS + M
)

. (46)

Since M is skew-symmetric, and D f
S = −D f

X , we obtain

‖V̂ ‖2 = Tr
(
V 2

)
+ Tr

(
D f

XS

)
= ‖V ‖2 − Tr

(
(D f

X )2
)

= ‖V ‖2 −
∥∥∥D f

X

∥∥∥
2
. (47)

After μ-update, by Lemma 4.7 we get

Ψ (V f ) ≤ Ψ (V̂ ) + θ

1 − θ
‖V̂ ‖2

≤ Ψ (V ) +
∥∥∥D f

X

∥∥∥
2 + θ

1 − θ

(
‖V ‖2 −

∥∥∥D f
X

∥∥∥
2
)

.

(48)

Since
∥∥∥D f

X

∥∥∥
2 ≤ (1/2 − δ)2 ≤ 1/4, by Lemmas 4.1 and 4.5, the inequality in (44)

follows. If Ψ (V ) ≤ τ = 1/16, by Lemma 4.1 δ(V ) ≤ 1/4, hence if we take θ =
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1/(13n), the inequality (43) holds. Then Ψ (V f ) ≤ τ f = 1/2 follows from (44) and
simple calculation. �


5.5 Complexity analysis

After the feasibility step,we have derived an upper bound for theΨ (V f ), i.e.Ψ (V f ) ≤
1/2. By the quadratic convergence property of the centering step (Theorem 5.1), at
most

log2(log2 1/τ) = log2(log2 16) = 2

centering steps suffice to get iterates (X+, y+, S+) that satisfy Ψ (X+, S+;μ+) ≤
1/16. So each main iteration consists of at most 3 so-called inner iterations, in each
of which we need to compute a new search direction.

In eachmain iteration both the duality gap and the norms of the residuals are reduced
by the factor 1−θ . Hence, using Tr(X0S0) = nζ 2, the total number of main iterations
is bounded above by

1

θ
log

max{nζ 2, ‖r0b‖, ‖R0
C‖}

ε
.

Since

θ = 1

13n
,

the total number of inner iterations is bounded above by

39n log
max{nζ 2, ‖r0b‖, ‖R0

C‖}
ε

.

Now we state our main result without further proof.

Theorem 5.3 If (P) and (D) have an optimal solution (X∗, y∗, S∗) such that X∗ +
S∗ ≤ ζ I , then after at most

39n log
max{nζ 2, ‖r0b‖, ‖R0

C‖}
ε

iterations, the algorithm finds an ε-solution of (P) and (D).

6 Numerical results

In this section we consider an application example and give some numerical results.
Maximum eigenvalue minimization Suppose the symmetric matrix A(x) depends

affinely on x ∈ R
k : A(x) = A0+x1A1+· · ·+xk Ak , where Ai ∈ Sn . The problem of
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minimizing themaximum eigenvalue of thematrix A(x) can be cast as the semidefinite
program

min t, s.t. t I − A(x) ≥ 0, (49)

with variables x ∈ R
k and t ∈ R. Problems of this type arise in control theory,

structural optimization, graph theory and combinatorial optimization, and other fields
(see [24] for details).

Example 1 [1, Example 14.1] Find scalars y1, y2, and y3 such that the maximum
eigenvalue of F = A0 + y1A1 + y2A2 + y3A3 with

A0 =
⎡

⎣
2 −0.5 −0.6

−0.5 2 0.4
−0.6 0.4 3

⎤

⎦ , A1 =
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦

A2 =
⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ , A3 =
⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦

is minimized.
This problem can be formulated as the standard form of the SDO problem

max bT y, s.t.
4∑

i=1

yi Ai + S = C, S � 0, (50)

where b = [0, 0, 0, 1]T , y = [y1, y2, y3, y4]T ,C = −A0, A4 = I , by (49) we
observe that −y4 is the maximum eigenvalue of matrix F .

The initial point is (X0, y0, S0) = (ζ I, 0, ζ I ) with ζ = 1. We set τ = 1
16 , θ = 1

13n
and ε = 10−3. A primal-dual optimal solution is given by

X∗ =
⎡

⎣
0.0009 −0.0000 −0.0000

−0.0000 0.0009 0.0000
−0.0000 0.0000 1.0000

⎤

⎦ , y∗ =

⎡

⎢⎢⎣

0.4996
0.5995

−0.3996
−2.9973

⎤

⎥⎥⎦ ,

S∗ =
⎡

⎣
1.0000 0.0000 0.0000
0.0000 1.0000 −0.0000
0.0000 −0.0000 0.0009

⎤

⎦ .

The algorithm reaches this solution in 271 iterations, taking 2.0836 seconds. It
might be emphasized that the default value θ = 1

13n is theoretically justified in a
worst-case. If a larger θ is taken, for example θ = 1

4n , the algorithm need just 80
iterations, taking 0.5817 seconds.

By using the first three components of y∗, that is y1, y2, and y3, the maximum
eigenvalue of F = A0 + y1A1 + y2A2 + y3A3 is found to be 2.9973.
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7 Concluding remarks

Based on the exponential convexity of a simple kernel function, we propose a new
complexity analysis of a full NT-step infeasible interior-point algorithm for SDO.
The iteration bound of the algorithm coincides with the best known iteration bound
for IIPMs. Moreover, the resulting analysis is relatively simple comparing to that in
[8,11]. However, from a practical perspective, the full NT-step IIPM may be not so
efficient. Recently, by applying the properties of the kernel function-based barrier
function discussed in [18], Asadi and Roos [2] attempted to design a large-update
version of Roos’ algorithm [21] for LO problems. Next, we may focus on designing
a large-update IIPM involving the kernel function for SDO problems.
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