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Abstract The aim of this paper is to present and study a three-dimensional contin-
uous time dynamical system modeling a predator–prey with harvesting and reserve
zone for the prey in the presence of competition and toxicity. We first prove that our
model is ecologically and mathematically well-posed. In addition, the stability analy-
sis is investigated by direct and indirect Lyapunov methods. By using the Pontryagin’s
maximum principle, an optimal harvesting policy is established. Furthermore, numer-
ical simulations are given in order to illustrate our theoretical results.

Keywords Predator–prey model · Competition · Toxicity · Stability · Optimal
harvesting policy

Mathematics Subject Classification 34K18 · 34K20 · 92B20

B Younes Louartassi
ylouartassi@gmail.com

Abdellah Alla
abdellah.alla@gmail.com

Khalid Hattaf
k.hattaf@yahoo.fr

Aissam Nabil
aissam.nabil@gmail.com

1 LASTIMI, Superior School of Technology Salé, Mohammed V University in Rabat, Salé,
Morocco

2 LAMA-ANLIMAD, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco

3 Centre Régional des Métiers de l’Education et de la Formation (CRMEF), 20340 Derb Ghalef,
Casablanca, Morocco

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-018-1181-0&domain=pdf
http://orcid.org/0000-0002-5744-9488


306 Y. Louartassi et al.

1 Introduction

In recent years, various species are extinct due to several ecological and economic
factors such as the over predation and harvesting, the pollution, and the mismanage-
ment of commercial exploitation of the biological resource like fisheries and forestry.
For these reasons, many mathematical models have been proposed and developed to
better describe the relationship between predator and prey populations by taking into
account the harvesting [6,8], the optimal harvesting policy [9,11,13], the toxicity [2,3]
and the harvesting and reserve area for the prey in the presence of toxicity [12].

In reality, there is always a competition between species that is an important topic in
ecology. This phenomenon is very common in a habitat with finite common resources
and it is considered by many authors (see, for example [5,10]). The purpose of this
paper is to investigate the effects of competition and toxicity on dynamics of the
following predator–prey model:

dx

dt
= r1x

(
1 − x

K

)
− σ1x + σ2y − ux2 − axz

b + x
− q1Ex − n1xy,

dy

dt
= r2y + σ1x − σ2y − vy2 − n2xy,

dz

dt
= βaxz

b + x
− dz − wz − q2Ez, (1)

where x(t), y(t) and z(t) denote the biomass densities of the prey species inside the
unreserved area, reserved area, and the predator species at time t , respectively. The
intrinsic growth rates of prey species inside the unreserved and reserved areas are r1
and r2, respectively. The carrying capacity of fish species in the unreserved area is
K . The catchability coefficients for the predator species in the unreserved area are
q1 and q2, respectively. The effort applied for harvesting the fish population in the
unreserved area and the predator populations in the unreserved area is E . Migration
rate from unreserved area to reserved area and reserved area to unreserved are σ1 and
σ2, respectively. The terms ux2 and vy2 represent the infection of the prey species by
an external toxic substance and the term wz for the predator species. The term axz

b+x
denotes the Holling type II functional response. The parameter d is the death rate of
predator species. Finally, n1 and n2 are the competition coefficients. It very important
to note that when n1 = n2 = 0, we get the model presented by Yang and Jia in [12].

From [4], we know that if there is no migration of fish population from reserve
area to free fishing zone (i.e. σ2 = 0) and r1σ1 − q1E < 0, then dx(t)

dt < 0. Similarly,
if there is no migration of fish population from free fishing zone to reserve area (i.e.
σ1 = 0) and r2 − σ2 < 0, then dy(t)

dt < 0. The first three terms of the third equation of
(1) is always negative if βa − d − w < 0. Hence throughout our analysis, we assume
that

r1 − σ1 − q1E > 0, r2 − σ2 > 0, βa − d − w > 0. (2)

The rest of the paper is organized as follows. The next section deals with basic
results and equilibria. The stability analysis is investigated in Sect. 3. The optimal
harvesting policy is discussed in Sect. 4. Some numerical simulations are presented
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Dynamics of a predator–prey model with harvesting and… 307

in Sect. 5 in order to illustrate the theoretical results. The paper ends with discussion
and conclusion in Sect. 6.

2 Basic results and equilibria

In this section, we first prove the uniform boundedness of the solutions of system (1).

Lemma 2.1 All solutions of system (1) with positive initial value (x0, y0, z0) are
positively invariant within �, where

� =
{
(x, y, z) ∈ R3 : x + y + 1

β
z ≤ μ

d + w + q2E

}
,

with

μ = (r1 − q1E + d + w + q2E)2

4
( r1
K + u

) + (r2 + d + w + q2E)2

4v
.

Proof Let X (t) = x(t) + y(t) + 1
β
z(t). Then

dX (t)

dt
+ (d + w + q2E)X (t) = (r1 − q1E + d + w + q2E)x(t) −

( r1
K

+ u
)
x2(t)

− (n1 + n2)x(t)y(t) + (r2 + d + w + q2E)y(t)

− vy2(t)

≤ (r1 − q1E + d + w + q2E)2

4
( r1
K + u

) + (r2 + d + w + q2E)2

4v
= μ.

Applying the theory of differential inequality [1,7], we get

X (t) ≤ μ

d + w + q2E

−
(

μ

d + w + q2E
− (x(0) + y(0) + 1

β
z(0))

)
e−(d+w+q2E)t

and for t → +∞, we have X (t) ≤ μ
d+w+q2E

. This completes the proof. ��
In the following, we discuss the existence of equilibria of the system (1).

Clearly, the vanishing equilibrium point P0(0, 0, 0) always exists.
The predator free-equilibrium point P̄(x̄, ȳ, 0), where (x̄, ȳ) is the positive solution
of the following equations:

r1x
(
1 − x

K

)
− σ1x + σ2y − ux2 − q1Ex − n1xy = 0,

r2y + σ1x − σ2y − vy2 − n2xy = 0. (3)
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Consequently, x is satisfied by the following cubic equation

A3x
3 + A2x

2 + A1x + A0 = 0,

where

A3 =
(
u + r1

K

) [
−v

(
u + r1

K

)
+ n1n2

]
,

A2 = 2v
(
u + r1

K

)
(r1 − σ1 − q1E) − n2σ2

(
u + r1

K

)

− n1(r2 − σ2)
(
u + r1

K

)
− n1n2(r1 − σ1 − q1E) + n21σ1,

A1 = −v(r1 − σ1 − q1E)2 + (n2σ2 + n1(r2 − σ2))(r1 − σ1 − q1E)

+
(
u + r1

K

)
(r2 − σ2)σ2 − 2σ1σ2n1,

A0 = −σ2(r2 − σ2)(r1 − σ1 − q1E) + σ1σ
2
2 .

A1 > 0 if E > 1
q1

(
r1 − σ1 −

√
�1+n2σ2+n1(r2−σ2)

2v

)
,

where �1 = (n2σ2 + n1(r2 − σ2))
2 + 4v(u + r1

K )(r2 − σ2)σ2,

A0 > 0 if E > 1
q1

(
r1 − σ1 − σ1σ2

r2−σ2

)
. Then,

E > max

(
1

q1

(
r1 − σ1 − σ1σ2

r2 − σ2

)
,
1

q1

(
r1 − σ1 −

√
�1 + n2σ2 + n1(r2 − σ2)

2v

))

(4)

A3 < 0 if n1n2 < v
(
u + r1

K

)
(5)

A2 > 0 if v(r1 − σ1 − q1E) > n2σ2 + n1(r2 − σ2). (6)

The first equation of (3), we have

ȳ =
((

u + r1
K

)
x̄ − (r1 − σ1 − q1E)

σ2 − n1 x̄

)
x̄ > 0, (7)

where
r1 − σ1 − q1E

u + r1
K

< x̄ <
σ2

n1
or

σ2

n1
< x̄ <

r1 − σ1 − q1E

u + r1
K

. (8)

For the equilibrium point P∗(x∗, y∗, z∗), (x∗, y∗, z∗) is the positive solution of the
equations:

r1x
(
1 − x

K

)
− σ1x + σ2y − ux2 − axz

b + x
− q1Ex − n1xy = 0,

r2y + σ1x − σ2y − vy2 − n2xy = 0,
βaxz

b + x
− dz − wz − q2Ez = 0. (9)
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Then, the third equation

x∗ = b(d + w + q2E)

βa − d − w − q2E
> 0. (10)

if

E <
1

q2
(βa − d − w). (11)

Substituting x∗ to the second equation of (9), this equation has unique positive equation

y∗ = r2 − σ2 − n2x∗ + √
(r2 − σ2 − n2x∗)2 + 4vσ1x∗

2v
. (12)

Substituting x∗, y∗ to the first equation of (9)

z∗ = (b + x∗)
[− (

u + r1
K

)
x∗2 + (r1 − σ1 − q1E − n1y∗)x∗ + σ2y∗]

ax∗ . (13)

Then, z∗ > 0 if

x∗ <
(r1 − σ1 − q1E − n1y∗) +

√
(r1 − σ1 − q1E − n1y∗)2 + 4

(
u + r1

K

)
σ2y∗

2
(
u + r1

K

) .

(14)
Taking (14) into account, we can get the following theorem.

Theorem 2.2 The trivial equilibrium point P0(0, 0, 0) exists. If (4)–(8) hold, the
predator equilibrium P̄(x̄, ȳ, 0) exists. If (11)–(14) holds, the interior equilibrium
P∗(x∗, y∗, z∗) exists.

3 Stability analysis

In this section, we establish the local stability of equilibria.

Theorem 3.1 Suppose that (2) holds. The trivial equilibrium P0(0, 0, 0) is always
unstable.

Proof The Jacobian matrix

V (0, 0, 0) =
⎛
⎝
r1 − σ1 − q1E σ2 0

σ1 r2 − σ2 0
0 0 −(d + w + q2E)

⎞
⎠ .

Then the characteristic equation of system at P0 is

(λ + d + w + q2E) ((λ − (r1 − σ1 − q1E))(λ − (r2 − σ2)) − σ1σ2) = 0
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Firstly, It is clear that λ1 = −(d +w +q2E) < 0. If λ2 and λ3 are the two other roots,
then λ2 + λ3 > 0 with (2) holds. Therefore λ2 and λ3 have one positive value. Hence,
P0 is unstable. ��
Theorem 3.2 Suppose that (2) holds, if x̄ <

b(d+w+q2E)
βa−d−w−q2E

= x∗, the predator equi-
librium point P̄(x̄, ȳ, 0) is locally asymptotically stable.

Proof The Jacobian matrix of the point (x̄, ȳ, 0) is

V (x̄, ȳ, 0) =
⎛
⎝

V1 σ2 − n1 x̄
−ax̄
b+x̄

σ1 − n2 ȳ V2 0
0 0 V3

⎞
⎠ ,

where
V1 = −2

(
u + r1

K

)
x̄ + (r1 − σ1 − q1E) − n1 ȳ,

V2 = r2 − σ2 − 2v ȳ − n2 x̄,

V3 = βax̄

b + x̄
− (d + w + q2E).

Then, the characteristic equation of system at P̄ is
(

λ − βax̄

b + x̄
+ (d + w + q2E)

) ( (
λ + 2

(
u + r1

K

)
x̄

−(r1 − σ1 − q1E) + n1 ȳ

)
(λ − r2 + σ2 + 2v ȳ + n2 x̄)

−(σ2 − n1 x̄)(σ1 − n2 ȳ)

)
= 0.

Obviously, λ1 = βax̄
b+x̄ −(d+w+q2E). This root is λ1 < 0 if x̄ <

b(d+w+q2E)
βa−d−w−q2E

= x∗.
Let λ2 and λ3 be the two other eigenvalues. These are the roots of the equation:

λ2 + s1λ + s2 = 0,

where,
s1 = 2

(
u + r1

K

)
x̄ − (r1 − σ1 − q1E) + n1 ȳ − r2 + σ2 + 2v ȳ + n2 x̄,

s2 =
(
2

(
u + r1

K

)
x̄ − (r1 − σ1 − q1E) + n1 ȳ

)
(−r2 + σ2 + 2v ȳ + n2 x̄)

− (σ2 − n1 x̄)(σ1 − n2 ȳ).

Using to ȳ = (u+ r1
K )x̄−(r1−σ1−q1E)

σ2−n1 x̄
x̄ and x̄ = v ȳ2+(−r2+σ2)ȳ

σ1−n2 ȳ
, we get

s1 = ȳ(σ2 − n1 x̄)

x̄
+

(
u + r1

K

)
x̄ + x̄(σ1 − n2 ȳ)

ȳ
+ v ȳ + n2 x̄ + n1 ȳ > 0,

s2 = ȳ(σ2 − n1 x̄)

x̄
(v ȳ + n2 x̄)
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+
((

u + r1
K

)
x̄ + n1 ȳ

) (
x̄(σ1 − n2 ȳ)

ȳ
+ v ȳ + n2 x̄

)
> 0.

Then, it is to verify that λ2 + λ3 = −s1 < 0 and λ2λ3 = s2 > 0.
So λ1, λ2, λ3 < 0. Thus the predator equilibrium point P̄(x̄, ȳ, 0) of the system (1)
is locally asymptotically stable. ��
Theorem 3.3 Under assumptions (11)–(14), the predator equilibrium P̄(x̄, ȳ, 0)

exists. Then it is globally asymptoticlly stable if n1+ σ2 ȳn2
σ1 x̄

< 2min
(( r1

K + u
)
,

σ2 ȳv
σ1 x̄

)
.

Proof The Lyapunov function is given by

V (x, y, 0) =
(
x − x̄ − x̄ ln

( x
x̄

))
+ l

(
y − ȳ − ȳ ln

(
y

ȳ

))
,

where l for is positive constant to be determined in the subsequent steps.

dV

dt
= (x − x̄)

(
−

( r1
K

+ u
)

(x − x̄) + σ2

(
y

x
− ȳ

x̄

)
− n1(y − ȳ)

)

+ l(y − ȳ)

(
−v(y − ȳ) + σ1

(
x

y
− x̄

ȳ

)
− n2(x − x̄)

)

Let us choose l = σ2 ȳ
σ1 x̄

, we have,

dV

dt
= −

( r1
K

+ u
)

(x − x̄)2 − σ2 ȳv

σ1 x̄
(y − ȳ)2 − σ2

x x̄ y
(yx̄ − x ȳ)2

−
(
n1 + σ2 ȳn2

σ1 x̄

)
(x − x̄)(y − ȳ),

≤
(

−
( r1
K

+ u
)

+ 1

2

(
n1 + σ2 ȳn2

σ1 x̄

))
(x − x̄)2

+
(
1

2

(
n1 + σ2 ȳn2

σ1 x̄

)
− σ2 ȳv

σ1 x̄

)
(y − ȳ)2 − σ2

x x̄ y
(yx̄ − x ȳ)2.

Then, dV
dt ≤ 0 if n1 + σ2 ȳn2

σ1 x̄
< 2min

(( r1
K + u

)
,

σ2 ȳv
σ1 x̄

)
. ��

Theorem 3.4 Underassumptions (11)–(14), the interior equilibriumpoint P∗(x∗, y∗,
z∗) exists. Then P∗ is locally asymptotically stable if m0 > 0, m2 > 0 and
m1m2 − m0 > 0, where m0, m1 and m2 are given in the proof.

Proof The Jacobian matrix of the point (x∗, y∗, z∗) is

V (x∗, y∗, z∗) =
⎛
⎜⎝

V4 σ2 − n1x∗ −ax∗
b+x∗

σ1 − n2y∗ V5 0
βabz∗

(b+x∗)2 0 V6

⎞
⎟⎠ ,
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312 Y. Louartassi et al.

where

V4 = −2
(
u + r1

K

)
x∗ + (r1 − σ1 − q1E) − n1y

∗ − abz∗

(b + x∗)2
,

V5 = r2 − σ2 − 2vy∗ − n2x
∗,

V6 = βax∗

b + x∗ − (d + w + q2E).

The characteristic equation of system at P∗ is

λ3 + m2λ
2 + m1λ + m0 = 0,

where

m2 = −Tr(V (x∗, y∗, z∗)) = −(V4 + V5 + V6),

m1 = V4V5 + V5V6 + V6V4 − (σ2 − n1 x̄)(σ1 − n2 ȳ) + βa2bx∗z∗

(b + x∗)3
,

m0 = −V4V5V6 − V5
βa2bx∗z∗

(b + x∗)3
+ V6(σ2 − n1 x̄)(σ1 − n2 ȳ).

Then, the interior equilibrium point P∗ of the system is locally asymptotically stable
if m2 > 0 and m1m2 − m0 > 0. ��
Theorem 3.5 Suppose the equilibrium point P∗(x∗, y∗, z∗) exists, if n1 + σ2 y∗n2

σ1x∗ <

2min
(( r1

K + u
) − az∗

b(b+x∗) ,
σ2 y∗v
σ1x∗

)
, then P∗ is globally asymptotically stable.

Proof The Lyapunov function is given by

V (x, y, z) =
(
x − x∗ − x∗ ln

( x

x∗
))

+ l1

(
y − y∗ − y∗ ln

(
y

y∗

))

+ l2

(
z − z∗ − z∗ ln

(
z

z∗

))
.

where li for i = 1, 2 are positive constants to be determined in the subsequent steps.

dV

dt
= (x − x∗)

(
−

( r1
K

+ u
)

(x − x∗) − a

(
z

b + x
− z∗

b + x∗

)

+ σ2

(
y

x
− y∗

x∗

)
− n1(y − y∗)

)

+ l1(y − y∗)
(

−v(y − y∗) + σ1

(
x

y
− x∗

y∗

)
− n2(x − x∗)

)

+ l2(z − z∗)βa
(

x

b + x
− x∗

b + x∗

)
.
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Let us choose l1 = σ2 y∗
σ1x∗ and l2 = b+x∗

bβ , then we have,

dV

dt
= −

( r1
K

+ u
)

(x − x∗)2 − σ2y∗v
σ1x∗ (y − y∗)2 − σ2

xx∗y
(yx∗ − xy∗)2

+ az∗

(b + x)(b + x∗)
(x − x∗)2 −

(
n1 + σ2y∗n2

σ1x∗

)
(x − x∗)(y − y∗),

≤
(

az∗

b(b + x∗)
−

( r1
K

+ u
)

+ 1

2

(
n1 + σ2y∗n2

σ1x∗

))
(x − x∗)2

−
(

σ2y∗v
σ1x∗ − 1

2

(
n1 + σ2y∗n2

σ1x∗

))
(y − y∗)2 − σ2

xx∗y
(yx∗ − xy∗)2.

Then, dV
dt ≤ 0 if n1 + σ2 y∗n2

σ1x∗ < 2min
(( r1

K + u
) − az∗

b(b+x∗) ,
σ2 y∗v
σ1x∗

)
. ��

4 Optimal harvesting policy

In this section, the Pontryagins Principle is used to obtain a path of optimal harvesting
policy. Let D be the constant harvesting cost per unit effort, p1 is the constant price
per unit biomass of the prey in the unreserved zone, p2 is the constant price per unit
biomass of the predator.

The net economic revenue at any time t is given by

π(x, y, z, E) = p1q1E(t)x(t) + p2q2E(t)z(t) − DE(t).

In what follows, our goal is to solve the problem of maximization

I =
∫ T

0
π(x, y, z, E) e−δ t dt,

=
∫ T

0

(
p1q1x(t) + p2q2z(t) − D

)
E(t) e−δ t dt,

where δ is the instantaneous discount rate, subject to the state equations (9) and the
control contraints 0 ≤ E ≤ Emax.

Thus, to solve the problem of maximization, we use the Pontryagin’s maximum
principle. The Hamiltonian function H is given by

H = e−δ t( p1q1x(t) + p2q2z(t) − D
)
E(t) + λ1(t)

(
r1x(t)

(
1 − x(t)

K

)

−σ1x(t) + σ2y(t) − ux(t)2 − ax(t)z(t)

b + x(t)
− q1Ex(t) − n1x(t)y(t)

)

+λ2(t)

(
r2y(t) + σ1x(t) − σ2y(t) − vy(t)2 − n2x(t)y(t)

)
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314 Y. Louartassi et al.

+λ3(t)

(
βax(t)z(t)

b + x(t)
− dz(t) − wz(t) − q2E(t)z(t)

)
,

where λi for i = 1, 2, 3 are the adjoint variables.
H will be maximized under the control set 0 ≤ E ≤ Emax if the switching function

given by

ψ(t) := ∂H

∂E
= (

p1q1x(t) + p2q2z(t) − D
)
e−δ t

− q1λ1(t)x(t) − q2λ3(t)z(t) = 0.

This is a necessary condition for singular control to be optimal. Using theMaximum
Principle, we get the adjoint equations

dλ1

dt
= −∂H

∂x

= −p1q1e
−δ t E(t) − λ1(t)

(
r1 − 2

r1
K
x(t) − σ1 − 2ux(t) − abz(t)

(b + x(t))2

−q1E(t) − n1y(t)

)
− λ2(t)

(
σ1 − n2y(t)

)
− λ3(t)

βabz(t)

(b + x(t))2
,

dλ2

dt
= −∂H

∂y

= −λ1(t)

(
σ2 − n1x(t)

)
− λ2(t)

(
r2 − σ2 − 2vy(t) − n2x(t)

)
,

dλ3

dt
= −∂H

∂z

= −p2q2e
−δ t E(t) − λ1(t)

ax(t)

b + x(t)
− λ3(t)

(
βax(t)

b + x(t)
− (d + w + q2E(t))

)
.

Let denote that the optimal harvesting policy is

⎧
⎨
⎩

E = Emax when ψ(t) > 0,
E = E∗ when ψ(t) = 0,
E = 0 when ψ(t) < 0,

(15)

where E∗ the optimal control.
If ψ(t) = 0, then

q1λ1(t)e
δ t x + q2λ3(t)e

δ t z = p1q1x + p2q2z − D = ∂π

∂E
.

To find the optimal equilibrium solution for this system, we consider x , y, z and E
as constants.

123



Dynamics of a predator–prey model with harvesting and… 315

For the interior equilibrium P∗ and under (10), (12), (13), we have

dλ3

dt
= M1λ3 − M2e

−δt ,

where M1 = −aq2z∗
q1(b+x∗) , and M2 = p2q2E −

(
p1q1x∗+p2q2z∗−D

)
a

q1(b+x∗) . Then,

λ3(t) = M2

M1 + δ
e−δt .

In the same way, we have

dλ2

dt
= N1λ2 − N2e

−δt ,

where N1 = −r2 + σ2 + 2vy∗ + n2x∗ and N2 =
(
p1q1x∗+p2q2z∗−D

)(
σ2−n1x∗)

q1x∗ +
M2q2z∗

(
σ2−n1x∗)(

M1+δ
)
q1x∗ .

Hence

λ2(t) = N2

N1 + δ
e−δt .

The expression of dλ1
dt can be written as

dλ1(t)

dt
= B1λ1(t) − B2e

−δt ,

where B1 = −(
r1 − σ1 − q1E

) +
(

2r1
K + 2u

)
x∗ + abz∗

(b+x∗)2 + n2y∗ and

B2 = p1q1E − N2

(
σ1−n2 y∗)
N1+δ

+ βM2abz∗(
M1+δ

)(
b+x∗

)2 .
By calculation, we get

λ1(t) = B2

B1 + δ
e−δt .

Thus, the previous calculation, leads to

B2

B1 + δ
q1x

∗ + M2

M1 + δ
q2z

∗ = p1q1x
∗ + p2q2z

∗ − D. (16)

So, in case of infinite discount rate, the net economic revenue to the society becomes
zero and the fishery would remain closed.
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We consider the function

F(x) =
K

(
σ1 − n2y

)(
σ2 − n1x

)(
p1q1x + p2q2z − D

)(
b + x

)2

�2

(
δ − r2 + σ2 − n1x + 2vy

)

+
Kp1q21 E

(
b + x

)2

�2
−

Kβa2bq1xz

(
p1q1x + p2q2z − D

)

�2

(
δ − r2 + σ2 − n1x + 2vy

)

+
Kq1 p2q22 Ez

(
σ1 − n2y

)(
σ2 − n1x

)(
b + x

)3

�2

(
δ − r2 + σ2 − n1x + 2vy

)(
δq1(b + x) − aq2z

)

−
Kaq2z

(
σ1 − n2y

)(
σ2 − n1x

)(
p1q1x + p2q2z − D

)(
b + x

)2

�2

(
δ − r2 + σ2 − n1x + 2vy

)(
δq1(b + x) − aq2z

)

+
Kβabq21 p2q2Exz

(
b + x

)(
δ − r2 + σ2 − n1x + 2vy

)

�2

(
δ − r2 + σ2 − n1x + 2vy

)(
δq1(b + x) − aq2z

)

+
q1 p2q22 Ez

(
b + x

)
− aq2z

(
p1q1x + p2q2z − D

)

δq1

(
b + x

)
− aq2z

−
(
p1q1x + p2q2z − D

)
,

where

�2 = K

(
b + x

)2(
δ − r1 + σ1 + q1E

)
+ 2

(
r1 + uK

)(
b + x

)2

+n2y

(
b + x

)2

+ abK x .

Thus, the (16) can be written as F(x∗) = 0. On the one hand, the calculation gives
F(0) > 0, and the other, F ′(x) < 0 for 0 < x < K . Then, there exists a unique
positive solution x∗ = xδ of the equation F(x) = 0.
So, according to the above analysis, we propose the following theorem.
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Theorem 4.1 If βaxδ

b+xδ
− d − w > 0, then the optimal harvesting control Eδ =

1
q2

(
βaxδ

b+xδ
− d − w

)
and the corresponding solutions

xδ = x∗,

yδ = r2 − σ2 − n2xδ + √
(r2 − σ2 − n2xδ)2 + 4vσ1xδ

2v
,

zδ = (b + xδ)
[− (

u + r1
K

)
x2δ + (r1 − σ1 − q1E − n1yδ)xδ + σ2yδ

]

axδ

exist that maximize I over [ 0, Emax].

5 Numerical simulations

For our simulation works, we take system parameters as:

r1 = 5 , r2 = 1, K = 4, σ1 = 1, σ2 = 1, a = 0.94, b = 0.7, q1 = 0.1,

q2 = 0.2, E = 0.8, β = 0.998, u = 0.0001, v = 0.333, w = 0.00003,

d = 0.03, n1 = 0.5, n2 = 0.3. (17)

For the set of value parameters mentioned above, we note that the positive equilibrium
P∗(x∗, y∗, z∗) exists and is given by

x∗ = 0.1778, y∗ = 0.6550, z∗ = 6.5873.

We plot the dynamics of the system (1) for the set of values parameters (17). The
behavior of x , y and z with respect to time t is plotted in Fig. 1. From this figure, we
note that x , y and z increase for a short time and then they decrease and finally attain
their equilibrium level.

As in Fig. 2, the Fig. 3 shows the behavior of x , y and z with different initial
values. From this figure, we see that all trajectories starting with different initial points
converge to P∗(0.1778, 0.6550, 6.5873). Thus P∗ is globally asymptotically stable.

We observe that n1 and n2 are also an important parameters which governs the
dynamics of system (1). The behavior of x , y and z with respect to time t for different
values of n1 and n2 are shown in Figs. 4 and 5. From Fig. 4, we note that x and
y decrease in a short time and increase after as n1 increases, but z decreases as n1
increases. From Fig. 5, we note that x decreases in a short time and increases after as
n2 increases, but y and z decrease as n2 increases.

The results found are compatible with the analysis and the study presented in the
Sect. 3. From Figs. 4 and 5, x∗ is invariant with respect to n1 and n2, z∗ is variable
with respect to n1 and n2 and y∗ is invariant with respect to n1 and is variable with
respect to n2. These results justify the formulas (10), (12) and (13) of which x∗ does
not depend on n1 nor on n2, y∗ depends on n2 but not on n1. Finally z∗ depends on
n1 and n2.
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Fig. 1 Solution curves corresponding to the set values parameters (17), beginning with x = 1, y = 1,
z = 1

Fig. 2 The equilibrium point P∗ of is globally asymptotically stable. x, y, z states for different initial points
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Fig. 3 The phase trajectory of the system for the set values parameters (17)

Fig. 4 Plot of x , y, z with respect to time t for different values of n1, others values of parameters are same
as given in (17)
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Fig. 5 Plot of x , y, z with respect to time t for different values of n2 and n1 = 0.3, others values of
parameters are same as given in (17)

6 Conclusion

Weproposed and analyzed amodel of predator-predator Holling II functional response
with harvest for reserve fishery resources and incorporate toxic substances released
by external agents into natural systems taking into account competition and consider
an ecosystem where a species Predator depends on simple prey species with harvest.
And the habitat consists of an unrestricted zone, where the predator attacks its only
food prey, and the reserved area, where the prey lived safely. Our model represents a
development from other preliminary studies. We analyze the positivity and the limit
of these solutions. We also study the criteria for the existence of all the possible equi-
libria of this system, as well as discuss the local stability of different equilibria of the
system.We are also discussing the optimal harvest policy by the maximal Pontryagins
principle. By simulation, we show the rich dynamic properties of the proposed system.
First, from the conditions of Theorem, we see that the locally asymptotically stable
free point of equilibrium of the predator P̄ of the system (1). Secondly, the internal
equilibrium point P∗ of the system (1) is globally asymptotically stable, which is
consistent with the theoretical analysis.
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