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Abstract This work presents a new mathematical model that investigates the impact
of diagnosis and treatment of both latent tuberculosis infections and active cases on the
transmission dynamics of the disease in a population. Mathematical analysis reveal
that the model undergoes the phenomenon of backward bifurcation where a stable
disease-free equilibrium co-exist with a stable endemic (positive) equilibrium when
the associated reproduction number is less than unity. It is shown that this phenomenon
does not exist in the absence of exogenous re-infection. In the absence of exogenous re-
infection, the disease-free solution of themodel is shown to be globally asymptotically
stable when the associated reproduction number is less than unity. It is further shown
that a special case of the model has a unique endemic equilibrium point, which is
globally asymptotically stablewhen the associated reproduction number exceeds unity.
Uncertainty and sensitivity analysis is carried out to identify key parameters that have
the greatest influence on the transmission dynamics of TB in the population using the
reproduction number of the model, incidence of the disease and the total number of
infected individuals in the various infective classes as output responses. The analysis
shows that the top three parameters of the model that have the most influence on the
reproduction number of the model are the transmission rate, the fraction of fast disease
progression and the rate of detection of active TB cases, with other key parameters
influencing the outcomes of the other output responses. Numerical simulations of
the model show that the treatment rates for latent and active TB cases significantly
determines the impact of the fraction of new latent TBcases diagnosed (and the fraction

B D. Okuonghae
daniel.okuonghae@uniben.edu; danny.okuonghae@corpus-christi.oxon.org

A. O. Egonmwan
amos.egonmwan@uniben.edu

1 Department of Mathematics, University of Benin, P.M.B. 1154, Benin City, Nigeria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-018-1172-1&domain=pdf


130 A. O. Egonmwan, D. Okuonghae

of active TB cases that promptly receives treatment) on the burden of the disease in a
population. The simulations suggest that, with availability of treatment for both latent
and active TB cases, increasing the fraction of latent TB cases that are diagnosed and
treated (even with a small fraction of active TB cases promptly receiving treatment)
will result in a reduction in the TB burden in the population.

Keywords Tuberculosis · Latent · Active · Delay treatment · Mathematical model ·
Global stability · Bifurcation · Uncertainty and sensitivity analysis · Numerical
simulations

1 Introduction

Tuberculosis (TB) is a chronic bacterial infectious disease caused byMycobacterium
tuberculosis which pose a major health, social and economic burden globally, espe-
cially in low and middle income countries [17]. It is the second deadliest disease
due to a single infectious agent only after HIV/AIDS [22,64]. The surge in HIV-TB
co-infection and growing emergence of multidrug-resistant TB (MDR-TB) and exten-
sively drug resistant TB (XDR-TB) strains has further fuelled TB epidemic [62,64].
TB usually affects the lungs (pulmonary TB) but it can also affect other sites as well
(extra-pulmonary TB). Tuberculosis is transmitted by tiny airborne droplets which are
expelled into the air when a person with active pulmonary TB coughs or talks [26].

Estimate show that TB has infected one-third of the world’s population with the
most infections occurring in Africa and Asia [64]. In 2015, there were an estimated
10.4million newTBcases (incidence) inworldwide, aswell as an estimated 1.4million
TB-induced deaths, and an additional 0.4 million deaths resulting from TB disease
among persons living with HIV [64]. Furthermore, over 95% of these deaths occurred
in low- andmiddle-income countries where the cost of diagnosis and treatment is high,
and not readily accessible [64].

Diagnosis of latent TB infections (LTBI) and prompt treatment of active cases
remains an important component of effective TB control [5,14,30,32,39]. On the
other hand, undetected TB infection and delay in the treatment of active TB cases
leads to more severe disease conditions in the infected person which could result in
wider disease spread in the community [2,31,51,55,63]. Such delays also contribute to
increased infectivity in the community [5], whereby, the infected individuals unknow-
ingly continue to serve as a reservoir for the pathogen (M. tuberculosis). Hence, this
could lead to increased risk of disease transmission in the community. In fact, the
effects of diagnosis of LTBI and delay in the treatment of active TB cases on the
incidence and prevalence of TB were issues considered by some presenters at the 45th
World Conference on Lung Health held in 2014 [25].

Health literacy, i.e., knowledge and education related to tuberculosis, as well as
socio-cultural factors such as gender roles and status in the family has been identi-
fied as having considerable influence on undetected latent TB infection and delay in
the treatment of active cases [31,33,65]. TB knowledge includes the ability to iden-
tify causes and understand the transmission path of the disease, recognize disease
symptoms, and be aware of available treatment regimens such as directly observed
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treatment short course (DOTS); which is the TB treatment strategy recommended by
the World Health Organization (WHO) [9,20,27,44]. On the other hand, ignorance
on the part of infected individuals about TB usually leads to postponement in seek-
ing appropriate medical attention, and in some cases such persons will rather adopt
alternative approaches, such as seeking traditional healers, before consulting DOTS
facility, thereby delaying diagnosis and treatment of TB [36,58].

A recent study in China identified financial difficulty as well as ignoring early
TB symptoms or not understanding the meaning of such symptoms on the part of
actively-infected persons as being responsible for delay in seeking appropriatemedical
attention [31]. Besides, some infected individuals are scared of undergoing TB diagno-
sis because of fear of having to pay for a prolong TB treatment regimen (6–8months),
which ultimately could increase the possibility of developing multidrug-resistant TB
strains [10].

In some developing countries, the distance and additional transportation cost to and
from a DOTS facility could also discourage actively-infected persons from seeking
appropriate medical attention as soon as possible [7]. In the same vain, the life style
and habit of some infected individuals have been identified as being also responsible
for undetected latent TB infection and delay in the treatment of active TB cases. For
example, a personwho smokes cigarette may continue to trivialize early TB symptoms
such as cough, thereby delaying prompt diagnosis and treatment of the disease [6].

Stigmatization and discrimination towards individuals infected with TB is another
factor that could deter persons from seeking prompt TB diagnosis and treatment since
it fosters social exclusion and saddens the infected person andmembers of their family
[44,47]. And because of the social rejection and stigmatization, some patients would
rather postpone seeking appropriate medical attention due to the fear of getting to find
out about their positive TB status [13].

Health system delay (HSD) in the diagnosis and treatment of LTBI as well as active
TB case is usually connected with an infected patient’s visit to an health care center,
but without receiving accurate diagnosis. HSD is often caused by unavailability of up-
to-date diagnostic laboratory equipments, not adhering to the diagnostic procedures
based onDOTS strategy recommended by theWHO[27], and difficulties in identifying
TB symptoms in an infected person especially if such symptoms coexist with other
chronic lung diseases and/or severe cough [3,49,61]. Infected individuals can also
experience diagnostic delays as a result of low clinical suspicion of tuberculosis on
the part of health-care practitioners. A possible explanation for such wrong or delayed
diagnosis on the part of health-care provider is that pulmonary TB can manifest itself
with symptoms that are very similar to other diseases such as community-acquired
pneumonia (CAP), which is often treated with antibiotics like fluoroquinolones [60]. It
has been shown that FQs also have antimicrobial activity againstM. tuberculosis [60].
This results in a seeming improvement in the TB symptoms of the infected individual
which may ultimately delay the positive diagnosis of the disease [53].

Several mathematical models have been developed and used to study the trans-
mission dynamics of TB in a population [4,12,23,40,41,43,45,52]. For example,
Okuonghae [40] presented a deterministic TB model with genetic heterogeneity in
susceptibility and disease progression. Zhang and Feng [67] formulated and globally
analyzed a dynamical model to investigate the spread of TB in a community with iso-
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lation and incomplete treatment. Trauera et al. [54] presented a deterministic model
to describe TB spread in highly endemic regions in Asia-Pacific regions. The model
incorporates features such as partial and temporary vaccine efficacy, likelihood of re-
infection during the latent state and after treatment, decreasing risk of acute disease
after infection.Mishra and Srivastava [37] proposed amathematical model to study the
transmission of TB in human population for both sensitive and drug-resistant subjects.

The purpose of this article is to formulate and rigorously analyze a new model for
the transmission dynamics of TB which provides insights into the effects of diagnosis
of latent and active TB infection, as well as delay in the treatment of some active cases,
on the disease burden in a population. The paper is organized as follows. In Sect. 2,
the treatment model is formulated and its basic properties explored. In Sect. 3, the
local asymptotic stability of the disease-free equilibrium of the model is examined.
The existence of endemic equilibrium point (EEP) for a special case is investigated
in Sect. 4. Backward bifurcation analysis is presented in Sect. 5. The existence and
global asymptotic stability of EEP for a special case is shown in Sect. 6. Uncertainty
and sensitivity analysis and numerical simulation of themodel are presented in Sect. 7.
Finally, a discussion of the findings from this work is presented in Sect. 8.

2 Model formulation

The total population at time t , denoted by N (t), is subdivided into eight mutually-
disjoint compartments of susceptible (S(t)), new latently-infected (E1(t)), diag-
nosed latently-infected (E2(t)), undiagnosed latently-infected (E3(t)), undiagnosed
actively-infected (I (t)), diagnosed actively-infected with prompt treatment (J1(t)),
diagnosed actively-infected with delay in treatment (J2(t)), and treated individuals
(T (t)). Let � be the recruitment rate of individuals into the susceptible class (S). We
assume that μ is the per capita natural death rate in all epidemiological classes; hence
1/μ is the average life span of individuals in the population. Let δi , i = 1, 2, 3 be
the TB-induced death rates, with δ1 being the rate for undiagnosed actively-infected
persons (I ), δ2 being the rate for diagnosed actively-infected persons with prompt
treatment (J1), and δ3 being the rate for diagnosed actively-infected persons with
delay treatment (J2); hence, it is reasonable to assume that δ1 ≥ δ3 ≥ δ2. Suscepti-
ble individuals make contact with actively-infected persons and become infected at
the rate λ (called the force of infection), with β being the transmission rate, η1 and
η2 are modification parameters that accounts for the reduced likelihood of disease
transmission by individuals who are diagnosed with active TB and promptly treated
(J1) and those who delay in receiving treatment (J2), respectively, in comparison
to actively-infected individuals who were not diagnosed (I ); hence we assume that
0 < η1 ≤ η2 < 1 [66].

We assume that p (0 < p < 1) is the fraction of individuals with new infections
who develop TB fast per unit of time [48]. Hence a fraction, (1 − p), of the newly
infected individuals (λS), and previously effectively treated individuals (b3λT ) who
become re-infected are assumed to slowly progress in their disease condition and are
moved to the latent class, E1, with b3 (b3 > 1) being a modification parameter which
accounts for the increased likelihood of infection by the previously treated individuals
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in comparison to wholly-susceptible individuals [59]. The assumption that b3 > 1
makes biological sense since Verver et al. [59] showed that the rate of tuberculosis
reinfection after successful treatment is higher than the rate of a new TB infection.

New latently-infected individuals (E1) are either diagnosed or remain undetected,
at the rate σ , in a given unit of time [1,5]. Hence 1/(σ + μ) will be the time spent
in the “newly” infected state, which is determined by how often screening is done in
order to detect new infections. A fraction, n (0 < n < 1), of new latently-infected
individuals are diagnosed (E2) and placed on TB treatment at a rate r0, while the
remaining fraction, 1 − n, remain undiagnosed (E3). Undiagnosed latently-infected
persons are individually diagnosed at a rate α. Diagnosed latently-infected and undi-
agnosed latently-infected individuals are both exogenously re-infected at the rates
b1 (0 < b1 < 1) and b2 (0 < b2 < 1), respectively. Individuals with undiagnosed
latent TB infections progress to active TB at a rate k. Individuals with undiagnosed
active TB cases (I ) are detected at a rate κ , with a fraction, q (0 < q < 1), of these
detected active cases being promptly treated at a rate r1, while the remaining fraction,
1 − q, experiencing some delay before the commencing treatment at a rate r2; hence
it is makes biological sense to assume that r1 ≥ r2.

Based on the assumptions above, our formulatedTBmodel is given by the following
system of nonlinear ordinary differential equations in (2.1), and a flow diagram of
the model is given in Fig. 1. The associated variables and parameters used for the
formulation are defined in Table 1, while the values and ranges of the parameters used
for carrying out numerical simulation of the treatment model (2.1) are listed in Table 2

dS

dt
= � − λS − μS,

dE1

dt
= (1 − p)λ(S + b3T ) − (σ + μ)E1,

dE2

dt
= σnE1 + αE3 − b1λE2 − (r0 + μ)E2,

dE3

dt
= σ(1 − n)E1 − b2λE3 − (α + k + μ)E3,

d I

dt
= pλ(S + b3T ) + b1λE2 + b2λE3 + kE3 − (κ + δ1 + μ)I,

d J1
dt

= κq I − (r1 + δ2 + μ)J1,

d J2
dt

= κ(1 − q)I − (r2 + δ3 + μ)J2,

dT

dt
= r0E2 + r1 J1 + r2 J2 − b3λT − μT,

(2.1)

where the force of infection λ is given by

λ = β
(
I + η1 J1 + η2 J2

)

N
. (2.2)
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S(t) E (t)1

E (t)2

T(t)

J (t)1 J (t)2

E (t)3

I(t)

Fig. 1 Schematic diagram of the treatment model (2.1), where λ is the force of infection given in (2.2)

Since the model (2.1) monitors human population, it is important that all its state
variables and associated parameters are non-negative for all time, t . Hence, the fol-
lowing non-negativity result holds for the state variables in the model (2.1).

Theorem 2.1 Let the initial data for the TB model (2.1) be S(0) > 0, E1(0) >

0, E2(0) > 0, E3(0) > 0, I (0) > 0, J1(0) > 0, J2(0) > 0 and T (0) > 0 . Then the
solutions (S(t), E1(t), E2(t), E3(t), I (t), J1(t), J2(t), T (t)) of the model (2.1), with
positive initial data, will remain positive for all time t > 0.

Proof Let t1 = sup{t > 0 : S(0) > 0, E1(0) > 0, E2(0) > 0, E3(0) > 0, I (0) >

0, J1(0) > 0, J2(0) > 0, T (0) > 0}.
From the first equation of model (2.1), it follows that

dS(t)

dt
= � − (λ + μ)S(t) (2.3)

which can be rewritten as

d

dt

[
S(t) exp

{
μt +

∫ t

0
λ(τ)dτ

}]
= � exp

{
μt +

∫ t

0
λ(τ)dτ

}
. (2.4)
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Table 1 Description of variables and parameters of the TB model (2.1)

Variable Description

S(t) Population of susceptible individuals

E1(t) Population of new latently-infected individuals

E2(t) Population of diagnosed latently-infected individuals

E3(t) Population of undiagnosed latently-infected individuals

I (t) Population of undiagnosed actively-infected individuals.

J1(t) Population of diagnosed actively-infected individuals with
prompt treatment

J2(t) Population of diagnosed actively-infected individuals with
delay treatment

T (t) Population of treated individuals

Parameter Description

μ Natural death rate

� Recruitment rate

β Transmission rate

η1, η2 Modification parameters that accounts for the reduced
likelihood of TB transmission by individuals

who are diagnosed with active TB case and receive prompt treatment (J1)
and those with delay in, treatment (J2) respectively, in comparison to
actively-infected individuals who were not detected (I )

k Disease progression rate from the class of undiagnosed
latently-infected to active TB (I )

α Rate at which latently-infected individuals become diagnosed
individually

p Fraction of fast TB progression

b1, b2 Exogenous re-infection parameters

b3 Modification parameter that accounts for increased likelihood of re-infection
after a successful treatment of previous TB infection

n Fraction of new latent TB that were diagnosed

σ Rate of diagnosis of latent TB infection

q Fraction of detected active TB cases who receive prompt
treatment

κ Rate of detection of active TB cases

δ1, δ2, δ3 Disease-induced death rates for individuals with undiagnosed active TB (I ),
diagnosed active TB cases who are promptly treated (J1), and diagnosed
active cases with delay treatment (J2), respectively

r0, r1, r2 Treatment rates for individuals with diagnosed latent TB (E2),
diagnosed active cases with

Prompt treatment (J1), and diagnosed active infection with
delayed treatment (J2), respectively
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Table 2 Baseline values and ranges of the parameters of the treatmentmodel (2.1), with the total population
(N) of Nigeria as of 1 January 2016 estimated at 184,635,279 [16]

Parameters Baseline values Ranges References

μ 0.02041 year−1 [0.0143, 0.03] [56]

� 3,768,410 year−1 [3,000,000, 4,000,000] [52]

β Variable year−1 [6.55, 15] –

η1 0.7 year−1 [0, 1] [1]

η2 0.9 year−1 [0, 1] [1]

k 0.0005 year−1 [0, 0.005] [15]

α 1.1 year−1 [0, 3] –

p 0.1 year−1 [0, 0.2] [48]

b1 0.7 year−1 [0, 1] –

b2 0.8 year−1 [0, 1] [1,50]

b3 1.2 year−1 [1, 2] [59]

n 0.2 year−1 [0, 1] Inferred from [62,64]

σ 1.1 year−1 [0.2, 3] Inferred from [62,64]

q 0.4 year−1 [0, 1] Inferred from [62,64]

κ 1.2 year−1 [0.2, 4] Inferred from [62,64]

δ1 0.413 year−1 [0.2, 0.6] [38]

δ2 0.139 year−1 [0, 0.15] [38]

δ3 0.3 year−1 [0.2, 0.4] [45]

r0 1.5 ind−1 year−1 [0.5, 2.5] [52]

r1 2.5 ind−1 year−1 [1.5, 3.5] [52]

r2 1.5 ind−1 year−1 [0.5, 2.5] [52]

Thus,

S(t1) exp
{
μt1+

∫ t1

0
λ(τ)dτ

}
− S(0)=

∫ t1

0
�

[
exp

{
μy+

∫ y

0
λ(τ)dτ

}]
dy, (2.5)

So that,

S(t1) = S(0) exp
[

− μt1 −
∫ t1

0
λ(τ)dτ

]
+

[
exp

{
− μt1 −

∫ t1

0
λ(τ)dτ

}]

×
∫ t1

0
�

[
exp

{
μy +

∫ y

0
λ(τ)dτ

}]
dy > 0. (2.6)

Similarly, it can be shown that E1(t) > 0, E2(t) > 0, E3(t) > 0, I (t) > 0, J1(t) >

0, J2(t) > 0 and T (t) > 0 for all time t > 0. Thus, all solutions of the system (2.1)
remain positive for all non-negative initial conditions. ��
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Lemma 2.2 The closed set

D =
{
(S, E1, E2, E3, I, J1, J2, T ) ∈ R

8+ : N ≤ �

μ

}
(2.7)

is positively-invariant and attracts all positive solutions of the treatment model (2.1).

Proof Adding all the equations of model (2.1) gives

dN

dt
= � − μN − (δ1 I + δ2 J1 + δ3 J3). (2.8)

Since dN
dt ≤ λ − μN , it follows that dN

dt ≤ 0 if N (t) ≥ �
μ
. Hence, a standard

comparison theorem [28] can be used to show that N (t) ≤ N (0)e−μt + �
μ

(1− e−μt ).

In particular, if N (0) ≤ �
μ
, then N (t) ≤ �

μ
for all t > 0. Hence, the domain D is

positively invariant. Furthermore, if N (0) > �
μ

, then either the solution enters the

domain D in finite time or N (t) approaches �
μ
asymptotically as t → ∞. Hence, the

domain D attracts all solutions in R8+. ��
Since the domain D is positively-invariant, it is enough to investigate the dynam-

ics of the flow generated by the model (2.1) in D. Hence the model (2.1) is both
mathematically and epidemiologically well posed.

3 Local asymptotic stability of disease-free equilibrium

The disease-free equilibrium (DFE) of the model (2.1) is given by

E0 =
(
S0, E0

1 , E
0
2 , E

0
3 , I

0, J 01 , J 02 , T 0
)

=
(

�

μ
, 0, 0, 0, 0, 0, 0, 0

)
. (3.1)

The local asymptotic stability (LAS) of the DFE is shown using the next genera-
tion operator method [18,57]. Following similar procedure as in [57], the computed
effective reproduction number associated with the model (2.1) is given by

RT = β

[
a11a33 p + k(1 − n)(1 − p)σ

][
a55a66 + a66κqη1 + a55κ(1 − q)η2

]

a11a33a44a55a66
,

(3.2)
where a11 = (σ + μ), a22 = (r0 + μ), a33 = (α + k + μ), a44 = (κ + δ1 + μ),
a55 = (r1 + δ2 + μ), and a66 = (r2 + δ3 + μ).

Using Theorem 2 in [57] we have the following result:

Lemma 3.1 The DFE (E0) of the model (2.1), given by (3.1), is locally asymptomat-
ically stable (LAS) ifRT < 1 and unstable ifRT > 1.

The threshold quantity, RT , measures the average number of new TB infections
generated by a single actively-infected individual in a wholly susceptible populations
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where there exist control measures such as treatment. The epidemiological implication
of Lemma 3.1 is that TB can be eliminated from the community when the effective
reproduction numnber is less than unity (RT < 1) if the initial sizes of the subpop-
ulations of the model (2.1) are in the basin of attraction of the DFE (E0). That is, a
small influx of TB-infected persons into the community will not generate a large TB
outbreak in the community, and the disease will eventually die out in time.

3.1 Analysis of reproduction number (RT )

Using the threshold quantity,RT , in (3.2),wewish to investigate the effect of diagnosis
of latently-infected individuals and delay in the treatment of active TB cases on the
dynamics of the disease in a population, and thus glean effective control strategies
involving parameters that characterize these effects.

It can be seen from (3.2), that

lim
n→1
σ→∞

RT

= βp[(r1+δ2+μ)(r2+δ3+μ)+κq(r2+δ3+μ)η1+κ(1 − q)(δ2+r1+μ)η2]
(κ+δ1+μ)(r1+δ2+μ)(r2+δ3 + μ)

.

(3.3)

The limit in (3.3) implies that aTBcontrol programme that focuses on correct diagnosis
of a large fraction of new latent TB infections (n → 1) at a high rate (σ → ∞) can
lead to effective TB control provided it results in making the right-hand sides of (3.3)
less than unity.

From (3.2), it can also be seen that

lim
q→1
κ→∞

RT = β[p(σ + μ)(α + k + μ) + σk(1 − n)(1 − p)]η1
(σ + μ)(α + k + μ)(r1 + δ2 + μ)

. (3.4)

The limit in (3.4) implies that a TB programme that combines prompt treatment of a
large fraction of detected active TB cases (q → 1) at a high rate (κ → ∞) can lead
to effective TB control provided it results in making the right-hand sides of (3.4) less
than unity.

In the same vein, we can see that

lim
n→1
q→1

RT = βp[(r1 + δ2 + μ) + κη1]
(κ + δ1 + μ)(r1 + δ2 + μ)

. (3.5)

The limit in (3.5) implies that aTBcontrol programme that focuses on correct diagnosis
of a large fraction of new latent TB cases (n → 1) and prompt treatment of a large
fraction of detected active TB cases (q → 1) can lead to effective TB control provided
it results in making the right-hand sides of (3.5) less than unity.
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Furthermore, we see that

lim
σ→∞
κ→∞

RT

= β[p(α+k+μ)+k(1−n)(1− p)][q(r2+δ3+μ)η1+(1 − q)(r1+δ2+μ)η2]
(α+k+μ)(r1+δ2+μ)(r2+δ3+μ)

.

(3.6)

The result in (3.6) implies that a TB control programme that focuses on high rate of
diagnosis of latent TB cases and high rate of detection of active TB cases (κ → ∞)
can lead to effective TB control provided it results in making the right-hand sides of
(3.6) less than unity.

Finally, using (3.2), it can be seen that

lim
n→1
q→1
σ→∞
κ→∞

RT = βpη1
(r1 + δ2 + μ)

> 0. (3.7)

The limit in (3.7) implies that a TB control programme that focuses on effective
combination of diagnosis of a large fraction of new latent TB infections, detection of a
large fraction of active TB cases with prompt treatment, high rate of diagnosis of latent
TB infections, and high rate of detection of active TB cases (i.e., n → 1, q → 1, σ →
∞, κ → ∞) can lead to effective TB control if it results in making the right-hand
side of (3.7) less than unity. Hence, control strategies that results in any of the limiting
expressions in (3.3) to (3.7) to be less than unity will lead to a reduction in the TB
burden in the population.

Further sensitivity analysis on some key parameters associated with diagnosis and
treatment of latent TB infections and active TB cases (i.e., n, q, κ, r1, and r2) in the
model (2.1) are carried out by computing the partial derivatives ofRT with respect to
these parameters.

The partial derivative ofRT with respect to the fraction of new latent TB infections
who got diagnosed (n) yields

∂RT

∂n

= −βk(1− p)σ [(r1+δ2+μ)(r2+δ3+μ)+qκ(r2+δ3+μ)η1+κ(1−q)(r1+δ2+μ)η2]
(σ +μ)(α+k+μ)(κ+δ1+μ)(r1+δ2+μ)(r2+δ3+μ)

.

(3.8)

Clearly, it follows that RT
∂n < 0 unconditionally. Hence, increasing the fraction of new

latent TB who got diagnosed, will have a positive impact in reducing TB burden in a
population, regardless of the values of other parameters in the expression for RT .

Considering the rate of change of (3.2) with respect the fraction of detected and
promptly treated active TB cases (q), we have
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∂RT

∂q

= β[p(σ +μ)(α+k+μ)+k(1−n)(1− p)σ ][κ(r2+δ3+μ)η1−κ(r1+δ2+μ)η2]
(σ +μ)(α+k +μ)(κ+δ1+μ)(r1+δ2+μ)(r2+δ3+μ)

.

(3.9)

It follows from (3.9) that RT
∂q < 0 if

η1 < 	1 = (r1 + δ2 + μ)η2

(r2 + δ3 + μ)
or η2 > 	2 = (r2 + δ3 + μ)η1

(r1 + δ2 + μ)
. (3.10)

Equation (3.10) implies that the detection (and prompt treatment) of a fraction of
active TB cases will have a positive impact in reducing TB burden in the community
only if η1 < 	1 (or η2 > 	2). Such control strategy will fail to reduce TB burden
in the community if η1 = 	1 (or η2 = 	2), and will have a detrimental impact in
the community if η1 > 	1 (or η2 < 	2), since this will lead to an increase in the
reproduction number RT . This results are summarized below:

Lemma 3.2 The detection (and prompt treatment) of a fraction of actively-infected
TB cases will have a positive impact in reducing TB burden in the community only if
η1 < 	1 (or η2 > 	2), no impact if η1 = 	1 (or η2 = 	2), and a detrimental impact
if η1 > 	1 (or η2 < 	2).

Considering the rate of change of (3.2) with respect to the rate of detection of active
TB cases (κ), it follows that

∂RT

∂κ
= β[pa11a33 + k(1 − n)(1 − p)σ ]

a11a33a55a66(κ + δ1 + μ)2

×
[
(δ1 + μ)[qa66η1 + a55(1 − q)η2] − a55a66

]
, (3.11)

where a11, a22, a33, a44, a55, and a66 are as defined in (3.2). From (3.11) it can be
seen that RT

∂κ
< 0 if

1

(δ1 + μ)
> 	3 = 	31 + 	32 , where 	31 = qη1

r1 + δ2 + μ
, and

	32 = (1 − q)η2

r2 + δ3 + μ
. (3.12)

The expression in 	31 is the product of the fraction of detected active TB cases
who receive prompt treatment (q) together with the modification parameter (η1) that
accounts for the reduced likelihood of disease transmission by individuals who are
diagnosed with active TB and promptly treated (J1) in comparison to actively-infected
individuals who were not detected (I ), and the average time spent in the J1 class.
The expression in 	32 is the product of the fraction of detected active TB cases
with delay in commencing treatment (1 − q), the modification parameter (η2) that
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accounts for the reduced likelihood of disease transmission by individuals who are
diagnosed with active TB but delay in commencing treatment (J2) in comparison to
actively-infected individuals who were not detected (I ), and the average time spent in
the J2 class. The expression in (3.12) implies that detection of active TB cases will
have a positive impact in reducing TB burden if 1

(δ1+μ)
> 	3. Such a strategy will

have no effect in reducing TB burden if 1
(δ1+μ)

= 	3, and will have a detrimental

impact in the community if 1
(δ1+μ)

< 	3. This result is summed up in the lemma
below:

Lemma 3.3 The detection of active TB cases will have a positive impact in reducing
TB burden in the community only if 1

(δ1+μ)
> 	3, no impact if 1

(δ1+μ)
= 	3 and a

negative impact if 1
(δ1+μ)

< 	3.

Note that 1
δ1+μ

is the average time spent in the class of undetected active TB cases
when there is no diagnosis of active TB in the population. If this time spent is greater
than the expression in the right hand side of (3.12), then detection (and diagnosis) of
active TB cases will have a positive effect on TB population level control.

If we consider the rate of change ofRT with respect to the rate at which active TB
cases are promptly treated (r1), we have

∂RT

∂r1
= −

β
[
p(σ + μ)(α + k + μ) + k(1 − n)(1 − p)σ

]
κqη1

(σ + μ)(α + k + μ)(κ + δ1 + μ)(r1 + δ2 + μ)2
. (3.13)

Obviously, it follows that the partial derivative in (3.13) is unconditionally less than
zero, i.e., RT

∂r1
< 0. Hence prompt treatment of active TB cases will go a long way in

reducing the TB burden in the population, regardless of the values of other parameters
in the expression forRT .

Similarly, if we consider the rate of change ofRT , (3.2) with respect to the rate at
which active TB cases with delayed treatment (r2), we have

∂RT

∂r2
= −

β
[
p(σ + μ)(α + k + μ) + k(1 − n)(1 − p)σ

]
κ(1 − q)η2

(σ + μ)(α + k + μ)(κ + δ1 + μ)(r2 + δ2 + μ)2
. (3.14)

Although the partial derivative in (3.14) is also unconditionally less than zero, i.e.,
RT
∂r2

< 0 with respect to the treatment of active TB cases with delay in treatment,
however delay in treatment of active TB cases should be discouraged since this
could lead to increase TB incidence in the population [31,51,55]. Hence, treatment
of active TB (even if there is a delay) will always have a positive population-level
impact on TB control, albeit, at a different rate compared to active cases promptly
treated.

To further investigate the impact of diagnosis and treatment of both latent and
active cases in TB control [7], contour plots of the reproduction number (RT ), as a
function of the fraction of new latent TB cases that got diagnosed (n) and the fraction
of detected active TB cases that received prompt treatment (q), at different treatment
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Fig. 2 A2Dcontour plot ofRT as a function ofn andq at low treatment level: r0 = 1.5, r1 = 2.5, r2 = 1.5,
and β = 15.557

levels, are given in Figs. 2 and 3. The parameter values used in producing the contour
plots are the baseline values given in Table 2.

Figure 2 shows that at low treatment level (i.e., r0 = 1.5, r1 = 2.5, r2 = 1.5), it
is not possible to eradicate TB from the population since any control strategy based
on such low treatment level cannot bring the reproduction number to a value less than
unity.

As depicted in Fig. 3, we observe that at treatment levels that are 10 times the low
treatment values above (i.e., r0 = 15, r1 = 25, r2 = 15), eradicating tuberculosis
from the population is achievable. For example, if almost 100% of latently-infected
individuals are diagnosed (and treated) along with about 60% of active TB cases, then
it is possible to eliminate TB from the population. However, this strategy will be very
difficult to implement in developing countries since a TB control programme that
requires diagnosis of a large percentage of latent TB will not be easy to implement in
such countries with limited resources.
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Fig. 3 A 2D contour plot of RT as a function of n and q at moderate treatment level: r0 = 15, r1 =
25, r2 = 15, and β = 15.557

4 Existence of endemic equilibrium point: special case

The existence of endemic equilibria of the treatment model (2.1) is now investigated
for a special case when the disease-induced death rates are assumed to be negligible
(i.e., δ1 = δ2 = δ3 = 0). This can fits setting such as most countries in Western
Europe, Canada, the United States, Australia and New Zealand where the average
number of TB-induced deaths is less than 1 per 100,000 population [64].

Adding up all equations in the model (2.1), and setting the disease-induced death
rates to zero yields the following equation for the rate of change of the total population,

dN

dt
= � − μN . (4.1)
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Hence, N (t) → �
μ
as t → ∞. Using the limiting value N (t) = �

μ
and substitution

δ1 = δ2 = δ3 = 0 in the model (2.1), we have the following system of equations:

Ṡ = � − λ̃S − μS,

Ė1 = (1 − p)λ̃(S + b3T ) − (σ + μ)E1,

Ė2 = σnE1 + αE3 − b1λ̃E2 − (r0 + μ)E2,

Ė3 = σ(1 − n)E1 − b2λ̃E3 − (α + k + μ)E3,

İ = pλ̃(S + b3T ) + b1λ̃E2 + b2λ̃E3 + kE3 − (κ + μ)I,

J̇1 = κq I − (r1 + μ)J1,

J̇2 = κ(1 − q)I − (r2 + μ)J2,

Ṫ = r0E2 + r1 J1 + r2 J2 − b3λ̃T − μT,

(4.2)

where λ̃ = βμ
�

(I + η1 J1 + η2 J2
)
is the force of infection.

Let
E2 = (

S∗∗, E∗∗
1 , E∗∗

2 , E∗∗
3 , I ∗∗, J ∗∗

1 , J ∗∗
2 , T ∗∗)

denote an EEP of the model (4.2). The equations in (4.2) are solved in terms of the
force of infection (λ̃∗∗), at steady-state, given by

λ̃∗∗ = βμ

�

(
I ∗∗ + η1 J

∗∗
1 + η2 J

∗∗
2

)
. (4.3)

It follows that the associated reproduction number corresponding to themodel (4.2),
denoted by RT 1, is:

RT 1 = RT |(δ1=δ2=δ3=0)

= β
[[
a11a33 p + k(1 − n)(1 − p)σ

][
ã55ã66 + ã66κqη1 + ã55κ(1 − q)η2

]

a11a33ã44ã55ã66

]
.

(4.4)

where a11 = (σ+μ), a22 = (r0+μ), a33 = (α+k+μ), ã44 = (κ+μ), ã55 = (r1+μ),
and ã66 = (r2 + μ).

Setting the right-hand sides of the equations in (4.2) to zero and solving for the
state variables, in terms of the force of infection at steady state, yields:

S∗∗ = �

λ̃∗∗ + μ
, E∗∗

1 = λ̃∗∗�(1 − p)

a11(λ̃∗∗ + μ)

[
1 + λ̃∗∗b3σr0(1 − p)A11

A33

]

+ λ̃∗∗b3(1 − p)(λ̃∗∗b1 + a22)(λ̃∗∗b2 + a33)

ã55ã66A33
I ∗∗,

E∗∗
2 = λ̃∗∗�σ(1 − p)A11

a11(λ̃∗∗ + μ)(λ̃∗∗b1 + a22)(λ̃∗∗b2 + a33)

[
1 + λ̃∗∗b3σr0(1 − p)A11

A33

]

123



Analysis of a mathematical model for tuberculosis with… 145

+ λ̃∗∗b3σ(1 − p)A1A2

ã55ã66A33
I ∗∗,

E∗∗
3 = λ̃∗∗�σ(1 − n)(1 − p)

a11(λ̃∗∗ + μ)(λ̃∗∗b2 + a33)

[
1 + λ̃∗∗b3σr0(1 − p)A11

A33

]

+ λ̃∗∗b3σ(1 − n)(1 − p)(λ̃∗∗b1 + a22)A22

ã55ã66A33
I ∗∗,

I ∗∗ = (λ̃∗∗)6M6 + (λ̃∗∗)5M5 + (λ̃∗∗)4M4 + (λ̃∗∗)3M3 + (λ̃∗∗)2M2 + λ̃∗∗M1

(λ̃∗∗)6N6 + (λ̃∗∗)5N5 + (λ̃∗∗)4N4 + (λ̃∗∗)3N3 + (λ̃∗∗)2N2 + λ̃∗∗N1 + N0
,

J ∗
1 = qκ

ã55
I ∗∗, J ∗∗

2 = (1 − q)κ

ã66
I ∗∗, T ∗∗ = λ̃∗∗�σr0(1 − p)A11

(λ̃∗∗ + μ)A33

+ a11(λ̃∗∗b1 + a22)(λ̃∗∗b2 + a33)

ã55ã66A33
I ∗∗, (4.5)

where

A11 = n(λ̃∗∗b2 + a33) + α(1 − n), A22 = ã66r1κq + ã55r2κ(1 − q),

A33 = a11(λ̃
∗∗b1 + a22)(λ̃

∗∗b2 + a33)(λ̃
∗∗b3 + μ) − λ̃∗∗b3σr0(1 − p)A1,

M1 = �μa11a
2
22a

2
33ã55ã66[pa11a33 + k(1 − n)(1 − p)σ ], M2, . . . , M6,

N0 = μ2a211a
2
22a

2
33ã44ã55ã66, N1, . . . , N5,

N6 = a11b
2
1b

2
2b3

[
a66

((
a11a44a55 + qκ((1 − p)σ + pa11

)
r1

)

+ κ(1 − q)
(
(1 − p)σ + pa11

)
a55r2

]
.

(4.6)

The remaining coefficientsM2, . . . , M6 and N1, . . . , N5 are quite large, and have been
omitted for convenience sake.

By substituting the expressions for the EEP in (4.5) [and noting (4.6)] into the
force of infection at the steady state given in (4.3), it follows (after several algebraic
manipulations) that the endemic equilibria of the model (4.2) satisfies the following
polynomial (in terms of λ̃∗∗),

(
λ̃∗∗)6 F6 +

(
λ̃∗∗)5 F5 +

(
λ̃∗∗)4 F4 +

(
λ̃∗∗)3 F3 +

(
λ̃∗∗)2 F2 + λ̃∗∗F1 + F0 = 0.

(4.7)
where

F0 = �μ2a211a
2
22a

2
33ã44ã

2
55ã

2
66 (1 − RT 1) , F1 = N1�ã55ã66 − βμM2A23,

F2 = N2�ã55ã66 − βμM3A23,

F3 = N3�ã55ã66 − βμM4A23, F4 = N4�ã55ã66 − βμM5A23,

F5 = N4�ã55ã66 − βμM6A23, F6 = N6�ã55ã66.
(4.8)
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The components of the EEP are then obtained by solving for λ̃∗∗ from the poly-
nomial (4.7), and substituting the positive values of λ̃∗∗ into the expressions in (4.5)
[noting (4.6)]. Furthermore, it follows from (4.8) that the coefficient F6, is always
positive and F0 is positive (negative) ifRT 1 is less (greater) than unity. The following
results can be deduced.

Theorem 4.1 The TB model (4.2) with δ1 = δ2 = δ3 = 0 has:

(i) six or four endemic equilibria if F5 < 0, F4 > 0, F3 < 0, F2 > 0, F1 < 0 and
RT 1 < 1,

(ii) four or two endemic equilibria if F5 > 0, F4 < 0, F3 > 0, F2 < 0, F1 > 0 and
RT 1 < 1,

(iii) two endemic equilibria if F5 > 0, F4 > 0, F3 < 0, F2 < 0, F1 > 0 and
RT 1 < 1,

(iv) no endemic equilibrium otherwise, whenRT 1 < 1.

Items (i)–(iii) of Theorem 4.1 suggests the possibility of backward bifurcation in the
treatment model (4.2) with negligible TB-induced deaths (i.e., δ1 = δ2 = δ3 = 0)
when RT 1 < 1. The phenomenon of backward bifurcation is characterised by the
co-existence of a stable DFE and a stable EEP when the associated reproduction
number of the model is less than unity. The epidemiological implication of backward
bifurcation is that the classical requirement of having the the reproduction number
less than unity, while necessary, is no longer sufficient for effective TB control. Such
control measures will now be dependent on the initial sizes of the sub-population of
the model [24].

5 Bifurcation analysis

In this section, we characterize the type of bifurcation exhibited by the models (4.2).
We claim the following result:

Theorem 5.1 Themodel (4.2)with δ1 = δ2 = δ3 = 0 exhibit backward bifurcation at
RT 1 = 1 whenever a bifurcation coefficient, denoted by a [given by (5.9)], is positive.

Proof Let

Ea = (
S∗∗, E∗∗

1 , E∗∗
2 , E∗∗

2 , E∗∗
3 , I ∗∗, J ∗∗

1 , J ∗∗
2 , T ∗∗) (5.1)

represent an arbitrary endemic equilibrium point of the complete model system in
(2.1). The existence of backward bifurcation is investigated using the Center Manifold
Theory [11,12,19,57]. Before applying this theory, it is convenient to carry out the
following change of variables.

Let S = x1, E1 = x2, E2 = x3, E3 = x4, I = x5, J1 = x6, J2 = x7, and T = x8,
so that the total population N = ∑8

i=1 xi .
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It follows, that the model (2.1) can be re-written as

ẋ1 ≡ f1 = � − λx1 − μx1,

ẋ2 ≡ f2 = (1 − p)λ(x1 + b3x8) − (σ + μ)x2,

ẋ3 ≡ f3 = σnx2 + αx4 − b1λx3 − (r0 + μ)x3,

ẋ4 ≡ f4 = σ(1 − n)x2 − b2λx4 − (α + k + μ)x3,

ẋ5 ≡ f5 = pλ(x1 + b3x8) + b1λx3 + b2λx4 + kx4 − (κ + μ)x5,

ẋ6 ≡ f6 = κqx5 − (r1 + μ)x6,

ẋ7 ≡ f7 = κ(1 − q)x5 − (r2 + μ)x7,

ẋ8 ≡ f8 = r0x3 + r1x6 + r2x7 − b3λx8 − μx8.

(5.2)

with

λ = β(x5 + η1x6 + η2x7)
∑8

i=1 xi
, (5.3)

Consider the case with β = β∗, a bifurcation parameter. Solving for β = β∗ from
RT = 1 yields

β =β∗ = a11a33ã44ã55ã66[
a11a33 p+σ(1 − n)(1 − p)k

][
ã55ã66+ã66qκη1+ã55κ(1 − q)η2

] ,

(5.4)

where a11 = (σ + μ), a22 = (r0 + μ), a33 = (α + k + μ), ã44 = (κ + μ), ã55 =
(r1 + μ), and ã66 = (r2 + μ).

The Jacobian of the transformed system (5.2), evaluated at the DFE (E0) with
β = β∗, is given by

J ∗ = J (E0)|β=β∗

=

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

−μ 0 0 0 −β∗ −β∗η1 −β∗η2 0
0 −a11 0 0 β∗(1 − p) β∗(1 − p)η1 β∗(1 − p)η2 0
0 σn −a22 α 0 0 0 0
0 σ(1 − n) 0 −a33 0 0 0 0
0 0 0 k β∗ p − ã44 β∗ pη1 β∗ pη2 0
0 0 0 0 κq −ã55 0 0
0 0 0 0 κ(1 − q) 0 −ã66 0
0 0 r0 0 0 r1 r2 −μ

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

(5.5)

The matrix J ∗ has a simple zero eigenvalue (a center) and all other eigenvalues
having negative real part (thus, the Center Manifold Theory can be applied [11,12,19,
57]. Moreover, J ∗ has a right eigenvector given by w = (w1, w2, . . . , w8)

T , where
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w1 = −β∗( ã55ã66 + ã66κqη1 + ã55κ(1 − q)η2

ã55ã55μ

)
w5 < 0,

w2 = β∗(1 − p)
( ã55ã66 + ã66κqη1 + ã55κ(1 − q)η2

a11ã55ã66

)
w5 > 0,

w3 = β∗σ(1 − p)[na33 + α(1 − n)]
( ã55ã66 + ã66κqη1 + ã55κ(1 − q)η2

a11a22a33ã55ã66

)
w5 > 0,

w4 = β∗σ(1 − n)(1 − p)
( ã55ã66 + ã66κqη1 + ã55κ(1 − q)η2

a11ã55ã66

)
w5 > 0,

w5 = w5 > 0, w6 = κq

ã55
w5 > 0, w7 = κ(1 − q)

ã55
w5 > 0,

w8 = β∗σr0(1 − p)[na33 + α(1 − n)]
( ã55ã66 + ã66κqη1 + ã55κ(1 − q)η2

a11a22a33ã55ã66μ

)
w5

+
( ã66r1κq + ã55r2κ(1 − q)

ã55ã66μ

)
w5 > 0.

(5.6)
Similarly J ∗ has a left eigenvector v = (v1, v2, . . . , v8), satisfying v.w = 1, with

v1=0, v2 = v2 > 0, v3 = 0, v4 = a11
σ(1 − n)

v2 > 0, v5= a11a33
σk(1 − n)

v2>0,

v6 = β∗(σ(1 − n)(1 − p)k + pa11a33
ã55σk(1 − n)

)
η1v2 > 0,

v7 = β∗(σ(1 − n)(1 − p)k + pa11a33
ã66σk(1 − n)

)
η2v2 > 0,

v8 = 0.
(5.7)

It follows from Theorem 4.1 in [12], by computing the the associated non-zero partial
derivatives of f (x) (evaluated at the DFE (E0) with β = β∗) that the associated
bifurcation coefficients, a and b, are given by

a =
n∑

k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0), and b =

n∑

k,i=1

vkwi
∂2 fk

∂xi∂β∗ (0, 0), (5.8)

which leads to

a = 2β∗μv5

�

[
b1Q22 + b2Q33

] − 2β∗μ
�

[
(1 − p)v2Q11 + pv5Q11 + b2v4Q33

]
,

(5.9)

and
b = (w5 + w6η1 + w7η2)

[
pv5 + (1 − p)v2

]
> 0. (5.10)
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Fig. 4 Backward bifurcation diagram for the TB model (4.2), showing the force of infection against the
effective reproduction number (RT 1)

with

Q11 = w2w5 + w2w6η1 + w2w7η2 + w3w5 + w3w6η1 + w3w7η2 + w4w5

+ w4w6η1 + w4w7η2 + w5w5 + w5w6(1 + η1)

+ w5w7(1 + η2) − w5w8(b3 − 1) + w6w6η1 + w6w7(η1 + η2)

− w6w8(b3 − 1)η1 + w7w7η2 − w7w8(b3 − 1)η2
Q22 = w3w5 + w3w6η1 + w3w7η2, Q33 = w4w5 + w4w6η1 + w4w7η2.

(5.11)
Clearly, b > 0 for all biologically feasible parameters. Hence, the direction of the

bifurcation at β = β∗ (i.e.,RT = 1) depends only on the sign of a. Looking at (5.11),
we have that Q22 and Q22 are clearly positive. It can easily be shown that Q33 is also
positive.

Hence, we have that the existence of of backward bifurcation occurs if and only if
the rates of exogenous reinfection, b1 and b2, are large enough such that the positive
part of (5.9) dominates the negative part. Thus backward bifurcation occurs if and
only if:

2β∗μv5

�

[
b1Q22 + b2Q33

]
>

2β∗μ
�

[
(1 − p)v2Q11 + pv5Q11 + b2v4Q33

]
.

(5.12)

��
The backward bifurcation exhibited by the model (4.2) is shown in Fig. 4.
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5.1 Non-existence of backward bifurcation

Consider the special case of the model (4.2) with b1 = b2 = 0 (i.e., negligible
exogenous re-infection). It can be shown that, in this case, the backward bifurcation
coefficient, a, given by (5.9) (and noting that β∗ > 0 and that all parameters in the
model (2.1) are positive) reduces to:

a = −2β∗μ
�

[
pv5Q1 + (1 − p)v2Q1

]
< 0, (5.13)

where

Q1 = w2w5+w2w6η1+w2w7η2+w3w5+w3w6η1+w3w7η2+w4w5 + w4w6η1

+ w4w7η2 + w5w5 + w5w6(1 + η1)

+ w5w7(1 + η2) − w5w8(b3 − 1) + w6w6η1 + w6w7(η1 + η2)

− w6w8(b3 − 1)η1 + w7w7η2 − w7w8(b3 − 1)η2
(5.14)

and wi , i = 1, . . . , 8 are given above in Sect. 5.
Hence, it follows from Theorem 4.1 in [12] that the model (4.2), does not undergo

a backward bifurcation if b1 = b2 = 0 (i.e., in the absence of exogenous re-infection).
Hence, this study has confirmed that the presence of exogenous re-infection induces
backward bifurcation in the transmission dynamics of TB. This corroborate results
from other TBmodels, that exogenous re-infection can cause the backward bifurcation
phenomenon [12,23,41,45].

6 Global asymptotic stability of EEP: special case

Consider the special case of the model (2.1) with α = p = b1 = b2 = b3 = δ1 =
δ2 = δ3 = 0, given by

Ṡ = � − λS − μS,

Ė1 = λS − (σ + μ)E1,

Ė2 = σnE1 − (r0 + μ)E2,

Ė3 = σ(1 − n)E1 − (k + μ)E3,

İ = kE3 − (κ + μ)I,

J̇1 = κq I − (r1 + μ)J1,

J̇2 = κ(1 − q)I − (r2 + μ)J2,

Ṫ = r0E2 + r1 J1 + r2 J2 − μT, (6.1)

where λ = β(I+η1 J1+η2 J2)
N is the force of infection. It follows that the associated

reproduction number corresponding to the model (6.1), denoted byRT 2, is given by
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RT 2 = RT |(α=p=b1=b2=b3=δ1=δ2=δ3=0)

= β
(σk(1 − n)

[
ã55ã66 + ã66κqη1 + ã55κ(1 − q)η2

]

a11a33ã44ã55ã66

)
, (6.2)

Let

E3 = (
S∗∗, E∗∗

1 , E∗∗
2 , E∗∗

3 , I ∗∗, J ∗∗
1 , J ∗∗

2 , T ∗∗) , (6.3)

denote an EEP of the model (6.1).
Since δ1 = δ2 = δ3 = 0, then the total population N (t) in model (6.1) at any time

t tends to a limiting value �
μ
, i.e., N (t) → �

μ
as t → ∞. Let β̃ = μβ

�
so that

λ̃ = β̃ (I + η1 J1 + η1 J2) . (6.4)

is the force of infection for the model (6.1). The system of equations in (6.1) are solved
in terms of the force of infection (4.3) to obtain

S∗∗ = �

λ̃∗∗ + μ
, E∗∗

1 = λ̃∗∗�

a11
(
λ̃∗∗ + μ

) , E∗∗
2 = λ̃∗∗�σn

a11a22
(
λ̃∗∗ + μ

) ,

E∗∗
3 = λ̃∗∗�σ (1 − n)

a11a33
(
λ̃∗∗ + μ

) , I ∗∗ = λ̃∗∗�σk (1 − n)

a11a33ã44
(
λ̃∗∗ + μ

) ,

J ∗∗
1 = λ̃∗∗�kσqκ (1 − n)

a11a33ã44ã55
(
λ̃∗∗ + μ

) , J ∗∗
2 = λ̃∗∗�kσκ (1 − n) (1 − q)

a11a33ã44ã66
(
λ̃∗∗ + μ

) ,

T ∗∗ = λ̃∗∗�σ
[
nr0a33ã44ã55+kqκr1a22ã66 (1 − n)+kr2κa22ã55 (1 − n) (1 − q)

]

a11a22a33ã44ã55ã66μ
(
λ̃∗∗+μ

) ,

(6.5)
where a11 = (σ +μ), a22 = (r0 +μ), a33 = (k+μ), ã44 = (κ +μ), ã55 = (r1 +μ),

ã66 = (r2 + μ), and λ̃∗∗ = β̃
(
I ∗∗+η1 J∗∗

1 +η2 J∗∗
2

)

N is the force of infection at the EEP.
Substituting the expressions in (6.5) into the force of infection at the EEP yields a
unique value for λ̃∗∗, which is:

λ̃∗∗ = μ(RT 2 − 1) > 0, whenever RT 2 > 1. (6.6)

Hence, the following result has been established.

Lemma 6.1 The model (6.1), with α = p = b1 = b2 = b3 = δ1 = δ2 = δ3 = 0, has
a unique EEP, given by E3, whenever RT 2 > 1.

Furthermore, let [the stable manifold of the DFE of the model (6.1)] be

D0 = {(S, E1, E2, E3, I, J1, J2, T ) ∈ D : E1 = E2 = E3 = I = J1 = J2 = 0} .

(6.7)
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We claim the following result.

Theorem 6.2 The unique EEP, E3, of the reduced model (6.1), with α = p = b1 =
b2 = b3 = δ1 = δ2 = δ3 = 0, is GAS in D\D0 whenever RT 2 > 1.

Proof Consider the model (6.1) with (6.4). Further, letRT 2 > 1 (so that the endemic
equilibrium E4 exists, in line with Lemma 6.1). Consider the following non-linear
Lyapunov function

Z = S − S∗∗ − S∗∗ ln
(

S

S∗∗

)
+ E1 − E∗∗

1 − E∗∗
1 ln

(
E1

E∗∗
1

)

+ E2 − E∗∗
2 − E∗∗

2 ln

(
E2

E∗∗
2

)

+ E3 − E∗∗
3 − E∗∗

3 ln

(
E3

E∗∗
3

)
+ L1

[
I − I ∗∗ − I ∗∗ ln

(
I

I ∗∗

) ]

+ L2

[
J1 − J ∗∗

1 − J ∗∗
1 ln

(
J1
J ∗∗
1

)]
+ L3

[
J2 − J ∗∗

2 − J ∗∗
2 ln

(
J2
J ∗∗
2

) ]
,

(6.8)

where

L1 = β̃S∗∗
(
ã55ã66 + qκ ã66η1 + ã55κ(1 − q)η2

ã44ã55ã66

)
, L2 = β̃

S∗∗η1
ã55

, and

L3 = β̃
S∗∗η2
ã66

, (6.9)

and with Lyapunov derivative,

Ż =
(
1 − S

S∗∗
)
Ṡ +

(
1 − E1

E∗∗
1

)
Ė1 +

(
1 − E2

E∗∗
2

)
Ė2 +

(
1 − E3

E∗∗
3

)
Ė3

+ L1

(
1 − I

I ∗∗
)
İ

+ L2

(
1 − J1

J ∗∗
1

)
J̇1 + L3

(
1 − J2

J ∗∗
2

)
J̇2.

(6.10)

It can be shown from the model (6.1) and (6.4), at steady state, that

nσ = a22E∗∗
2

E∗∗
1

, (1 − n)σ = a33E∗∗
3

E∗∗
1

, k = ã44E∗∗
3

E∗∗
1

, qκ = ã55 J ∗∗
1

I ∗∗ ,

(1 − q)κ = ã66 J ∗∗
2

I ∗∗ . (6.11)

Substituting the right hand sides of the first to seventh equations of (6.1) into (6.10),
and using (6.11) (after several algebraic calculations) gives
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Ż = μS∗∗(2 − S

S∗∗ − S∗∗

S

)
+ β̃S∗∗ I ∗∗(3 − S∗∗

S
− I ∗∗

I
− I S

S∗∗ I ∗∗
)

+ β̃S∗∗ J ∗∗
1 η1

(
4 − S∗∗

S
− I ∗∗

I
− J ∗∗

1 I

J1 I ∗∗ − SJ1
S∗∗ J ∗∗

1

)

+ β̃S∗∗ J ∗∗
2 η2

(
4 − S∗∗

S
− I ∗∗

I
− J ∗∗

2 I

J2 I ∗∗ − SJ2
S∗∗ J ∗∗

2

)
.

Finally, since the arithmetic mean exceeds the geometric mean, the following inequal-
ities hold:

2 − S

S∗∗ − S∗∗

S
≤ 0, 3 − S∗∗

S
− I ∗∗

I
− I S

S∗∗ I ∗∗ ≤ 0

4 − S∗∗

S
− I ∗∗

I
− J ∗∗

1 I

J1 I ∗∗ − SJ1
S∗∗ J ∗∗

1
≤ 0, 4 − S∗∗

S
− I ∗∗

I
− J ∗∗

2 I

J2 I ∗∗

− SJ2
S∗∗ J ∗∗

2
≤ 0.

(6.12)

Thus, Ż ≤ 0 for RT 2 > 1. Since the relevant variables in the equations for T are at
the endemic steady state, it follows that these can be substituted into the equation for
T in (6.1), so that

T (t) → T ∗∗ as t → ∞. (6.13)

Hence, Z is a Lyapunov function in D\D0 [29]. ��

7 Simulation

In this section, we carry out uncertainty and sensitivity analysis of all the parameters
in the treatment model (2.1) using the six infected classes, the reproduction number
(RT ), and TB incidence as response functions. Numerical simulation results of the
model (2.1) are also presented.

7.1 Uncertainty and sensitivity analysis

There are 21 parameters in the treatment model (2.1), and uncertainties are expected
to arise in estimates of the values used in the numerical simulations. In order to
access the effect of these uncertainties and to determine the parameter(s) that have the
greatest impact on the transmission dynamics of tuberculosis, we perform uncertainty
and sensitivity analysis [8,34,35]. Following [8,39], we perform Latin Hypercube
Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC) on the treatment
model (2.1). The analysis carried out in this section is based on demographic data
relevant to Nigeria [16,64]. The range and baseline values of the parameters tabulated
in Table 2 are used in the analysis.

Using the population of new latently-infected individuals (E1) as response function,
it is shown in Table 3 that the top three PRCC-ranked parameters of the treatment
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Table 3 PRCCvalues for the parameters of the treatmentmodel (2.1) using the total number of new latently-
infected individuals (E1), diagnosed latently-infected individuals (E2), undiagnosed latently-infected
individuals (E3), undiagnosed actively-infected individuals (I ), diagnosed actively-infected individuals
with prompt treatment (J1), diagnosed actively-infected individuals with delay treatment (J2), and the
reproduction number (RT ) as response functions

Parameters E1 E2 E3 I J1 J2 RT

μ − 0.0627 − 0.1252 − 0.0369 − 0.0382 − 0.0435 − 0.0298 −0.0093

� + 0.0144 + 0.0251 − 0.0061 + 0.0318 + 0.0206 − 0.0156 − −
β + 0.3901 + 0.3759 + 0.3815 + 0.5735 + 0.5092 + 0.5095 +0.6628

η1 + 0.0774 + 0.0780 + 0.0657 + 0.2552 + 0.1861 + 0.1788 +0.3112

η2 + 0.1419 + 0.1299 + 0.1337 + 0.3306 + 0.2611 + 0.2485 +0.3437

k + 0.0129 + 0.0038 − 0.0110 + 0.2250 + 0.1197 + 0.1254 −0.0467

α − 0.0139 + 0.0602 − 0.5995 − 0.3166 − 0.2063 − 0.1944 +0.0190

p + 0.6437 + 0.6195 + 0.6133 + 0.8859 + 0.8417 + 0.8282 +0.9379

b1 + 0.0152 − 0.0524 − 0.0052 + 0.0287 + 0.0362 + 0.0535 − −
b2 + 0.0440 + 0.0011 − 0.0066 + 0.0192 + 0.0389 + 0.0428 − −
b3 − 0.0458 − 0.0544 − 0.0260 − 0.0179 − 0.0260 − 0.0164 − −
n + 0.0084 + 0.0644 − 0.5906 − 0.1946 − 0.0970 − 0.0994 +0.0488

σ − 0.7474 + 0.0045 + 0.0031 + 0.0561 + 0.0232 + 0.0387 +0.0109

q − 0.0289 − 0.0433 − 0.0480 − 0.0348 + 0.5811 − 0.6192 −0.1261

κ − 0.4159 − 0.4013 − 0.3849 − 0.8493 − 0.4319 − 0.4088 −0.7698

δ1 − 0.0566 − 0.0719 − 0.0437 − 0.2299 − 0.1397 − 0.1593 −0.1442

δ2 − 0.0390 − 0.0401 − 0.0518 + 0.0092 − 0.0432 − 0.0527 +0.0204

δ3 − 0.0608 − 0.0225 − 0.0719 − 0.0166 − 0.0037 − 0.0498 −0.0198

r0 − 0.0123 − 0.6789 + 0.0110 + 0.0007 − 0.0351 − 0.0117 − −
r1 − 0.0738 − 0.0471 − 0.0854 − 0.1224 − 0.4378 − 0.0864 −0.0941

r2 − 0.0874 − 0.0831 − 0.0610 − 0.1023 − 0.0713 − 0.6252 −0.1577

The top (most dominant) parameters that influence the dynamics of the model with respect to each of the
seven response function are presented in bold font. Notation: a double dash (– –) signifies that the parameter
is not in the expression forRT

model are: the rate of diagnosis of latent TB (σ ), fraction of fast TB progression
(p), and the rate of detection of active TB (κ). Similarly, using the population of
diagnosed latently-infected and undiagnosed latently-infected individuals (E2 and
E3) as response functions, the top three PRCC-ranked parameters are the fraction
of fast TB progression (p), rate of detection of active TB (κ) and the treatment rate
for diagnosed latently-infected individuals (r0), and rate of diagnosis of previously
undiagnosed latently-infected persons (α), fraction of fast TB progression (p) and
fraction of new latent TB infection who got diagnosed (n), respectively. Also, using
the population of undiagnosed actively-infected individuals (I ) as response function,
the top three PRCC-ranked parameters are: the fraction of fast TB progression (p), the
rate of detection of active TB (κ), and the transmission rate (β)). Furthermore, using
the population of diagnosed actively-infected with prompt treatment and actively-
infected with delay treatment (J1 and J2) a response functions, the top three PRCC-
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Table 4 PRCC values for the
parameters of the treatment
model (2.1) using the total
number of new cases (incidence)
as response function

Parameters TB incidence

μ −0.0201

� +0.0796

β +0.7322

η1 +0.4278

η2 +0.5648

k +0.2271

α −0.2978

p +0.8602

b1 +0.0372

b2 +0.0240

b3 +0.0270

n −0.2003

σ −0.0217

q −0.1012

κ −0.7636

δ1 −0.1971

δ2 +0.0322

δ3 −0.0443

r0 −0.0158

r1 −0.1607

r2 −0.3038

ranked parameters are the fraction of fast TB progression (p), the transmission rate
(β), and the fraction of detected active TB cases with prompt treatment (q). Finally,
using the reproduction number (RT ) as response function, the top three PRCC-ranked
parameters are: the fraction of fast TB progression (p), rate of detection of active
TB cases (κ), and the transmission rate (β). In summary, this study identifies nine
parameters that have the most significant influence on the transmission dynamics of
the treatment model, albeit, depending on the output response of interest, namely: the
transmission rate (β), fraction of fast TB progression (p), fraction new latent TB who
got diagnosed (n), rate of diagnosis of latent TB (σ ), fraction of detected active TB
caseswith prompt treatment (q), rate of detection of active TB cases (κ), treatment rate
for diagnosed latently-infected individuals (r0), treatment rate for diagnosed actively-
infected individuals with delay treatment (r2), and the rate at which latently-infected
individuals become diagnosed individually (α).

The incidence of a disease is the rate of occurrence of new cases of the disease at
a given time (or a period of time). In order to investigate significant parameters that
greatly influence the occurrence of new cases of tuberculosis (i.e., TB incidence), we
use the TB incidence as a response function. It follows from Table 4 that the top three
PRCC-ranked parameters are the transmission rate (β), fraction of fast TB progression
(p), and rate of detection of active TB cases (κ).
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It is worth noting that the fraction of fast TB progression (p) is common to all
output responses as one of the significant parameters that has an influence on the
transmission dynamics in the population. Hence, an increase in the value of p will
result in corresponding increases in the values of the output responses considered
herein.

7.2 Numerical simulations

TheTBmodel (2.1) is numerically simulated to illustrate the effect of varying somekey
parameters related to diagnosis of latent and active TB cases. The parameter values
listed in Table 2 are used for the simulations, otherwise specific parameter values
(especially the transmission rate, β) used for the simulations are stated in the caption
of the each figure. For the simulation in this section, demographic parameters relevant
to Nigeria were chosen. Since the total population of Nigeria in 2015 is estimated to be
184,635,279 [16], it follows that, at the disease free equilibrium,�/μ = 184,635,279.
Moreover, the average mortality rate in Nigeria is μ = 0.02041 per year [56] so that
the average recruitment rate is � = 3,768,400 per year, and the total TB incidence in
Nigeria was estimated to be 600,000 in 2015 [64].

Considering Fig. 5, we have the cumulative number of new TB cases as we vary
the fraction of new latent TB infection who got diagnosed (n) between 0 and 1. The
simulation shows that the cumulative number of new TB cases significantly drops as
more latent TB are diagnosed (i.e., as n → 1). This suggest that increasing the fraction
of latent TB cases who are diagnosed have a positive effect in reducing the number of
new TB cases over time.

Looking at Fig. 6, we have the cumulative number of new TB cases as we vary the
fraction of detected active TB cases (q) between 0 and 1. The simulation shows that
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Fig. 5 Cumulative number of new TB cases with β = 9, and varied n
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Fig. 6 Cumulative number of new TB cases with β = 9, and varied q
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Fig. 7 Cumulative number of new TB cases with β = 9, and varied σ

as we increase the fraction of detected active TB cases who are promptly treated, the
cumulative incidence of TB reduces.

The plot in Fig. 7 shows the cumulative number of new TB cases as we vary the
rate of diagnosis of latent TB (σ ) between 0.2 and 3. The simulation shows that as
more latent TB infections are diagnosed, the cumulative number of new TB cases also
decreases.

Figure 8 depicts the cumulative number of new TB cases as we vary the rate of
detection of active TB cases (κ) between 0.2 and 4. Just like the case in Fig. 6, a
reduction in the cumulative number of new TB cases can only be achieved with very
high detection rate for active cases.
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Fig. 8 Cumulative number of new TB cases for with β = 4, and varied κ

8 Discussion

A new deterministic model for investigating the effect of diagnosis and treatment of
latent TB infections and active cases on the transmission dynamics of the disease in
a population is formulated and analyzed. We summarize the major theoretical and
epidemiological findings as follows:

(i) The model has a disease-free equilibrium (DFE), which is locally asymptotically
stable whenever the associated reproduction number is less than unity. In the
absence of exogenous re-infection, the treatment model has a globally asymp-
totically stable DFE whenever the associated reproduction number is less than
unity. For a special case, the treatment model is shown to have a unique endemic
equilibrium which is shown to be globally-asymptotically stable.

(ii) Themodel exhibits the backward bifurcation phenomenonwhen the reproduction
number (RT 1) is less than unity due to the presence of exogenous re-infection.

(iii) Analysis of the effective reproduction number of the model (2.1) show that the
fraction of detected active TB cases that are promptly treated as well as the
detection rate for activeTBcanhave apopulation-level impact on the transmission
dynamics of TB under certain conditions. Moreover, the impact of the fraction of
new latent TB infections (together with the fraction of active TB cases detected
and promptly treated) on the disease burden on the population is largely dependent
on the treatment rates for TB infected individuals.

Uncertainty and sensitivity analysis of the treatment model (2.1) show the following:

(a) Using the population of new latently-infected individuals (E1) as response func-
tion, it is shown that the top threePRCC-rankedparameters are the rate of diagnosis
of latent TB (σ ), fraction of fast TB progression (p), and the rate of detection
of active TB (κ). In the same vein, using the population of diagnosed latently-
infected and undiagnosed latently-infected individuals (E2 and E3) as response
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functions, the top three PRCC-ranked parameters are the fraction of fast TB pro-
gression (p), rate of detection of active TB (κ) and the treatment rate for diagnosed
latently-infected individuals (r0), and rate of diagnosis of previously undiagnosed
latently-infected persons (α), fraction of fast TB progression (p) and fraction of
new latent TB infection who got diagnosed (n), respectively.

(b) Furthermore, when the population of undiagnosed actively-infected individuals
(I ) is used as response function, the top three PRCC-ranked parameters are the
fraction of fast TB progression (p), the rate of detection of active TB (κ), and
the transmission rate (β)). Similarly, using the population of diagnosed actively-
infected with prompt treatment and actively-infected with delay treatment (J1 and
J2) a response functions, the top three PRCC-ranked parameters are: the fraction
of fast TB progression (p), the transmission rate (β), and the fraction of detected
active TB cases with prompt treatment (q). It is worth noting that this result also
holds when the reproduction number (RT ) is used as a response function.

(c) When the TB incidence is used as the response function, it is shown that the
top three PRCC-ranked parameters that influences the incidence of TB in the
population are the transmission rate (β), fraction of fast TB progression (p), and
rate of detection of active TB cases (κ).

(d) The common parameter that significantly influences all output responses is the
fraction of fast TB progression (p).

Numerical simulations of the TB model (2.1), using relevant demographic data
from Nigeria, show that the cumulative number of new cases is significantly reduced
as we increase the fraction of diagnosed new latent TB infections (LTBI) (n), and the
rate of diagnosis of latent TB (σ ). Furthermore, the cumulative number of new cases
can be reduced when a very large fraction of detected active TB cases are promptly
treated (q), and the rate of detection of active TB cases (κ) is high.

This study has shown that, with a relatively high fraction of diagnosed (and treated)
latent TB infections (even with a small fraction of detected active TB cases promptly
receiving treatment), it is possible to reduce the TB burden in the population, in
agreement with some of reports, such as [30] and other reference therein. However,
the impact of these diagnosis will be positively felt if there are robust treatment policies
that will allow for high treatment rates for most TB infections diagnosed.
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