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Abstract This paper investigates stabilization for a class of uncertain nonlinear impul-
sive periodic switched systems under a norm-bounded control input. The proposed
approach studies stabilization criteria locally where the nonlinear dynamics satisfy
the Lipschitz condition only on a subspace containing the origin, not on R

n . This
makes the proposed approach applicable in most practical cases where the region
of validity is limited due to physical issues. In presence of different resources of
non-vanishing uncertainties, the main objective is to find a stabilizing control signal
such that not only trajectories exponentially converge to a sufficient small ultimate
bound, but also have the largest region of attraction. To this, for a more general model,
we first propose several sufficient conditions using the common Lyapunov function
approach. The proposed strategy allows the Lyapunov function to increase in some
intervals, which is suitable when some of the subsystems are unstable and uncontrol-
lable. We then apply these conditions to the targeted system, and the sufficient criteria
are extracted in the forms of linear and bilinearmatrix inequalities. To achieve themain
goal, an optimization problem is also formulated which is solvable using augmented
Lagrangian methods. Finally, some illustrative examples are presented to demonstrate
the proposed approach.
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1 Introduction

Impulsive switched systems, as a particularly challenging class of hybrid systems,
consist of a finite number of subsystems and a switching law where the state variables
may jump at switching instants [1]. The impulsive switched systems have numerous
applications in modeling and control of real-world processes, such as in drugs distri-
bution in human body [2,3], in population ecology [4,5], in mechanical systems [6,7],
and in chaotic systems [8–10]. For more practical applications, reader may refer to [1].

The high applicability of impulsive switched systems raises attention to the funda-
mental issues in control theory. Most of the developed approaches use various types
of Lyapunov function candidate as a powerful tool. For example, they use discretized
Lyapunov function when they are faced with jumps in state variables or when they are
planning to have less conservatism [11–13]. For more details, we may refer to [14,15]
and references therein.

Since stability and stabilization under any arbitrary switching signal is not always
possible [16], the Lyapunov-based efforts usually study constrained switching laws,
especially time-dependent ones. In these cases, researchers consider either minimum
and/or maximum duration between two consecutive switching instants (called min-
imum/maximum dwell-time) [17–21] or using average dwell-time [11,13,22–27].
When stability criteria are defined on a subspace, use of average-based methods is
lacking in efficiency, because there is no guarantee that trajectories remain in this sub-
space. Therefore, most studies that use the average dwell-time techniques develop the
stability criteria on the entire state space. As discussed later, this may be conservative.
Nevertheless, by knowing minimum and/or maximum dwell-time, we can ensure that
trajectories never leave this subspace.

Furthermore, to guarantee the stability, finding a commonLyapunov function (CLF)
or Multiple Lyapunov functions (MLF) is essential. Although CLF approach leads to
fewer parameters as compared with MLF, it makes a lot of conservatism. MLF tech-
niques have better results thanCLFones, especiallywhenmore details of the switching
signal are available. The main idea of the MLF techniques is based on this fact that the
Lyapunov functions do not necessarily always have non-positive time-derivative. To
guarantee convergence of Lyapunov functions over the time, the Lyapunov functions
are upper-bounded, and relations between them is also considered at switching instants
[10–13,21,23–26,28–33]. Obviously, for an arbitrary switching signal, number of
the relations grows exponentially with the number of subsystems. Hence, in order to
decrease the number of parameters and required conditions, this paper take into account
CLF approach, but the Lyapunov function is allowed to increase in some intervals.

The above-mentioned studies have two other limitations. First, they often do not
consider actuator saturation. Second, proposed stability criteria are usually global
which is conservative when control input is norm-bounded or when region of validity
for state variables is limited due to practical/physical issues.
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In the field of switched systems and impulsive systems, to the best of authors’
knowledge, there are only a few works that address actuator saturation [19,34–
37]. However, in practice, several important aspects of switched systems should be
considered simultaneously, such as impulsive jumps at switching instants, system
nonlinearity, non-vanishing uncertainties and norm-boundedness of control signal to
avoid actuator saturation. Heretofore, these aspects have not been addressed at the
same time.

On the other hand, in most approaches where nonlinear dynamics are considered,
they take into account the Lipschitz condition on Rn and then, they establish stability
criteria. Unfortunately, inmany practical systems, the Lipschitz condition is notmet on
R
n , or may leads to very large Lipschitz constants and infeasibility. Note, as reported

in [19,37], in the presence of input constraints, obtaining a global stabilizing controller
is difficult. Besides, the region of validity for state variablesmay be limited by physical
issues [38]. Therefore, considering global Lipschitz condition and obtaining the global
stability criteria are conservative.

The above-mentioned limitations along with the wide practical use of impul-
sive switched systems for modelling and control of real-world processes motivate
us to study stabilization for a class of nonlinear impulsive periodic switched sys-
tems that concurrently embraces most important challenging aspects of real-world
processes. These aspects include various types of non-vanishing uncertainties, norm-
boundedness of control input to avoid actuator saturation, region of validity for state
variables, and realistic Lipschitz condition for nonlinear dynamics. The proposed
method develops stabilization criteria in terms of a common Lyapunov function can-
didate. Unlike the traditional CLF approaches, we allow the Lyapunov function to
have positive derivative in some intervals. Hence, our method not only has fewer
parameters than MLF approaches, but also is applicable when there are unstable and
uncontrollable subsystems. In addition, unlike other methods that consider norm-
bounded inputs, and then propose the stability criteria globally (e.g. see [37]), our
approach develops stabilization conditions locally (on a subspace containing the equi-
librium point). This simplifies necessary assumption such as Lipschitz condition for
known nonlinear dynamics, and makes it applicable when the region of validity is
limited. However, to ensure that trajectories never leave the mentioned subspace, the
stability conditions are extracted with respect to the minimum dwell-time and the
maximum period of switching cycle. The established criteria are then reformulated as
matrix inequalities using S-Lemma and Schur complement [37,39].

Besides, due to non-vanishing uncertainties, the proposed approach only guaran-
tees convergence of trajectories to an ultimate bound containing the origin, not to
the origin. To achieve the smallest ultimate bound along with the largest region of
attraction, this paper also propose an optimization problem with linear and bilinear
constraints. Here, all bilinear terms contain scalar variables. Therefore, in addition to
augmented Lagrangian methods (such as PENBMI [40]), some other reliable LMI-
based algorithms can be used to solve this optimization problem, for example see
[37].
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We can summarize the main contributions of this paper as:

• Considering norm-bounded control input for a model that includes impulse
effect, nonlinear dynamics, and different types of uncertainties. The model
of real-world systems includes linear and nonlinear dynamics along with non-
vanishing uncertainties. Control signal is also norm-bounded to avoid actuator
saturation. Most of the previous works (especially in the field of the impulsive
switched systems) do not consider these challenging aspects concurrently.

• Providing stabilization conditions locally over a subspace. This enables us to
use them in switched systems with locally Lipschitz nonlinearities, and to use
them in practical systems where the region of validity is limited. Note, as seen
in the literature, researchers often develop condition on the entire state space
and consider global Lipschitz assumption for nonlinear dynamics, which may
have two problems. Firstly, most of real-world systems may not satisfy this
assumption globally. Secondly, if a system meets it globally, it may lead to large
Lipschitz coefficients, and as a result, may lead to larger upper limits for the time-
derivative of Lyapunov function. Consequently, established stability conditions
for such systems may be infeasible. Besides, due to practical/physical issues,
the system model may only be valid on a subspace of state space (called region
of validity). In these cases, developing of the stability conditions locally ensures
the validity of results.

• Considering positive derivatives for Lyapunov function candidate and bounding
them by an exponential function. They enable us to use our approach when there
are unstable and uncontrollable subsystems, and enable us to prove exponential
convergence.

• Developing an optimization problem to find the largest region of attraction along
with the smallest ultimate bound. This also takes into account many practical
control issues. Clearly, increasing gain of controller can reduce the size of ulti-
mate bound. However, this will increase the norm of control signal and thus
reduce region of attraction. Therefore, we develop the objective function such
that compromise between the size of region of attraction and the size of ultimate
bound, while the norm-boundedness of control signal and the region of validity
are considered as constraints. According to the authors’ knowledge, in the field
of impulsive switched systems, previous works have not taken into account these
aspects simultaneously.

The rest of this paper is organized as follows. Section 2 introduces the problem
formulation, including some useful lemmas. In Sect. 3, firstly, for a more general
model of impulsive switched systems, sufficient stability conditions are proposed in
terms of a CLF, and then, for the targeted system, they are reformulated as linear and
bilinear matrix inequalities using Schur complement and S-Lemma. Simulation of the
resulting control law for some illustrative examples are provided in Sect. 4. Finally,
conclusions are drawn in Sect. 5.
Notations The notations that are used throughout this paper are standard. The sets
of positive integers, real non-negative scalars, real n-dimensional vectors and n × m
real matrices are presented by N

+, R+, Rn and R
n×m , respectively. The symmetric

positive (or semi-positive) definite matrix A is indicated by A > 0 (or A ≥ 0).
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In addition, ‖x‖ := (
xT x

)1/2
specifies the Euclidean norm of x ∈ R

n where the
superscript “T ” represents the transpose. The identity and zero matrices are denoted
by I and 0, respectively. Moreover, the ellipsoid E (P, r), which is associated with
the matrix P > 0 and the scalar r > 0, is given by

{
x ∈ R

n|xT Px ≤ r
}
. Besides, for

simplicity, we show the Lyapunov function V (x(t)) as V (t). Furthermore, the symbol
“∗” in matrix inequalities denotes the matrix’s symmetric part. Finally, if dimensions
of some matrices are not explicitly stated, it is assumed that they have appropriate
dimensions for algebraic operations

2 Problem formulation

This paper studies local stabilization for the following impulsive switched uncertain
nonlinear system in which the control inputs vector u(t) ∈ R

m is norm-bounded,

{
ẋ(t) = (Ai + �Ai ) x + fci (x) + (Bi + �Bi ) u (t) + φi (t) , t �= tk
x(t+) = Ci x (t) , t = tk

(1)

where {tk}∞k=1 := {t1, t2, . . . , tk, . . .} is a strictly increasing sequence of impulse
instants composed by the switching signal σ (t) : R+ → {1, 2, . . . ,m} and m is the
number of subsystems. Also, i ∈ {1, 2, . . . ,m} represents the index of active subsys-
tem determined by the switching signal σ (t). At impulse instants, when a subsystem
switches to another one, the state vector x (t) ∈ R

n suddenly changes according to
the known jump matrix Ci ∈ R

n×n . It is assumed that the state vector x (t) is left
continuous at impulse instants such that,

x (tk) = x
(
t−k

) = limζ→0+x (tk − ζ ) .

In addition, the right limit of the state vector x (t) at the impulse instant tk is defined
as,

x
(
t+k

) = limζ→0+x (tk + ζ ) .

The matrices Ai ∈ R
n×n and Bi ∈ R

n×m are known and constant. Also, the vector
function fci (x) : R

n → R
n is known that represents nonlinear dynamics of the

subsystem i with fci (0) = 0. Besides, ΔAi , ΔBi and φi (t) represent different types
of uncertainties and unknown perturbations for the subsystem i . In this paper, we
consider a class of system (1) with the following periodic switching scheme,

σ(t ′) = σ(t ′′), ∀t ′ ∈ (tk−1, tk] and ∀t ′′ ∈ (tk+m−1, tk+m],

where t0 ≥ 0 is the initial time. In addition, without loss of generality, we assume,

σ (t) = k, ∀t ∈ (tk−1, tk] and 1 ≤ k ≤ m,
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which is equivalent to the following switching sequences,

T := {(t0, 1), (t1, 2), . . . , (tm−1,m), (tm, 1), (tm+1, 2), . . . , (t2m−1,m), . . .}.

Furthermore, we suppose that minimum dwell-time τmin and maximum period of
switching cycle τpmax are known as follow,

τmin := inf k∈N+ (tk − tk−1) , (2)

τpmax := supk∈N+ (tk+m − tk) . (3)

We also assume the following assumptions,
(A1) Uncertainties and perturbations satisfy the following form,

[
ΔAi (t) ΔBi (t) φi (t)

] = Di Fi (t)
[
Eai Ebi Eφi

]
,

where Di , Eai , Ebi and Eφi are known constant matrices and Fi (t) is an unknown
time varying matrix with Lebesgue measurable elements such that FT

i (t) Fi (t) ≤ I
for all t ∈ R

+.

Remark There are two main classes of uncertainties: time-varying uncertainties and
polytopic type uncertainties. This paper considers the time-varying uncertainties, and
we shall to investigate other kinds of uncertainties in future researches.

(A2) The vector function fci (x) satisfies the following Lipschitz condition locally, on
a region of validity D ⊂ R

n ,

fci (x)
T fci (x) = ‖ fci (x) ‖2 ≤ ‖Mi x‖2 = xT MT

i Mi x, ∀x ∈ D.

where Mi is a constant matrix with appropriate dimension.

Remark The assumption (A2) is common in the field of impulsive nonlinear systems.
To guarantee validation of proposed stability/stabilization criteria, researchers usually
consider (A2) globally, especially when they use the average dwell-time methods.
Here, we replace it with a more relaxed one, i.e. locally Lipschitz condition.

Before developing main results, we introduce several lemmas used to prove the
subsequent theorems and can increase the readability of the paper.

Lemma 1 (�-inequality in [37]) Given real matrices S1, S2 ∈ R
n×m. If � be a

symmetric real positive definite matrix with appropriate dimensions, the following
inequality holds,

ST1 S2 + ST2 S1 ≤ ST1 ΛS1 + ST2 Λ−1S2.

Lemma 2 [41] Given real matrices D, E and F with appropriate dimensions. If
FT F ≤ I , then for any scalar γ > 0, the following inequality holds,

DFE + ET FT DT ≤ γ DDT + γ −1ET E .
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Lemma 3 (Schur complement in [39])Suppose A, B,C, D are respectivley n×n, n×
p, p × n and p × p matrices, and D is invertible. Let

M =
[
A B
C D

]
.

Then the Schur complement of the block D of the matrix M is the n × n matrix
A − BD−1C. Let D be positive definite. Then M is positive semi-definite if and only
if the Schur complement of D in M is positive semi-definite.

Lemma 4 (S-Lemma in [37]) Consider the real scalar α0, α1, …, αk and the
quadratic forms,

fi (x) = xT Ai x, i = 0, 1, . . . , k,

where x ∈ R
n and Ai ∈ R

n×n is symmetric. If there exist real non-negative scalars
τ1, τ2, . . . , τm such that,

α0 − τ1α1 − τ2α2 − . . . − τmαm ≥ 0,

τ1A1 + τ2A2 + . . . + τm Am − A0 ≥ 0,

then the system of inequalities,

fi (x) ≤ αi , i = 1, 2, . . . , k,

implies the specific inequality,

f0 (x) ≤ α0.

3 Main results

This section develops an approach to design a stabilizing control signal for the impul-
sive switched system (1). Here, we try to find a Lyapunov-like function V (x) that has
certain conditions for all x ∈ �c\� f where �c is a region of attraction, and � f is an
inner subspace. Under these conditions, we show that V (x) exponentially decreases
over the time, and the trajectories ultimately converge to an ultimate bound �u , and
remain in it for future times (see Fig. 1). In fact, this is an extension of the Attractive
Ellipsoid (AE) approach [37] to the impulsive switched systems. It is also similar to
[42,43] where they study the non-impulsive switched systems. In this paper, we not
only consider the impulse effect, but also provide conditions locally.

At first, we propose some sufficient stability conditions for the following general
nonlinear impulsive periodic switched system,

{
ẋ(t) = fi (x (t)) , t �= tk, k ∈ N

+
x(t+) = gi (x (t)) , t = tk, k ∈ N

+ , (4)
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Region of validity:
Region of attraction:

Inner set:
Ultimate bound:

Fig. 1 All trajectories starting from �c ultimately converge �u and remain in it

where fi and gi are nonlinear continuous- and discrete-time dynamic regarding to the
active subsystem i . The active subsystem i is determined by the periodic switching
signal σ (t). We show that all trajectories starting in �c ultimately converge to �u

where

�c := ν (V, r) = {
x ∈ R

n|V (x) ≤ r
}
,

�u := ν
(
V, δ′′) = {

x ∈ R
n|V (x) ≤ δ′′}

V is a suitable Lyapunov function candidate, and r > δ′′ > 0 are real scalars. To
this, Theorem 1 simply supposes that the subsystem i = 1 satisfies stable/controllable
assumption, and then, Corollary 1 considers another case where the subsystem i �= 1 is
stable (or controllable). After that, Theorem 2 takes into account an impulsive periodic
switched system that has more than one stable (or controllable) subsystem.

Theorem 1 Given real scalars 0 < δ < r . Suppose there exist a suitable Lyapunov
function candidate V , real positive scalars ρon, ρof f , μ ≥ 1, and δ′ > δ such that,

{
V̇ ≤ −ρonV, σ (t) = 1
V̇ ≤ ρof f V, σ (t) �= 1

, ∀x ∈ υ (V, r) \υ (V, δ) ,∀t ∈ [tk, tk+1), (5)

V
(
t+k

) ≤ μV (tk) , ∀x ∈ υ (V, r) \υ (V, δ) , (6)

V
(
t+k

) ≤ δ′, ∀x ∈ υ (V, δ) , (7)

α := (
ρon + ρof f

) τmin

τpmax
− ln μ

τmin
− ρof f > 0, (8)

μm−1δ′exp
(
ρof f

(
τpmax − τmin

))
< r, (9)

where τmin and τpmax are defined in (2) and (3), respectively, and,

ν (V, r) := {
x ∈ R

n|V (x) ≤ r
}
, ν (V, δ) := {

x ∈ R
n|V (x) ≤ δ

}
.
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Activity of the subsystem :         active                     inactive1:

The value of 
Lyapunov 
function 

candidate

Fig. 2 Changes in the value of Lyapunov function candidate during a switching cycle (solid line). They
are bounded by some exponential functions (dashed lines). The value of the Lyapunov function candidate
can also increase immediately after an impulse instant

Then, for all initial conditions x0 ∈ υ (V, r), system (4) is ultimate bounded stable
with the ultimate bound,

υ
(
V, δ′′) := {

x ∈ R
n|V (x) ≤ δ′′} ,

where δ′′ is a real positive scalar such that,

μm−1δ′exp
(
ρof f

(
τpmax − τmin

)) ≤ δ′′ ≤ r.

In addition, all trajectories exponentially converge to υ
(
V, δ′′).

Before proving Theorem 1, it is recommended to pay attention to the following
remarks.

Remark Before converging to ν (V, δ), (5) ensures that none of the subsystems has
finite time escape and V (t) falls under a decreasing or incremental function. Also,
at switching instants, (6) states that the Lyapunov function candidate can be discrete.
Fig. 2 illustrates (5) and (6) for a typical impulsive switched system with three sub-
systems.

Remark When a trajectory reaches to ν (V, δ), the impulsemust be such that trajectory
does not leave the outer set ν (V, r). This is guaranteed by considering (7) and (9).
Also, the condition (8) guarantees that the value of Lyapunov function candidate gen-
erally falls under a descending exponential function, before the trajectory converges
to ν

(
V, δ′′).

Proof We first show that all trajectories starting in υ (V, r) \υ (V, δ) exponentially
converge to υ (V, δ). Assume that the convergence occurs during (k + 1)th period of
switching scheme (i.e. at tδ ∈ [

tk×m, t(k+1)×m
)
wherem is the number of subsystems).

After that, we show that if a trajectory reaches to υ (V, δ), it remains in the invariant
set υ

(
V, δ′′).

From (5), we have for all t ∈ [t0, t1) where σ (t) = 1,

V (t) ≤ V (t0) exp (−ρon (t − t0)) .
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This gives,

V (t1) ≤ V (t0) exp (−ρon (t1 − t0)) .

Based on (6), we obtain,

V
(
t+1

) ≤ μV (t1) ≤ μV (t0) exp (−ρon (t1 − t0)) . (10)

However, during the time interval (t1, tm], the first subsystem is inactive and V
may increase according to (5). Therefore, using (5) and (10), we can conclude for all
t ∈ (t1, t2],

V (t) ≤ V
(
t+1

)
exp

(
ρof f (t − t1)

)

≤ μV (t0) exp (−ρon (t1 − t0)) exp
(
ρof f (t − t1)

)
,

which yields,

V (t2) ≤ μV (t0) exp (−ρon (t1 − t0)) exp
(
ρof f (t2 − t1)

)
,

and,

V
(
t+2

) ≤ μ2V (t0) exp (−ρon (t1 − t0)) exp
(
ρof f (t2 − t1)

)
.

By following the same procedure for other time intervals, we have,

V
(
t+m

) ≤ μmV (t0) exp (−ρon (t1 − t0)) exp
(
ρof f (tm − t1)

)

= μmV (t0) exp
(− (

ρon + ρof f
)
(t1 − t0)

)
exp

(
ρof f (tm − t0)

)

≤ μmV (t0) exp
(− (

ρon + ρof f
)
τmin

)
exp

(
ρof f (tm − t0)

)
.

where t+m is the next switched-on instant for the subsystem i = 1. Similarly, we have
for the second switching cycle,

V
(
t+2m

) ≤ μmV
(
t+m

)
exp

(− (
ρon + ρof f

)
τmin

)
exp

(
ρof f (t2m − tm)

)

≤ μ2mV (t0) exp
(−2

(
ρon + ρof f

)
τmin

)
exp

(
ρof f (t2m − t0)

)
.

Likewise, we can conclude,

V
(
t+km

) ≤ μk×mV (t0) exp
(−k

(
ρon + ρof f

)
τmin

)
exp

(
ρof f (tkm − t0)

)

≤ V (t0) exp
(
km lnμ − k

(
ρon + ρof f

)
τmin + ρof f (tkm − t0)

)
.

where tkm = tk×m is the last switching instant in switching cycle k. Since,

k × m ≤ tkm − t0
τmin

, and,
tkm − t0
τpmax

≤ k,
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Lyapunov 
function 

candidate

( ) ( )

Fig. 3 The upper bound for the value of Lyapunov function candidate during the first three switching cycles
(solid line) for a typical system with three subsystems. Dashed lines also indicate the upper bounds during
the active and inactive intervals

we have,

V
(
t+km

) ≤ V (t0) exp

((
ln μ

τmin
− τmin

τpmax

(
ρon + ρof f

) + ρof f

)
(tkm − t0)

)
.

Therefore, we can conclude that the value of Lyapunov function candidate V falls
under an exponential function, as follows,

V
(
t+km

) ≤ V (t0) exp (−α (tkm − t0)) , ∀t ∈ (t0, tkm] , (11)

where α is defined in (8). As stated in (8), if α > 0, then the value of V decreases until
the trajectory reaches υ (V, δ). Fig. 3 illustrates it for a typical impulsive switched
system.

Now, suppose that trajectory reaches the inner set υ (V, δ) at tδ . If tδ ∈ [
tkm, tkm+1),

then the subsystem i = 1 is active and according to (5), the trajectory remains in
υ (V, δ) until the next switching instant tkm+1. Similar to what seen above, we have,

V
(
t+(k+1)m

)
≤ μm−1V

(
t+km+1

)
exp

(
ρof f

(
t(k+1)m − tkm+1

))

≤ μm−1V
(
t+km+1

)
exp

(
ρof f

(
τpmax − τmin

))

≤ μm−1δ′exp
(
ρof f

(
τpmax − τmin

)) ≤ δ′′.

Clearly, for other cases that tδ ∈ [
tkm+1, t(k+1)m

)
, the value of V (t+(k+1)m) is less

than δ′′. Therefore, if δ′′ < r , the trajectory remains in the outer set, and then converges
again to υ (V, δ). Hence, we can generally conclude that the system (4) is ultimate
bounded stable with the ultimate bound υ

(
V, δ′′) and the trajectory exponentially

converges to it. This completes the proof. �
Theorem 1 assumes that the subsystem i = 1 satisfies V̇ ≤ −ρonV . The proposed

approach in Theorem 1 is also applicable when the subsystem i = 1 is unstable and
uncontrollable, but there is another subsystem satisfies this.
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Corollary 1 Given real scalars 0 < δ < r . Suppose there exist a suitable Lyapunov
function candidate V , real positive scalars ρon, ρof f , μ ≥ 1, and δ′ > δ such that
(6)–(9) and the following condition hold,

{
V̇ ≤ −ρonV, σ (t) = j
V̇ ≤ ρof f V, σ (t) �= j

, ∀x ∈ υ (V, r) \υ (V, δ) ,∀t ∈ [tk, tk+1),

where j ∈ {1, 2, . . . ,m} is the index of a desired subsystem. Then system (4) meets
all the results mentioned in Theorem 1 for all initial conditions x0 ∈ υ

(
V, r ′) where,

r ′ ≤ μ−(m−1)r exp
(−ρof f

(
τpmax − τmin

))
.

Proof Since none of the subsystems has finite time escape and the switching cycle
time is upper bounded by τpmax , there is an instant during the first switching cycle
when the subsystem j is activated, i.e. at t+j−1. From this moment onwards, Theorem 1
is in place, and we just have to show that the trajectories does not leave the outer set
υ (V, r) during time interval [t0, t+j−1].

Since the initial condition x0 belongs to υ
(
V, r ′), it can be easily demonstrated

that for all t ∈ [t0, t+j−1],

V (x (t)) ≤ μ j−1r ′exp
(
ρof f

(
t j−1 − t0

))

≤ μm−1r ′exp
(
ρof f

(
τpmax − τmin

)) ≤ r,

and the trajectory remains in the outer set υ (V, r). This completes the proof. �
Although the Corollary 1 eliminates the stability assumption for the first subsystem,

it is extremely conservative, and only considers decreasing constraint V̇ ≤ −ρonV
for one of the subsystems while this may be available for a set of subsystems. In these
cases, the invariant set υ

(
V, δ′′) may become smaller and the convergence rate may

be faster.

Theorem 2 Given real scalars 0 < δ < r . Suppose there exist a suitable Lyapunov
function candidate V , real positive scalars ρon, ρof f , μ ≥ 1, δ′ > δ, and an n-
element subset P of the subsystems {1, 2, . . . ,m} where n ≤ m such that,

{
V̇ ≤ −ρonV, σ (t) ∈ P
V̇ ≤ ρof f V, σ (t) /∈ P , ∀x ∈ υ (V, r) \υ (V, δ) ,∀t ∈ [tk, tk+1), (12)

V
(
t+k

) ≤ μV (tk) , ∀x ∈ υ (V, r) \υ (V, δ) , (13)

V
(
t+k

) ≤ δ′, ∀x ∈ υ (V, δ) , (14)

α := (
ρon + ρof f

) nτmin

τpmax
− ln μ

τmin
− ρof f > 0, (15)

μm−nδ′exp
(
ρof f

(
τpmax − nτmin

))
< r, (16)
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where τmin and τpmax are defined in (2) and (3), respectively. Then, system (4) is
ultimate bounded stable with the ultimate bound υ

(
V, δ′′) for all initial conditions

x0 ∈ υ
(
V, r ′′) where,

r ′ ≤ μ−(m−n)rexp
(−ρof f

(
τpmax − nτmin

))
, (17)

and,
μm−nδ′exp

(
ρof f

(
τpmax − nτmin

))
< δ′′ < r. (18)

In addition, system (4) exponentially converges to the invariant set υ
(
V, δ′′).

Proof Similar to Theorem 1, assume that the subsystem i = 1 is stable, i.e. we have
V̇ ≤ −ρonV for all t ∈ [t0, t1). During a switching cycle, since n subsystems satisfy
V̇ ≤ −ρonV and others fulfil V̇ ≤ ρof f V , the Lyapunov function candidate decreases
for at least nτmin and increases for up to

(
τpmax − nτmin

)
. In addition, due to the

impulse effect, there are m jumps in the changes of Lyapunov function candidate. So,
we can conclude,

V
(
t+km

) ≤ V (t0) μk×mexp
(−k

(
ρon + ρof f

)
nτmin

)
exp

(
ρof f (tkm − t0)

)
,

which, similar to (11), yields,

V
(
t+km

) ≤ V (t0) exp

((
ln μ

τmin
− nτmin

τpmax

(
ρon + ρof f

) + ρof f

)
(tkm − t0)

)

= V (t0) exp (−α (tkm − t0)) .

According to (15), the above inequality guarantees exponential convergence before
reaching υ (V, δ).

To estimate the invariant set υ
(
V, δ′′), we also consider the worst case. Note that,

when the active subsystem does not belong to P , in the worst case, the value of
Lyapunov function candidate is incremental. Therefore in the worst case, reaching to
υ (V, δ) will surely occur when the active subsystem belongs to P . Absolutely, the
trajectory remains in υ (V, δ) until the next switching instant. Now suppose that during
the next (m − n) switches, none of the activate subsystems belong to P . Hence, we
can conclude,

δ′′ ≥ μm−nδ′exp
(
ρof f

(
τpmax − nτmin

))
,

and in order to ensure that the trajectory remains in ν (V, r), δ′′ should be lower than
r .

Now, if the first subsystem does not belong to P , it takes up to
(
τpmax − nτmin

)
to

activate a subsystem fromP . In this case, during the time interval
[
t0, τpmax − nτmin

]
,

the Lyapunov function may increase exponentially with the maximum rate ρof f , and
there are (m − n) impulses. So,

V
(
t+m−n

) ≤ V (t0) μm−nexp
(
ρof f

(
τpmax − nτmin

))
.
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Hence, in order to ensure that the trajectory remain in the outer set ν (V, r), the
initial conditions x0 must belong to ν

(
V, r ′)where r ′ is defined in (17). This completes

the proof. �
Remark In Theorem 2, if all subsystems satisfy the decreasing condition for the Lya-
punov function candidate (i.e. n = m), then ρof f = 0 and we can replace (15) with
the following standard condition,

α := ρon − ln μ

τmin
> 0.

Now, we are ready to reformulate the proposed conditions in Theorem 2 for the
targeted impulsive uncertain nonlinear periodic switched system (1). Suppose the
following control signal,

u (t) = uσ (t) (19)

where ui = Ki x, i ∈ {1, 2, . . . ,m} are some suitable control signals. According to
the switching control law σ (t), the control input ui is active when the subsystem i
is active. Also, consider the common quadratic Lyapunov function candidate V =
xT Px . During the time intervals that the subsystem i is active, using (A1), the time
derivative of V is,

V̇ = ẋ T Px + xT Pẋ = xT
(
ϒi + ϒT

i

)
x + �i + �T

i . (20)

where,

ϒi = AT
i P + KT

i BT
i P + ET

ai F
T
i DT

i P + KT
i ET

bi F
T
i DT

i P,

�i = f Tci Px + ET
φi F

T
i DT

i Px .

Using Λ-inequality, we have,

f Tci Px + xT P fci ≤ ζi x
T P Px + ζ−1

i f Tci fci ≤ xT
(
ζi P P + ζ−1

i MT
i Mi

)
x, (21)

where ζi is a real positive scalar, and Mi is the matrix of Lipschitz constants that are
related to fci . In addition, using Lemma 2, we can obtain the following inequalities,

ET
φi F

T
i DT

i Px + xT PDi Fi Eφi ≤ γφi x
T PDi D

T
i Px + γ −1

φi ET
φi Eφi , (22)

ET
ai F

T
i DT

i P + PDi Fi Eai ≤ γai PDi D
T
i P + γ −1

ai ET
ai Eai , (23)

KT
i ET

bi F
T
i DT

i P + PDi Fi Ebi Ki ≤ γbi PDi D
T
i P + γ −1

bi K T
i ET

bi Ebi Ki , (24)

where γai , γbi and γφi are positive real scalars. Substituting (21)–(24) into (20) yields,

V̇ ≤ xT (Ψi + �i ) x + γ −1
φi ET

φi Eφi ,
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where,

Ψi = AT
i P + PAi + KT

i BT
i P + PBi Ki + ζi P P + (

γφi + γai + γbi
)
PDi D

T
i P,

�i = ζ−1
i MT

i Mi + γ −1
ai ET

ai Eai + γ −1
bi K T

i ET
bi Ebi Ki .

According to (12), we should have,

V̇ + λi V ≤ 0, ∀x ∈ Ω := E (P, r) \E (P, δ) ,

where,

λi =
{

ρon, i = σ (t) ∈ P
−ρof f , i = σ (t) /∈ P .

Hence, (12) is true if the following condition holds,

xT (Ψi + �i + λi P) x ≤ −γ −1
φi ET

φi Eφi , ∀x ∈ � := E (P, r) \E (P, δ) .

Based on the S-Lemma, the above condition holds if there exist positive real scalars
τ1i and τ2i such that,

− γ −1
φi ET

φi Eφi − τ1i r + τ2iδ ≥ 0, (25)

and,
τ1i P − τ2i P − (Ψi + �i + λi P) ≥ 0. (26)

According to Schur complement, (25) is equivalent to,

[−τ1i r + τ2iδ ET
φi

∗ γφi I

]
≥ 0, (27)

Moreover, we can rewrite (26) as follows,

⎡

⎢⎢
⎣

τ1i P − τ2i P − Ψi − λi P MT
i ET

ai K T
i ET

bi∗ ζi I 0 0
∗ ∗ γai I 0
∗ ∗ ∗ γbi I

⎤

⎥⎥
⎦ ≥ 0.

Pre- and post-multiplying the abovematrix inequality by diag
(
P−1, I, I, I

)
gives,

⎡

⎢⎢
⎣

τ1i P−1 − τ2i P−1 − ψi P−1MT
i P−1ET

ai P−1KT
i ET

bi∗ ζi I 0 0
∗ ∗ γai I 0
∗ ∗ ∗ γbi I

⎤

⎥⎥
⎦ ≥ 0, (28)
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where,

ψi = P−1AT
i + Ai P

−1 + P−1KT
i BT

i + Bi Ki P
−1 + ζi I

+ (
γφi + γai + γbi

)
DT
i Di + λi P

−1.

In summary, the criterion (12) holds if the matrix inequalities (27)–(28) are met for
all i ∈ {1, 2, . . . ,m}.

Now, to obtain the property (13) in the form of matrix inequalities, substituting
V = xT Px into (13) gives,

xT
(
t+k

)
Px

(
t+k

) ≤ μxT (tk) Px (tk) , ∀x ∈ E (P, r) \E (P, δ) .

Using the jump functions of system (1), we can conclude that,

xT (tk)
(
CT
i PCi − μP

)
x (tk) ≤ 0, ∀x ∈ E (P, r) \E (P, δ) .

Hence, by applying S-Lemma, (13) is satisfied if there exist positive real scalars
τ3i and τ4i such that,

− τ3i r + τ4iδ ≥ 0, (29)

and
τ3i P − τ4i P −

(
CT
i PCi − μP

)
≥ 0. (30)

Using Schur complement for the matrix inequality (30) and then pre- and post-
multiplying it by diag

(
P−1, I

)
, we have,

[
τ3i P−1 − τ4i P−1 + μP−1 P−1CT

i∗ P−1

]
≥ 0. (31)

In this way, we reformulate (13) into the equivalent matrix inequalities (29) and
(31). Similarly, by substituting V

(
t+k

) = xT
(
t+k

)
Px

(
t+k

) = xT (tk)CT
i PCi x (tk)

into (14) and then applying the S-Lemma, we can conclude that the condition (14)
also holds if there exist real positive scalar τ5i such that,

δ′ − τ5iδ ≥ 0, (32)

and
τ5i P − CT

i PCi ≥ 0. (33)

Again, applying the Schur complement and pre- and post-multiplying by
diag

(
P−1, I

)
, we can rewrite (33) as follows,

[
τ5i P−1 P−1CT

i∗ P−1

]
≥ 0. (34)

Therefore, considering (27), (28), (29), (31), (32), and (34), the conditions (12)–
(14) are held. In addition, if (15) and (16) be also true then all trajectories of the system
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(1) under the control input (19) remain in the outer set E (P, r) for all initial conditions
x0 ∈ E

(
P, r ′) and exponentially converge to the ultimate bound E

(
P, δ′′). However,

in practice, the maximum admissible control magnitude is always restricted [37], for
example with the following inequality,

‖u‖2 = uT u ≤ u2max ,

where umax is a given real positive scalar. Hence, we also derive some other sufficient
conditions that guarantee the norm-boundedness of the control signal (19) on the outer
set E (P, r). To have a norm-bounded input, the following statement is necessary for
all i ∈ {1, 2, . . . ,m},

‖ui‖2 = uTi ui = xT K T
i Ki x ≤ u2max , ∀x ∈ E (P, r) .

Applying S-Lemma to the above inequality gives,

u2max − τ6i r ≥ 0. (35)

and,
τ6i P − KT

i Ki ≥ 0. (36)

where τ6i is a positive real scalar. Again, according to Schur complement, (36) can be
written as, [

P KT
i∗ τ6i I

]
≥ 0. (37)

Now, pre- and post-multiplying diag
(
P−1, I

)
to (37) yields,

[
P−1 P−1KT

i∗ τ6i I

]
≥ 0, (38)

So, the norm-boundedness of switching control input (19) is guaranteed if (36)
and (38) are met for all i ∈ {1, 2, . . . ,m}. We summarize the above discussion in
Theorem 3.

Theorem 3 Given positive real scalars 0 < δ < r and umax . Suppose there exist
an n-element subset P ⊆ {1, 2, . . . ,m} of the subsystems where n ≤ m, a
real symmetric positive definite matrix L, real matrices Wi , real positive scalars
r ′, δ′′, ρon, ρof f , μ ≥ 1, δ′ > δ, ζi , τ j i , γai , γbi , γφi where i ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . , 6} such that the following conditions hold for all i ∈ {1, 2, . . . ,m} ,

(
ρon + ρof f

) nτmin

τpmax
− ln μ

τmin
− ρof f > 0, (39)

μm−nδ′exp
(
ρof f

(
τpmax − nτmin

)) ≤ δ′′ ≤ r, (40)

μm−nr ′exp
(
ρof f

(
τpmax − nτmin

)) ≤ r, (41)
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[−τ1i r + τ2iδ ET
φi

∗ γφi I

]
≥ 0, (42)

⎡

⎢⎢
⎣

τ1i L − τ2i L − ψi LMT
i LET

ai WT
i ET

bi∗ ζi I 0 0
∗ ∗ γai I 0
∗ ∗ ∗ γbi I

⎤

⎥⎥
⎦ ≥ 0, (43)

−τ3i r + τ4iδ ≥ 0, (44)
[

τ3i L − τ4i L + μL LCT
i∗ L

]
≥ 0, (45)

δ′ − τ5iδ ≥ 0, (46)
[

τ5i L LCT
i∗ L

]
≥ 0, (47)

u2max − τ6i r ≥ 0, (48)
[
L WT

i∗ τ6i I

]
≥ 0, (49)

where,

ψi = L AT
i + Ai L + WT

i BT
i + BiWi + ζi I + (

γφi + γai + γbi
)
DT
i Di + λi L ,

and,

λi =
{

ρon, i ∈ P
−ρof f , i /∈ P .

Then, the closed-loop system (1), under the control law (19) with ui = Ki x =
Wi L−1x, exponentially converges to E

(
L−1, δ′′) for all initial conditions x (t0) ∈

E
(
L−1, r ′). In addition, the control signal is norm-bounded for all x (t) ∈ E

(
L−1, r

)

such that ‖u‖2 = uT u ≤ u2max .

Proof Let L = P−1 and Wi = Ki P−1 = Ki L , and then substitute them into (28),
(31), (34) and (38). This completes the proof. �
Remark To achieve the smallest attractive ellipsoid (ultimate bound),we canminimize
δ′′ and trace

{
P−1

}
. To reduce the computational load, without loss of generality, we

choose δ = 1, and then try to reduce the size of E (P, δ) by minimizing the trace of
matrix L = P−1, which reduces the sum of the squares of the ellipsoid’s semiaxes
[37]. However, reducing the trace of matrix L reduces the size of outer set E (P, r)
when r is constant. Therefore, in order to maximize the outer ellipsoid contained
in the region of validity D, we maximize r , too. Hence, we propose the following
optimization problem:

minimize : trace {L} + ω1δ
′′ − ω2r

subject to : r ≥ δ = 1, μ ≥ 1, δ′ > δ = 1, (39)–(49) (50)

where ω1, ω2 > 0 are real positive scalar as tradeoff coefficients.
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Remark In practical stabilization, it must be ensured that all trajectories converge to
the predetermined ellipsoid E (Qin, 1), where Qin > 0 is a given symmetric positive
definite matrix. Considering the following implications,

δ′′P−1 ≤ Q−1
in ≤ r P−1 ⇒ E

(
P, δ′′) ⊆ E (Qin, 1) ⊆ E (P, r) ,

we also involve the following linear matrix inequalities into the optimization problem
(50),

δ′′L ≤ Q−1
in ,

[
L XT

in∗ r I

]
≥ 0. (51)

where XT
in Xin = Q−1

in .

Remark In some nonlinear systems, the Lipschitz condition is not valid on R
n while

may be met on a domain D ⊆ R
n , as assumed in (A2). In order to ensure the validity

of (21), the following condition shall apply,

E (P, r) ⊆ E (Qout , 1) ⊆ D,

where Qout > 0 is a desired symmetric positive definite matrix. The above condition
results from,

r P−1 ≤ Q−1
out .

Hence, let’s consider the following bilinear matrix inequality along with other con-
straint,

Q−1
out − r L ≥ 0. (52)

Remark Most of constraints in Theorem 3 are linear or bilinear that motivate us to use
an augmented Lagrangian solver such as PENBMI. PENBMI allows one to resolve
optimization problems with quadratic objective and bilinear matrix inequality (BMI)
constraints [40]. Nevertheless, (39), (40) and (41) are nonlinear constraint that should
be expressed in bilinear or linear forms. Since μ ≥ 1, we have ln(μ) ≤ μ − 1.
Therefore, we replace (39) with the following conservative but linear constraint,

(
ρon + ρof f

) τmin

τpmax
− μ − 1

τmin
− ρof f > 0, (53)

In order to overcome the nonlinearity of (40) and (41), we give some relaxation.
Suppose there exist a predetermined scalar π ≥ 1 such that,

μm−nexp
(
ρof f

(
τpmax − nτmin

)) ≤ π.
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The above inequality holds if,

exp
(
(m − n) ln μ + ρof f

(
τpmax − nτmin

))

≤ exp
(
(m − n) (μ − 1) + ρof f

(
τpmax − nτmin

)) ≤ π,

In this way, we can replace (40) and (41) by the following linear constraints,

πδ′ ≤ δ′′ ≤ r, (54)

πr ′ ≤ r, (55)

(m − n)(μ − 1) + ρof f (τpmax − nτmin) ≤ ln π. (56)

Due to the presence of the logarithmic function in (56), they are not bilinear with
respect to π . Therefore, in the solving algorithm, we suggest the augmentation of
parameter π taking,

πk = πk−1 + �π,

where π0 = 1 and 0 < �π � 1.

Remark The efficiency of PENBMI is critical to initial point selection. Fortunately,
in Theorem 3, all bilinear terms contain the scalar variables. In this case, some other
suitable LMI-based algorithms can be used to solve the optimization problem (50),
for example see [37].

Considering the above remarks, we redefine the optimization problem (50) as fol-
lows,

minimize : trace {L} + ω1δ
′′ − ω2r

subject to : r ≥ 1, μ ≥ 1, δ′ > 1, (42)–(49), (51)–(56) (57)

and propose the following algorithm,
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Tank 1 Tank 2

Coolant Exit

Product

Selector
Valve

Reactant Feed

Coolant Enter

Supervisor

CSTR

, ,

, ,

Fig. 4 Schematic diagram of CSTR with two input resources [42]

4 Illustrative examples

Example 1 In this example, the proposed approach is applied to the highly nonlinear
model of a continuous stirred tank reactor (CSTR) fed by two different resource
streams. The supervisor determines that which of these resources will selected as
feeding stream (see Fig. 4). In this way, the reactor operates in two different modes
[37,44]. Assuming constant liquid volume, perfect mixing and negligible heat loss,
the irreversible exothermic reaction A → B is described as follows,

dCA

dt
= qi

V
(CAi − CA) − a0exp

(
− E

RT

)
CA,

dT

dt
= qi

V
(Ti − T ) − a1exp

(
− E

RT

)
CA + a2 (Tc − T ) .

where the concentration of the reactant A (CA) and the reactor temperature T should
be regulated to their nominal values by manipulating the temperature of the coolant
stream Tc under an arbitrary periodic switching. It is assumed that the flow rate of
coolant stream is constant. The nominal value of parameters are given in Table 1.
The nominal operating conditions corresponding to an unstable equilibrium point are
T ∗
c = 300◦K, C∗

A = 0.5mol/L, T ∗ = 350◦K for both modes [37,44].

By defining x1 = CA − C∗
A, x2 = T − T ∗, and u = Tc − T ∗

c , the nonlinear model
of CSTR can be obtained in the form of (1) with,

123



68 M. Ghalehnoie et al.

Table 1 Nominal parameters of
the process [44]

Parameter Unit Value

V L 100

ρ gL−1 1000

Cρ Jg−1 K−1 0.239

�H Jmol−1 −5 × 104

E/R K 8750

U A Jmin−1 K−1 5 × 104

a0 = k0 min−1 7.2 × 104

a1 = �H
ρCρ

k0 mol−1 LKmin−1 −1.506 × 1013

a2 = U A
VρCρ

J min−1 2.092

q1 Lmin−1 50

q2 Lmin−1 200

CA1 mol L−1 1.5

CA2 mol L−1 0.75

T1 = T2 K 350

Ai =
[− qi

V − a0Ce −a0CeC∗
A

E/R
(T ∗)2

−a1Ce − qi
V − a2 − a0CeC∗

A
E/R
(T ∗)2

]

, Bi =
[
0
a2

]
,Ci = I,

fi = −
[
a0
a1

]
exp

(
− E

R (x2 + T ∗)

)
x1 +

[
a0Ce a0CeC∗

A
E/R
(T ∗)2

a1Ce a0CeC∗
A

E/R
(T ∗)2

] [
x1
x2

]
.

where Ce = exp
(
− E/R

T ∗
)
. By separating the nonlinear portion of fi form its linear

part, it is easy to verify that the vector function fi satisfies the Lipschitz condition
(A2) on R

2 with,

Mi =
(
NT
1 N1 + NT

2 N2

)1/2
,

in which,

N1 =
[
a0 0
a1 0

]
, N2 =

[
a0Ce a0CeC∗

A
E/R
(T ∗)2

a1Ce a0CeC∗
A

E/R
(T ∗)2

]

.

Since the value of parameters a0 and a1 are too high, the above Lipschitz constants
matrix may results in infeasibility during the solving optimization problem (57) or a
high gain in controller (19).On the other hand, due to limitation of temperature changes
in the reactor (see [45]), we simply consider the subspace D = {

x ∈ R
2||x2| ≤ 20

}

and redefine the Lipschitz constants matrix with,
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N1 =
[
a0Cmax 0
a1Cmax 0

]
.

where Cmax = exp
(
− E

R(T ∗+20)

)
.

Furthermore, due to the uncertainty in physical parameters of CSTR (such as reac-
tion enthalpy, pre-exponential factor and overall heat transfer coefficient, see [46]) and
in order to simulation, we consider the following uncertainties,

Di = 0.1 I, Fi =
[
sin (t) 0
0 cos (t)

]
,

Eai =
[
0.1 0.1
0.1 0.1

]
, Ebi =

[
0
0.1

]
, Eφi =

[
0.1
0.1

]
.

Now, by considering the desired outer set E (Qout , 1) ⊂ D with Qout =
diag {1, 0.0025}, the desired inner set E (Qin, 1) where Qin = diag {10, 10} and
considering umax = 275, τmin = 0.1min and τpmax = 1min, the gain matrices are
obtained as follows,

K1 = [− 77.4904 − 6.9830
]
, K2 = [− 81.4530 − 6.6070

]
,

P =
[
1000 − 0.0000
− 0.0000 2.5000

]
, r = r ′ = 1 × 103

For time domain simulations, let us consider a case that the first system is active
for 0.5 minute, and then the second system is activated for 0.1 minute. This switching
scheme continuous to the end. The trajectories for different initial conditions along
with the outer region of attraction and the attractive ellipsoid are shown in Fig. 5. In
addition, Fig. 6 compares themagnitude of the control signal designed by the proposed
approach with the controller obtained in [37]. As seen, due to the lower conservatism
in choice of the Lipschitz constant matrix, the magnitude of control signal decreases.
Also, the volume of the ultimate bound found by the proposed approach is less than
the volume found by [37] (see Fig. 7). With regard to Figs. 6 and 7, it can be concluded
that our proposed method makes convergence to a smaller region containing the origin
with lower energy consumption.

Furthermore, to show the efficiency of the proposed approach in presence of
impulse, we also consider the jump function when a subsystem switched to another
one, with,

C1 = −C2 =
[
1.25 0
0 1.25

]
.

By applying the proposed approach, we can obtain the gain matrices as follows,

K1 = [− 78.6793 − 7.1031
]
, K2 = [− 81.2906 − 7.0395

]
,

P =
[
1000 − 0.0000
− 0.0000 2.5000

]
, r = 1000, r ′ = 639.9960, δ′ = 1.5625
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Fig. 5 (left) Region of attraction and attractive ellipsoid determined by the proposed approach , and
convergence of trajectories for some initial conditions. (right) State variables of the switched CSTR for
initial condition x (0) = [+ 0.5 −15

]

Fig. 6 Comparison of the control signals designed using our approach (dashed) and the proposed method
in [37] (dotted) for different initial conditions

Figure 8 shows simulation results for initial condition x (0) = [+ 0.5 + 15
]
. Due

to the jump in state variables, the Lyapunov function candidate increases at impulse
instants but this increase is compensated by further reduction during the next contin-
uous flow.
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Fig. 7 Comparison of ultimate bounds obtained by our proposed approach with that designed in by [37]

Fig. 8 (form left to right) The state variables, control signal and the value of Lyapunov function versus
time for initial condition x (0) = [ + 0.5 + 15

]

Example 2 Consider the impulsive switched system (1) with the known parameters
given by,

A1 =
[
0.5 3
10 0.5

]
, B1 =

[
1
0

]
, A2 =

[
1 0.5
0.5 0.5

]
, B2 =

[
0
0

]
,

fc1 (x) = 0.5 ×
[
tanh x1
tanh x2

]
, fc2 (x) =

[
0.1925 (cos x1 − 1)2

0.5sin2x2

]
,

C1 =
[
1.2 0
0 1.2

]
, C2 =

[
1.2 0
0 1.2

]
.
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and uncertainties defined by the following matrices,

D1 = D2 =
[
0.1 0
0 0.1

]
, F1 (t) = F2 (t) =

[
sin (t) 0
0 cos (t)

]
,

Eφ1 = Eφ2 = Eb1 = Eb2 =
[
0.1
0.1

]
, Ea1 = Ea2 =

[
0.1 0.1
0.1 0.1

]
.

It can be verified that the vector functions fci (x) satisfy the Lipschitz condition
(A2) with Mi = 0.5 × I2×2 on R

n . Note that the second subsystem not only is
unstable but also is uncontrollable. For time-domain simulations, the given impulsive
switched system is simulated over the time interval [0, 5] with an impulse sequence
{0.4, 0.6, 1.0, 1.2, 1.6, . . .} under the periodic switching signal σ (t)with σ (0) = 1.
This switching law satisfies theminimumdwell-time τmin = 0.2 sec and themaximum
switching cycle τpmax = 0.6 sec. We also consider umax = 50. Then, to obtain the
control parameters, the optimization problem (57) is solved. The results are,

W1 = [− 0.1761 − 0.0224
]
, W2 = [

0 0
]
,

δ′′ = 7.3360, r = 1000, L =
[
0.0463 − 0.0415
− 0.0415 0.0563

]
.

The simulation results are shown in Fig. 9 where the trajectories converge to the
attractive ellipsoid. It should be mentioned that approaches in which reduction of the
value of Lyapunov function is considered for all subsystems during the continuous
flow fails in solving this example.

Fig. 9 (left) The attractive ellipsoid and the ellipsoid of attraction. All the trajectories starting in the
region of attraction converge to the attractive zone. (right) The state variables for for initial condition
x (0) = [ − 6 + 7

]
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5 Conclusion

Actuator saturation, i.e. norm-boundedness of control input, remains as a highly chal-
lenging problem for impulsive switched systems operating in uncertain environments.
For such systems, a global state-feedback control law is either non-existent or is
highly nontrivial. Instead, this paper proposes a local approach to stabilization of such
switched systems. At first, we propose some local sufficient conditions, in terms of
a Lyapunov function candidate, that investigate the stability for a general model of
nonlinear impulsive periodic switched system. These conditions are also presented in
forms of linear and bilinear matrix inequalities for the targeted system.

Various aspects of the proposed approach can be highlighted as follows:

• Considering challenging aspects of a real-world system, including the lin-
ear/nonlinear uncertainty, actuator saturation, known nonlinearity, switching and
impulsive effect.

• Considering the local Lipschitz condition on a subspace rather than on R
n and

developing local stabilization criteria that is useful when the nonlinearities are
not globally Lipschitz, or when the Lipschitz constant matrix is too large on the
whole of state space. It is also applicable in processes that the region of validity
is limited due to physical issues.

• Applicable to the switched systems that have unstable and uncontrollable sub-
systems.

• Developing the stabilization criteria in the form of linear or bilinear matrix
inequalities, which is solvable using reliable LMI-based algorithms.

• Finding the largest region of attraction along with smallest attractive ellipsoid
via proposing an optimization problem.

As the next step in this research, we hope to reformulate the optimization problem
to achieve a stabilizing state feedback controller for other types of known nonlineari-
ties, jump functions, and unknown uncertainties. We also hope to use soft computing
strategies to determine the optimal parameters of the optimization problem.
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