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Abstract The Schrödinger algebra is a non-semisimple Lie algebra and plays
an important role in mathematical physics and its applications. In this paper, all
derivations of the Schrödinger algebra are determined. As applications, all bideriva-
tions, linear commuting maps and commutative post-Lie algebra structures on the
Schrödinger algebra are obtained.
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1 Introduction

The Schrödinger Lie group describes symmetries of the free particle Schrödinger
equation in [17]. The Lie algebra S(n) in (n + 1)-dimensional space-time of the
Schrödinger Lie group is called the Schrödinger algebra, see [8]. The Schrödinger
algebra is a non-semisimple Lie algebra and plays an important role in mathematical
physics. The Lie algebra S(1) is one of the most essential case for n = 1 and admits
a universal 1-dimensional central extension which is called the centrally extended
Schrödinger algebra or, simply, the Schrödinger algebra, abusing the language. We
denote S(1) by S in this paper. Let C be the complex number field. Recall that the
Schrödinger algebra S is a Lie algebra with a C-basis { f, q, h, c, p, e} and brackets
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[h, e] = 2e, [h, f ] = − 2 f, [e, f ] = h,

[h, p] = p, [h, q] = − q, [p, q] = c,

[e, q] = p, [p, f ] = − q, [ f, q] = 0,

[e, p] = 0, [c, S] = 0.

The Schrödinger algebra S can be viewed as a semidirect product

S = H � sl2

of two subalgebras: a Heisenberg subalgebra H = span{p, q, c} and sl2 =
span{e, h, f }.

Recently there appeared a number of papers studying various aspects of structure
and representation theory of the Schröinger algebra S. In particular, the authors in
[7,8] describe the simple highest weight modules for S; the authors in [10] classify all
simple modules over S which are weight and have finite dimensional weight spaces;
the authors in [11] study the category O for S; the authors in [25] describe the simple
weight modules of S and the authors in [27] classify all simple Whittaker modules
for S. As far as we know, there are few researches about the structure theory of the
Schrödinger algebra S. In particular, [1] determines all Lie bialgebra structures for S.
In this paper, in order to characterize the biderivations, the linear commuting maps
and the commutative post-Lie algebra structures on the Schrödinger algebra S, we
need first know the derivations of S. But its derivations has not been found until now.
For this purpose, we first compute the derivations of the Schrödinger algebra and then
give some applications.

2 Derivations of the Schrödinger algebra

In this section, we will calculate the derivations of S. Now let us review some details
about the derivation of a Lie algebra.

Definition 2.1 A linear map D from a Lie algebra L into itself is called a derivation
of L if it satisfies that

D([x, y]) = [D(x), y] + [x, D(y)] (1)

for all x, y ∈ L .

For x ∈ L , it is easy to see that adx : L → L , y �→ adx(y) = [x, y] for all
y ∈ L is a derivation of L , which is called an inner derivation. Denote by Der L the
vector space of all derivations, Inn L the vector space of all inner derivations. The first
cohomology group of L with coefficients in L is the quotient space

H1(L , L) = Der L/Inn L .
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Lemma 2.2 Let D be a linear map from S into itself. Then D ∈ Der S if and only if
the following 10 equations hold:

0 = [D( f ), q] + [ f, D(q)], (2)

0 = [D(e), p] + [e, D(p)], (3)

2D(e) = [D(h), e] + [h, D(e)], (4)

−2D( f ) = [D(h), f ] + [h, D( f )], (5)

D(h) = [D(e), f ] + [e, D( f )], (6)

D(p) = [D(h), p] + [h, D(p)], (7)

−D(q) = [D(h), q] + [h, D(q)], (8)

D(c) = [D(p), q] + [p, D(q)], (9)

D(p) = [D(e), q] + [e, D(q)], (10)

−D(q) = [D(p), f ] + [p, D( f )]. (11)

Proof The “if” direction is easy to verify by a direct computation. Conversely, it must
be satisfied with (1) for every pair of x, y from the basis { f, q, h, c, p, e}, which yields
36 equations. But some of them can be ignored. First, by letting x = y in (1) we have
that the left and right sides are equal to 0. Next, exchange the location of x , y (x �= y)
in (1), there are some equations and half of them are linear dependence, they should
be ignored. On the other hand, if x = c or y = c then [D(c), y] = 0 or [x, D(c)] = 0.
This means that when x = c or y = c, D(c) lies in the center of S. By ignoring these
equations, we see that Eqs. (2)–(11) are enough to claim that D ∈ Der S. The proof is
completed. ��

Let δ be an outer derivation of S determined by

δ(h) = δ(e) = δ( f ) = 0, δ(c) = c, δ(p) = 1

2
p, δ(q) = 1

2
q. (12)

We have the following main result in this section.

Theorem 2.3 Der S = Inn S ⊕ Cδ. Furthermore, H1(S, S) = Cδ.

Proof Assume that D ∈ Der S and A = (ai j )6×6 is the matrix of D under the basis
{ f, q, h, c, p, e}, i.e.,

(
D( f ), D(q), D(h), D(c), D(p), D(e)

) = (
f, q, h, c, p, e

)
A. (13)

By (2) and (13), we have

[a11 f + a21q + a31h + a41c + a51 p + a61e, q]
+ [ f, a12 f + a22q + a32h + a42 p + a52 p + a62e] = 0.
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It follows by Definition 2.1 that − a31q + a51c + a61e + 2a32 f + a52q − a62h = 0.
This implies

a31 = a52, a51 = a61 = a32 = a62 = 0. (14)

Similarly, by (3) and (4) we deduce that

a25 = − a36, a15 = a35 = a16 = a26 = 0, a13 = − 2a36,

a23 = − a56, a33 = a46 = 0. (15)

Next, substituting Eqs. (14) and (15) into Eqs. (5)–(11), in turn, we obtain

a21 = − a42 = a53 = k1, a63 = − 2a31 = −2a52 = − 2k2,

a13 = 2a25 = − 2a36 = 2k5, a23 = − a45 = − a56 = − k6,

a11 = − a66 = − k3, a22 = − k4, a55 = k3 + k4, a44 = k3 + 2k4,

where ki ∈ C, i = 1, . . . , 6, and the other elements of A are all 0. Therefore, we can
deduce that

D( f ) = − k3 f + k1q + k2h, D(q) = k4q − k1c + k2 p,

D(h) = 2k5 f − k6q + k1 p − 2k2e, D(c) = (k3 + 2k4)c,

D(p) = k5q + k6c + (k3 + k4)p, D(e) = − k5h + k6 p + k3e.

Now we denote by λD = k3 + 2k4 and xD = k5 f − k6q − k1 p + k2e + k3
2 h + tDc

for some tD ∈ C associated with D. Then it follows that D( f ) = adxD( f ), D(q) =
adxD(q)+ λD

2 q, D(h) = adxD(h), D(c) = adxD(c)+λDc, D(p) = adxD(p)+ λD
2 p

and D(e) = adxD(e). Let δ be the linear map from S into itself given by (12), then
we have D(y) = adxD(y) + λDδ(y) for all y ∈ S. The proof is completed. ��

3 Biderivations of the Schrödinger algebra

Biderivations are a subject of research in various areas, see [2,6,9,13,14,20,23,24,26].
In [2], Bres̆ar et al. [3] showed that all biderivations on commutative prime rings
are inner biderivations and determined the biderivations of semiprime rings. This
theorem has proved to be useful in the study of commutating maps. More details
regarding commuting maps, biderivations and their generalizations can be found
in the survey article. The notion of biderivation of Lie algebras was introduced
in [24]. And then, many authors began studying (super-)biderivations of some Lie
(super-)algebras, such as [6,12,14,20,23,26]. For an arbitrary Lie algebra L , we recall
that a bilinear map g : L × L → L is a biderivation of L if it is a derivation with
respect to both components. More precisely, one has

123



Derivations of the Schrödinger algebra and their… 571

Definition 3.1 Assume that L is a Lie algebra. A bilinear map g : L × L → L is
called a biderivation if it satisfies

g([x, y], z) = [x, g(y, z)] + [g(x, z), y], (16)

g(x, [y, z]) = [g(x, y), z] + [y, g(x, z)] (17)

for all x, y, z ∈ L .

Let λ ∈ C. The bilinear map g : L × L → L given by g(x, y) = λ[x, y] is a
biderivation of L which is said to be inner.

Lemma 3.2 Suppose that g is a biderivation of S. Then there are two linear maps φ

and ψ from S into itself such that

g(x, y) = lxδ(y) + [φ(x), y] = ryδ(x) + [x, ψ(y)] (18)

for all x, y ∈ L, where lx , rx are complex numbers depend on x, and δ is given by
Theorem 2.3.

Proof For the biderivation g of S and a fixed element x ∈ S, we define a map φx :
S → S given by φx (y) = g(x, y). It easy to verify from (17) that φx is a derivation
of S. Thanks to Theorem 2.3, there is a map φ : S → S such that φx = lxδ + adφ(x),
i.e., g(x, y) = lxδ(y) + [φ(x), y], where lx ∈ C. Since g is bilinear, it is easy
to see that φ is linear. Similarly, if we define a map ψz from S into itself given by
ψz(y) = g(y, z) for all y ∈ S, we can obtain a linear mapψ from S into itself such that
g(x, y) = ryδ(x) + ad(−ψ(y))(x) = ryδ(x) + [x, ψ(y)]. The proof is completed.��
Lemma 3.3 Suppose g is a biderivation of S. Then for any u, v ∈ { f, q, h, p, e} we
have g(c, u) = ruc, g(v, c) = lvc, g(c, c) = 0, where ru, lv ∈ C are defined by
Lemma 3.2.

Proof By Theorem 2.3 and (12), it follows that g(c, u) = ruδ(c) = ruc. Similarly,
g(v, c) = rvδ(c) = lvc. Note that (16) implies that g(c, c) = g([p, q], c) = [p, lqc]+
[l pc, q] = 0. The proof is completed. ��

We now state our main result in this section as follows.

Theorem 3.4 Any biderivation of S is inner.

Proof Suppose g is a biderivation of S. By Lemma 3.2, there exist two matrices
B = (bi j )6×5 and C = (ci j )6×5 such that

(
φ( f ), φ(q), φ(h), φ(p), φ(e)

) = (
f, q, h, c, p, e

)
B, (19)

(
ψ( f ), ψ(q), ψ(h), ψ(p), ψ(e)

) = (
f, q, h, c, p, e

)
C. (20)

Take x, y ∈ { f, q, h, p, e} in (18), then we can obtain 25 equations. Firstly, let
x = f or y = f in (18), one has

g( f, f ) = [φ( f ), f ] = [ f, ψ( f )], (21)
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g( f, e) = [φ( f ), e] = [ f, ψ(e)], (22)

g(e, f ) = [φ(e), f ] = [e, ψ( f )], (23)

g( f, h) = [φ(e), f ] = [e, ψ( f )], (24)

g(h, f ) = [φ(h), f ] = [h, ψ( f )], (25)

g( f, q) = 1

2
l f q + [φ( f ), q] = [ f, ψ(q)], (26)

g(q, f ) = [φ(q), f ] = 1

2
r f q = [q, ψ( f )], (27)

g( f, p) = 1

2
l f p + [φ( f ), p] = [ f, ψ(p)], (28)

g(p, f ) = [φ(q), q] = 1

2
r f p + [p, ψ( f )], (29)

where φ,ψ, lx , rx are given by Lemma 3.2. According to (21),(19) and (20), it follows
that

[b11 f + b21q + b31h + b41c + b51 p + b61e, f ]
= [ f, c11 f + c21q + c31h + c41c + c51 p + c61e],

which yields − 2b31 f − b51q + b61h = 2c31 f + c51q + − c61h. Therefore, we
have b31 = − c31, b51 = − c51, b61 = − c61. Similarly, by (22) we have b11 =
c65, b21 = b31 = c35 = c55 = 0. This indicates that c31 = 0. By (23) we obtain
c11 = c65, b35 = b55 = c21 = 0 and by (24) we obtain b11 = c33, b51 = 0 = c51,
b61 = 0 = c61. According to (21), we can also obtain that c53 = c63 = 0. In view of
(25)–(29), it follows that c11 = b33 = b54 and b32 = b62 = c32 = c62 = b34 = b64 =
c34 = c64 = b53 = b63 = b52 = c52 = l f = r f = 0.

Next, let x = q or y = q in (18), we obtain

g(q, q) = 1

2
lqq[φ(q), q] = 1

2
rqq + [q, ψ(q)], (30)

g(q, h) = [φ(q), h] = 1

2
rhq + [q, ψ(h)], (31)

g(h, q) = 1

2
lhq + [φ(h), q] = [h, ψ(q)], (32)

g(q, p) = 1

2
lq p + [φ(q), p] = 1

2
rpq + [q, ψ(p)], (33)

g(p, q) = 1

2
l pq + [φ(p), q] = 1

2
rq p + [p, ψ(q)], (34)

g(q, e) = [φ(q), e] = 1

2
req + [q, ψ(e)], (35)

g(e, q) = 1

2
leq + [q, ψ(e)] = [φ(q), e]. (36)

By (30)–(36) and the conclusion of (21)–(29), we have
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b22 = c54 = c65, c22 = b54 = b65, (37)
1

2
lh + c22 = b33,

1

2
rh + c33 = b22, (38)

and b12 = c12 = rp = rq = re = l p = lq = le = 0.
In addition, the remaining equations yield that

g(h, h) = [φ(h), h] = [h, ψ(h)], (39)

g(h, p) = 1

2
lh p + [φ(h), p] = [h, ψ(p)], (40)

g(p, h) = [φ(p), h] = 1

2
rh p + [p, ψ(h)], (41)

g(h, e) = [φ(h), e] = [h, ψ(e)], (42)

g(e, h) = [φ(e), h] = [e, ψ(h)], (43)

g(p, p) = 1

2
l p p + [φ(p), p] = 1

2
rp p + [p, ψ(p)], (44)

g(p, e) = [φ(p), e] = 1

2
re p + [p, ψ(e)], (45)

g(e, p) = 1

2
le p + [φ(e), p] = [e, ψ(p)], (46)

g(e, e) = [e, ψ(e)] = [φ(e), e]. (47)

By (39)–(47), we have b33 = c65, b65 = c33 and b13 = c13 = b23 = c23 = b14 =
c14 = b24 = c24 = b15 = b25 = c15 = c25 = 0. By (37), (38), (40), (41), we have
lh = rh = 0. Finally, according to the results above, we obtain that

b11 = b22 = b33 = b54 = b65 = c11 = c22 = c33 = c54 = c65 = λ, (48)

l f = lq = lh = l p = le = r f = rq = rh = rp = re = 0 (49)

for some λ ∈ C and b4i , c4i (i = 1, 2, 3, 4, 5) are arbitrary, other elements of B and
C are all 0. In other words, we have

B =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

λ 0 0 0 0
0 λ 0 0 0
0 0 λ 0 0
b41 b42 b43 b44 b45
0 0 0 λ 0
0 0 0 0 λ

⎞

⎟⎟
⎟⎟⎟⎟
⎠

, C =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

λ 0 0 0 0
0 λ 0 0 0
0 0 λ 0 0
c41 c42 c43 c44 c45
0 0 0 λ 0
0 0 0 0 λ

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

By Lemma 3.3 and (49), we have

g(c, u) = g(v, c) = lc = rc = 0. (50)

Therefore, we deduce that

g(c, u) = λ[c, u], g(v, c) = λ[v, c]. (51)
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To summarize, we can know that g(u, v) = λ[u, v] when u, v ∈ { f, q, h, p, e}. This,
together with Lemmas 3.2, 3.3 and Eqs. (50), (51), yields that the biderivation of S is
inner. ��

4 Other applications

4.1 Linear commuting maps on Lie algebras

Recall that a linear commuting map φ on a Lie algebra L subject to [φ(x), x] = 0
for any x ∈ L . The first important result on linear (or additive) commuting maps is
Posnes theorem [18] from 1957. Then many scholars study commuting maps on all
kinds of algebra structures, Brešar [3] briefly discuses various extensions of the notion
of a commuting map. About the recent articles on commuting maps we can reference
[3,6,14,23,26].

Obviously, if φ on L is such a map, then [φ(x), y] = [x, φ(y)] for any x, y ∈ L .
Define by f (x, y) = [φ(x), y] = [x, φ(y)], then it is easy to check that f is a
biderivation of L .

Using Theorem 3.4, we get the following result.

Theorem 4.1 Any linear map φ on S is commuting if and only if there are λ ∈ C and
a linear function σ : S → C such that

φ(x) = λx + σ(x)c for all x ∈ S.

Proof The “if” part is easy to verify. We now prove the “only if” part. By the above
discuss we see that g(x, y) = [φ(x), y], x, y ∈ S is a biderivation of S. It follows
by Theorem 3.4 that [φ(x), y] = [λx, y] for some λ ∈ C. Furthermore, we have
[φ(x)−λx, y] = 0 and then φ(x)−λx ∈ Z(S) = Cc. This means that there is a map
σ from S into C such that

φ(x) − λx = σ(x)c.

It is easy to verify that σ is linear. The proof is completed. ��

4.2 Post-Lie algebra

Post-Lie algebras have been introduced by Valette in connection with the homology
of partition posets and the study of Koszul operads [22]. As [4] pointed out, post-
Lie algebras are natural common generalization of pre-Lie algebras and LR-algebras
in the geometric context of nil-affine actions of Lie groups. Recently, many authors
study some post-Lie algebras and post-Lie algebra structures, see [4,5,15,16,19]. In
particular, the authors in [4] study the commutative post-Lie algebra structure on Lie
algebra. Let us recall the following definition of a commutative post-Lie algebra.
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Definition 4.2 Let (L , [, ]) be a complex Lie algebra. A commutative post-Lie algebra
structure on L is aC-bilinear product x∗y on L and satisfying the following identities:

x ∗ y = y ∗ x,

[x, y] ∗ z = x ∗ (y ∗ z) − y ∗ (x ∗ z),

x ∗ [y, z] = [x ∗ y, z] + [y, x ∗ z]

for all x, y, z ∈ L . We also say that (L , [, ], ∗) is a commutative post-Lie algebra.

Lemma 4.3 [21] Let (L , [, ], ∗) be a commutative post-Lie algebra. If we define a
bilinear map g : L × L → L given by g(x, y) = x ∗ y for all x, y ∈ L, then g is a
biderivation of L.

Theorem 4.4 Any commutative post-Lie algebra structure on S is trivial. Namely,
x ∗ y = 0 for all x, y ∈ S.

Proof Suppose that (S, [, ], ∗) is a commutative post-Lie algebra. By Lemma 4.3
and Theorem 3.4, we know that there is λ ∈ C such that x ∗ y = λ[x, y] for all
x, y ∈ S. On the other hand, since the post-Lie algebra is commutative, so we have
λ[x, y] = λ[y, x]. This implies λ = 0. The proof is completed. ��
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