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Abstract In this paper, structure-preserving model reduction methods for second-
order systems are investigated. By introducing an appropriate parameter, the second-
order system is represented by a strictly dissipative realization and the H2 norm of the
strictly dissipative system is discussed.Then, basedon theKrylov subspace techniques,
twomodel reductionmethods are proposed to reduce the order of the strictly dissipative
system. Further, the reduced second-order systems are obtained. Moreover, according
to the factorization of the error system, the H2 error bounds are represented by the
Kronecker product and the vectorization operator. Finally, two numerical examples
illustrate the efficiency of our methods.
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1 Introduction

The model reduction methods, which use a lower-order system to approximate the
large-scale dynamical system, have received considerable attention in recent years.
For linear time-invariant (LTI) systems, there are many available model reduction
methods, such as the H2 optimal model reduction methods [1–3], the H∞ optimal
model reduction methods [4,5] and the balanced truncation methods [6]. For large-
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scale systems, the Krylov subspace methods have proven to be well applicable and
a certain number of moments or Markov parameters can be matched by the transfer
function of the reduced system [7–10]. Moreover, if the original system is stable,
the one-sided Krylov subspace methods generically lead to a stable reduced system
[11,12]. For more details of model reduction, one can refer to [13–20].

Second-order systems arise in many engineering applications, such as the modeling
of electric circuits, structural systems, mechanical systems and microelectromechan-
ical systems (MEMS). However, it often takes great computational cost to simulate
them, when they are large-scale systems. Therefore, it is necessary to replace the orig-
inal system by a lower-order system, which not only can reduce the computational
burden but also can retain some important properties of the original system. In [21–
24], accurate and effective reduced systems were applied for steady state analysis,
transient analysis and sensitivity analysis. To reduce the second-order system, a feasi-
ble approach is to convert it into an equivalent first-order system and thus the existing
methods for first-order systems can be applied [25–29]. Moreover, it is worth men-
tioning that some second-order systems can be represented by their equivalent strictly
dissipative systems [30]. Thereby, the dissipativity of these systems can be preserved
by one-sided projectionmodel reductionmethods. However, the resulting reduced sys-
tems may not preserve the structure of the original second-order system. To address
this issue, some researchers have engaged in structure-preserving model reduction
for large-scale second-order systems. As we know, some reduced first-order systems
were converted into the equivalent second-order systems by similarity transforma-
tions [31,32]. Taking the structure of second-order systems into consideration, the
second-order Krylov subspace methods were proposed to directly obtain the reduced
second-order system [33,34]. In addition, [35] presented a factorization of the error
system by Krylov subspace methods and the transfer function of the error system was
written as the product of the corresponding transfer functions. On the basis of the
Cholesky decomposition and the logarithmic norm, the product was used to obtain
the H2 and H∞ error bounds [36,37]. We also note that some researchers focused
on the H∞ control for linear discrete-time systems and continuous-time systems with
polytopic uncertainties [38,39].

Motivated by the importance of second-order systems and the efficiency of the
Krylov subspace methods, we explore the structure-preserving model reduction meth-
ods for second-order systems in this paper. First, the second-order system is converted
into a strictly dissipative system and the H2 norm of the strictly dissipative system
is studied. Thereby, based on the Krylov subspace and the second-order Krylov sub-
space, two structure-preserving model reduction methods are proposed to reduce the
strictly dissipative system. It is verified that the resulting reduced first-order systems
can preserve the dissipativity. Further, making full use of the good result that the 1st
Markov parameters of the strictly dissipative system and its reduced first-order sys-
tems are 0, these reduced first-order systems can be converted into the corresponding
reduced second-order systems. Thus, the structure of the original second-order system
is preserved, which is one of the main contributions of this paper. Moreover, according
to the factorization of the error system, the H2 error bounds are derived by using the
Kronecker product and the vectorization operator.
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This paper is organized as follows. In Sect. 2, we introduce the strictly dissipative
realization of the second-order systemandderive the H2 norm. InSect. 3, two structure-
preserving model reduction methods for the second-order system are proposed. The
H2 error bounds are discussed in Sect. 4 while two numerical examples are given in
Sect. 5. Finally, some conclusions are drawn in Sect. 6.

2 The strictly dissipative realization and the H2 norm

In this section, we introduce the strictly dissipative realization [30] and the H2 norm,
which are used to obtain the model reduction methods and the H2 error bounds.

We consider the following LTI second-order system:

⎧
⎨

⎩

E2
d2z(t)

dt2
+ E1

dz(t)

dt
+ E0z(t) = B1u(t),

y1(t) = C1z(t),
(1)

where Ei ∈ Rn×n (i = 0, 1, 2) are symmetric positive definite matrices, B1 ∈ Rn×m

and C1 ∈ Rp×n . The variables z(t) ∈ Rn, u(t) ∈ Rm and y1(t) ∈ Rp are the state,
the input and the output of the system (1), respectively. Assume that z(0) = ż(0) = 0.
Applying the Laplace transformation to the system (1), we can obtain the transfer
function

G(s) = C1

(
s2E2 + sE1 + E0

)−1
B1. (2)

Let E = diag{E0, E2} and

A =
[

0 E0
−E0 −E1

]

, B =
[
0
B1

]

, C = [
C1 0

]
.

The system (1) can be converted into the equivalent first-order system

⎧
⎨

⎩

E
dx(t)

dt
= Ax(t) + Bu(t),

y(t) = Cx(t),
(3)

where x(t) = [ zT (t)
dzT (t)

dt
]T . The transfer function of the system (3) is given by

H(s) = C(sE − A)−1B. One can easily verify that the 1st Markov parameter of H(s)
equals to 0.

Let the transformation matrix

T =
[

I α I
αE2E

−1
0 I

]

(4)

be a nonsingular matrix, where I is an identity matrix and α is a positive constant.
Multiplying the state equation of the system (3) from the left by the matrix T yields
the following system
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⎧
⎨

⎩

Ẽ
d x̃(t)

dt
= Ãx̃(t) + B̃u(t),

ỹ(t) = C̃ x̃(t),
(5)

where

Ẽ =
[
E0 αE2

αE2 E2

]

, Ã =
[−αE0 E0 − αE1

−E0 αE2 − E1

]

, B̃ =
[
αB1
B1

]

, C̃ = C.

The transfer function of the system (5) is written as H̃(s) = C̃(s Ẽ − Ã)−1 B̃.
Let sym( Ã) = ( Ã + ÃT )/2 and λmax(sym( Ã)) is the maximum eigenvalue of the

matrix sym( Ã). The system (5) is termed as a strictly dissipative realization if E is
positive definite and μ2( Ã) = λmax(sym( Ã)) < 0 [30]. The reference [30] also show
that if α ∈ ( 0, α∗ ), then the second-order system (1) can be transformed into
the strictly dissipative system (5), where α∗ = λmin(E1(E2 + E1E

−1
0 E1/4)−1) and

λmin(M) denotes the minimum eigenvalue of the matrix M . Notice that the matrix T is
determined by α. In the following, we always choose appropriate α so as to guarantee
the strict dissipativity of the system (5).

Since the system (5) is strictly dissipative, one can easily verify that Ẽ−1 Ã is
stable, i.e., all its eigenvalues have negative real part. According to the fact that T is
nonsingular, it holds H̃(s) = H(s). Let P̃ be the controllability Gramian and Q̃ be
the observability Gramian of the system (5), which satisfy the Lyapunov equations,
respectively,

Ã P̃ ẼT + Ẽ P̃ ÃT + B̃ B̃T = 0, (6)

ẼT Q̃ Ã + ÃT Q̃ Ẽ + C̃T C̃ = 0. (7)

The following theorem studies the H2 norm of the transfer function H̃(s), which
will be employed to generate the H2 error bounds.

Theorem 1 Given the strictly dissipative system (5) with the transfer function H̃(s).
Then, the H2 norm of H̃(s) is computed by

∥
∥H̃(s)

∥
∥2
H2

= tr
(
C̃ P̃C̃T

)
= tr

(
B̃T Q̃ B̃

)
,

where P̃ and Q̃ satisfy (6) and (7), respectively.

Proof Since Ẽ is nonsingular, we can get

H̃(s) = C̃
(
s I − Ẽ−1 Ã

)−1
Ẽ−1 B̃ = C̃ Ẽ−1

(
s I − ÃẼ−1

)−1
B̃, (8)

which corresponds to the following two system realizations

⎧
⎨

⎩

dx̆(t)

dt
= Ẽ−1 Ãx̆(t) + Ẽ−1 B̃u(t),

y̆(t) = C̃ x̆(t),
(9)
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and ⎧
⎨

⎩

dx̌(t)

dt
= ÃẼ−1 x̌(t) + B̃u(t),

y̌(t) = C̃ Ẽ−1 x̌(t).
(10)

The transfer function of (9) is written as H̆(s) = C̃(s I − Ẽ−1 Ã)−1 Ẽ−1 B̃, and the
transfer function of the system (10) is expressed by Ȟ(s) = C̃ Ẽ−1(s I − ÃẼ−1)−1 B̃.
Let P̆ be the controllability Gramian of the system (9) and Q̌ be the observability
Gramian of the system (10), which satisfy the Lyapunov equations, respectively,

Ẽ−1 Ã P̆ + P̆ ÃT Ẽ−T + Ẽ−1 B̃ B̃T Ẽ−T = 0, (11)

Ẽ−T ÃT Q̌ + Q̌ ÃẼ−1 + Ẽ−T C̃T C̃ Ẽ−1 = 0. (12)

It is well known that ‖H̆(s)‖2H2
= tr(C̃ P̆C̃T ) and ‖Ȟ(s)‖2H2

= tr(B̃T Q̌ B̃). Since

Ẽ−1 Ã is stable, we simply compare (11) with (6) and we then conclude that P̆ = P̃ .
Then, it holds ‖H̆(s)‖2H2

= tr(C̃ P̃C̃T ). Similarly, we have ‖Ȟ(s)‖2H2
= tr(B̃T Q̃ B̃),

Therefore, we get

∥
∥H̃(s)

∥
∥2
H2

= tr
(
C̃ P̃C̃T

)
= tr

(
B̃T Q̃ B̃

)
. (13)

Thus, the proof of this theorem is accomplished. ��

3 Structure-preserving model reduction methods for the second-order
system

In this section, we reduce the strictly dissipative system (5) and obtain the reduced
second-order system of the system (1). Based on the Krylov subspace and the
second-order Krylov subspace, two structure-preserving model reduction methods
are established.

Our goal is to find the transformation matrices Wr , Vr ∈ Rn×r , such that the
following reduced second-order system is obtained by applying the transformation
z(t) ≈ Vr ẑ(t) to the system (1):

⎧
⎨

⎩

Ê2
d 2̂z(t)

dt2
+ Ê1

dẑ(t)

dt
+ Ê0̂z(t) = B̂1u(t),

ŷ1(t) = Ĉ1̂z(t),
(14)

where Êi = WT
r Ei Vr (i = 0, 1, 2), B̂1 = WT

r B1, Ĉ1 = C1Vr and r 	 n. Since the
system (1) can be converted into the system (5), we can also generate the following
reduced first-order system of the system (5) by using a pair of transformation matrices
W, V ∈ R2n×2r : ⎧

⎨

⎩

Ê
d x̂(t)

dt
= Âx̂(t) + B̂u(t),

ŷ(t) = Ĉ x̂(t),
(15)
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where Ê = WT ẼV, Â = WT ÃV, B̂ = WT B̃ and Ĉ = C̃V . Further, the reduced
system (14) is obtained by transforming the system (15) into the reduced second-order
system. The transfer function of the system (15) is Ĥ(s) = Ĉ(s Ê − Â)−1 B̂. Then, the
transfer function of the error system between the systems (5) and (15) can be denoted
by H̃e(s) = H̃(s) − Ĥ(s).

3.1 The structure-preserving model reduction method based on the Krylov
subspace

In the following, based on the Krylov subspace, we explore the model reduction
method of the strictly dissipative system (5). Before this, we first introduce the Krylov
subspace MORmethod [9]. Choose the expansion point s0 
= ∞ such that Ã− s0 Ẽ is
nonsingular. For the given matrix V ∈ R2n×2rp, if the matrix W ∈ R2n×2rp satisfies

K2r

((
Ã − s0 Ẽ

)−T
ẼT ; ( Ã − s0 Ẽ

)−T
C̃T

)
⊆ colspan{W }, (16)

or
K2r

(
Ẽ−T ÃT ; Ẽ−T C̃T

)
⊆ colspan{W }, (17)

and Ê = WT ẼV , Â = WT ÃV are nonsingular, then Ĥ(s) matches the first 2r
moments at s0 or Markov parameters of H̃(s). Analogously, for the given matrix
W ∈ R2n×2rm , if V ∈ R2n×2rm satisfies

K2r

((
Ã − s0 Ẽ

)−1
Ẽ; ( Ã − s0 Ẽ

)−1
B̃
)

⊆ colspan{V }, (18)

or
K2r

(
Ẽ−1 Ã; Ẽ−1 B̃

)
⊆ colspan{V }, (19)

and Ê and Â are nonsingular, then Ĥ(s)matches the first 2r moments at s0 or Markov
parameters of H̃(s).

Next, we expand the transfer function H̃(s) at infinity and it yields

H̃(s) =
∞∑

i=1

M̃i s
−i =

∞∑

i=1

C̃
(
Ẽ−1 Ã

)i−1
Ẽ−1 B̃s−i ,

where M̃i is the i th Markov parameter and

M̃1 = C̃ Ẽ−1 B̃ = [
C1 0

]
[
E0 0
0 E2

]−1

T−1T

[
0
B1

]

= 0. (20)

This means that H(s) and H̃(s) have the same 1st Markov parameters.
Let W = V , where W (or V ) is constructed by (17) [or (19)]. The matrices W or

V are utilized to obtain the reduced system (15). Thereby, the reduced system (15)
can be converted into the second-order system (14) [9,25]. Concretely, since Ê is
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nonsingular, we multiply (15) from the left by the matrix Ê−1. Choose a suitable
matrix S and construct the matrix Cz = [ ĈT ST ]T such that SÊ−1 B̂ = 0. Let
z̄(t) = Cz x̂(t). Then, we have

[

z̄T (t)
dz̄T (t)

dt

]T

=
[

CT
z

(
Cz Ê−1 Â

)T
]T

x̂(t) = T̃−1 x̂(t),

where T̃ = [ CT
z (Cz Ê−1 Â)T ]−T . The reduced system (15) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
I 0
0 E2

]

⎡

⎢
⎢
⎢
⎣

dz̄(t)

dt

d2 z̄(t)

dt2

⎤

⎥
⎥
⎥
⎦

=
[

0 I
−E0 −E1

]

⎡

⎢
⎢
⎣

z̄(t)

dz̄(t)

dt

⎤

⎥
⎥
⎦ +

⎡

⎣
0

B1

⎤

⎦ u(t),

ȳ(t) = [
C1 0

]

⎡

⎢
⎢
⎣

z̄(t)

dz̄(t)

dt

⎤

⎥
⎥
⎦ ,

(21)

where E2 = I, [ −E0 − E1 ] = Cz(Ê−1 Â)2T̃ , B1 = Cz Ê−1 ÂÊ−1 B̂ and C1 =
[ Ip 0 ]. Notice that the systems (21) and (3) have the same structure. Therefore, the
reduced second-order system shown as (14) is obtained based on the system (21). We
should point out that the 1st Markov parameters of Ĥ(s) and H̃(s) both equal to 0
plays an important role in transforming the first-order system (15) into the second-
order system (14).

The specific model reduction method is presented as below.

Algorithm 1 Structure-preserving model reduction method based on the Krylov sub-
space (SP-Krylov)
Input: The second-order system (1) and the reduced order r .
Output: The reduced second-order system (14).
1: Obtain a strictly dissipative realization (5) by the matrix T .
2: Generate the reduced system (15) by the one-sided Krylov subspaces (17) or (19).
3: Multiply the state equation of (15) from the left by the matrix Ê−1 and choose the matrix S such that

SÊ−1 B̂ = 0.
4: Construct the matrices Cz = [ ĈT ST ]T and T̃ = [ CT

z (Cz Ê−1 Â)T ]−T .
5: Compute the coefficient matrices of the reduced system (21) by

E2 = I, [ −E0 − E1 ] = Cz(Ê
−1 Â)2 T̃ , B1 = Cz Ê

−1 ÂÊ−1 B̂, C1 = [ Ip 0 ].

6: Let E0 = E0, E1 = E1, E2 = E2, B1 = B1,C1 = C1 and ẑ(t) = z(t).
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3.2 The structure-preserving model reduction method based on the
second-order Krylov subspace

In this subsection, the relationship between the Krylov subspace and the second-order
Krylov subspace is discussed. And the second-order Krylov subspace is employed
to establish the structure-preserving model reduction method. Additionally, the strict
dissipativity of the reduced system is studied.

Let Vr be the orthogonal basis of the second-order Krylov subspace [9,34], which
is defined as

colspan{Vr } = Kr

(
−E−1

2 E0,−E−1
2 E1; E−1

2 B1

)
. (22)

In the following, the relationship of the Krylov subspace and the second-order Krylov
subspace is presented.

Theorem 2 Given the orthogonal matrix Vr ∈ Rn×rm generated by (22). Let V =
diag{Vr , Vr } ∈ R2n×2rm. Then, it holds

Kr

(
E−1A; E−1B

)
⊆ colspan{V }.

Proof Let

A1 = −E−1
2 E1, A2 = −E−1

2 E0, P0 = E−1
2 B1, P1 = A1P0,

and
Pi = A1Pi−1 + A2Pi−2, i = 2, 3, . . . , r − 1.

It follows that Kr (−E−1
2 E0,−E−1

2 E1; E−1
2 B1) = Kr (A2, A1; P0). We can get

E−1A =
[
0 I
A2 A1

]

, E−1B =
[

0
E−1
2 B1

]

=
[
0
P0

]

,
(
E−1A

)i
E−1B =

[
Pi−1
Pi

]

.

It yields

[
0 P0 · · · Pr−2
P0 P1 · · · Pr−1

]

=
[

E−1B E−1AE−1B · · · (
E−1A

)r−1
E−1B

]
. (23)

Applying the second-order Arnoldi procedure [40,41] to the second-order Krylov
subspace Kr (−E−1

2 E0,−E−1
2 E1; E−1

2 B1), we have

[
P0 P1 · · · Pi

] = Vi+1Si+1, i = 0, 1, · · · , r − 1, (24)

where Si+1 is a nonsingular matrix with compatible dimension. Then, it yields

colspan

{

E−1B E−1AE−1B · · ·
(
E−1A

)r−1
E−1B

}

⊆ colspan{V }, (25)
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which implies that the conclusion of this theorem holds. Thus, the proof of Theorem 2
is accomplished. ��

Based on the above analysis, thematrices Vr and V are used to construct the reduced
system (15). Notice that Kr (Ẽ−1 Ã; Ẽ−1 B̃) = Kr (E−1A; E−1B). Then, we find that
the 1st Markov parameter of Ĥ(s) is equal to that of H̃(s), i.e., their 1st Markov
parameters are equal to 0. Thus, we propose the following model reduction method.

Algorithm 2 Structure-preserving model reduction method based on the second-order
Krylov subspace (SPS-Krylov)
Input: The second-order system (1) and the reduced order r .
Output: The reduced second-order system (14).
1: Obtain a strictly dissipative realization (5) by the matrix T .
2: Generate the orthogonal basis Vr by the second-order Krylov subspace

Kr (−E−1
2 E0, −E−1

2 E1; E−1
2 B1).

3: Let V =diag{Vr , Vr } and obtain the reduced system (15).
4: Multiply the state equation of (15) from the left by the matrix Ê−1 and choose a matrix S such that

SÊ−1 B̂ = 0.
5: Construct the matrices Cz = [ ĈT ST ]T and T̃ = [ CT

z (Cz Ê−1 Â)T ]−T .
6: Compute the coefficient matrices of the reduced system (21) by

E2 = I, [ −E0 − E1 ] = Cz(Ê
−1 Â)2 T̃ , B1 = Cz Ê

−1 ÂÊ−1 B̂, C1 = [ Ip 0 ].

7: Let E0 = E0, E1 = E1, E2 = E2, B1 = B1,C1 = C1 and ẑ(t) = z(t).

In Algorithm 2, the second-order Krylov subspace is directly utilized to construct
the transformation matrix V . Thus, Algorithm 2 is more efficient than Algorithm 1.
Moreover, the computation cost can be further reduced when the SOAR procedure
[23,41] is used in Algorithm 2.

In Algorithm 2, Steps 4–6 are implemented to transform the reduced system (15)
into the second-order system. Taking the structure of the transformation matrix V into
account, we can present another way to achieve it. Let

T̂ =
[

I α I
α Ẽ2 Ẽ

−1
0 I

]

,

where Ẽ0 = V T
r E0Vr and Ẽ2 = V T

r E2Vr . Then, we have

T̂−1 =
⎡

⎢
⎣

(
I − α2 Ẽ2 Ẽ

−1
0

)−1 −α
(
I − α2 Ẽ2 Ẽ

−1
0

)−1

−α
(
I − α2 Ẽ2 Ẽ

−1
0

)−1
Ẽ2 Ẽ

−1
0

(
I − α2 Ẽ2 Ẽ

−1
0

)−1

⎤

⎥
⎦ , (26)
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where Ẽ1 = V T
r E1Vr . Let B̃1 = V T

r B1 and C̃1 = C1Vr . The coefficient matrices of
(15) can be given by

Ê =
[

Ẽ0 α Ẽ2

α Ẽ2 Ẽ2

]

, Â =
[−α Ẽ0 Ẽ0 − α Ẽ1

−Ẽ0 α Ẽ2 − Ẽ1

]

, B̂ =
[

α B̃1

B̃1

]

, Ĉ = [
C̃1 0

]
.

Multiplying the state equation of (15) from the left by T̂−1 yields

T̂−1 Ê =
[
Ẽ0

Ẽ2

]

, T̂−1 Â =
[

0 Ẽ0

−Ẽ0 −Ẽ1

]

, T̂−1 B̂ =
[
0
B̃1

]

, (27)

which corresponds to the following second-order system:

⎧
⎨

⎩

Ẽ2
d 2̃z(t)

dt2
+ Ẽ1

dz̃(t)

dt
+ Ẽ0̃z(t) = B̃1u(t),

ỹ1(t) = C̃1̃z(t).
(28)

According to (26), we find that T̂−1 is determined by the matrices (I − α2 Ẽ2 Ẽ
−1
0 )−1

Ẽ2 Ẽ
−1
0 and (I − α2 Ẽ2 Ẽ

−1
0 )−1. It is worth mentioning that T̂−1 can be efficiently

computed due to r 	 n.
Since Algorithms 1 and 2 are one-sided model reduction methods, V T ẼV is pos-

itive definite and sym(V T ÃV ) is negative definite. Therefore, the reduced first-order
systems resulting from Algorithms 1 and 2 are strictly dissipative.

4 The H2 error bounds

In this section, by the factorization of the error system [35–37], we generate the H2
error bounds by the Kronecker product and the vectorization operator.

Let PẼT W and PW denote two orthogonal projectors, which are given by

PẼT W = ẼT W
(
WT Ẽ ẼT W

)−1
WT Ẽ, PW = V Ê−1WT Ẽ,

where Ê = WT ẼV . If W is yielded based on (16), the transfer function of the error
system can be factorized into

H̃e(s) = H̃(s) − Ĥ(s) =
[
Ĉ
(
s Ê − Â

)−1 B̂ + I
]

︸ ︷︷ ︸
ĤB̂(s)

· C̃⊥
(
s Ẽ − Ã

)−1
B̃

︸ ︷︷ ︸
H̃W,⊥(s)

, (29)

where
C̃⊥ = C̃(I − PW ), C̃⊥,ẼT W = C̃

(
I − PẼT W

)
,

B̂ = WT ÃC̃T
⊥,ẼT W

(
C̃⊥,ẼT W C̃T

⊥,ẼT W

)−1
.

(30)
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If W satisfies (17), the transfer function of the error system is given by

H̃e(s) = H̃(s) − Ĥ(s) =
[
Ĉ
(
s Ê − Â

)−1 B̂∞
]

︸ ︷︷ ︸
ĤB̂∞ (s)

· C̃⊥,∞
(
s Ẽ − Ã

)−1
B̃

︸ ︷︷ ︸
H̃W,∞(s)

, (31)

where

C̃⊥,ẼT W,∞ = C̃
(
Ẽ−1 Ã

)2r (
I − PẼT W

)
, C̃⊥,∞ = C̃⊥,ẼT W,∞(I − PW ),

B̂∞ = WT ÃC̃T
⊥,ẼT W,∞

(
C̃⊥,ẼT W,∞

(
I − PẼT W

)2
C̃T

⊥,ẼT W,∞
)−1

.

(32)

In the following, the H2 error bounds between the system (5) and the reduced system
(15) is derived. First, we reformulate the H2 norm of the transfer function H̃(s).

Lemma 1 Given the strictly dissipative realization (5)with the transfer function H̃ (s).
Assume that ÃT ⊗ ẼT + ẼT ⊗ ÃT is nonsingular. Then, the H2 norm of H̃(s) is
rewritten as

∥
∥H̃(s)

∥
∥2
H2

=vec(I )T
(
B̃T ⊗ B̃T

) (
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1 (
C̃T ⊗ C̃T

)
vec(I ),

(33)

where vec(·) denotes the vectorization operator and⊗ denotes the Kronecker product.

Proof To prove this lemma, we first note the following important properties:

tr
(
XT Y

)
= vec(X)T vec(Y ), vec(XYM) =

(
MT ⊗ X

)
vec(Y ).

Since Q̃ is the observability Gramian of the system (5), by vectorizing both sides
of the Lyapunov equation (7), we get

(
ÃT ⊗ ẼT + ẼT ⊗ ÃT

)
vec

(
Q̃
) + vec

(
C̃T C̃

)
= 0.

According to the assumption that ÃT ⊗ ẼT + ẼT ⊗ ÃT is nonsingular, we obtain

vec
(
Q̃
) =

(
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1
vec

(
C̃T C̃

)
.
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From Theorem 1, we have

∥
∥H̃(s)

∥
∥2
H2

= tr
(
B̃T Q̃ B̃

)

= vec
(
B̃
)T

(
B̃T ⊗ I

)
vec

(
Q̃
)

= vec
(
B̃
)T

(
B̃T ⊗ I

) (
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1
vec

(
C̃T C̃

)

= ((
B̃ ⊗ I

)
vec

(
B̃
))T

(
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1
vec

(
C̃T C̃

)

=vec(I )T
(
B̃T ⊗ B̃T

) (
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1 (
C̃T ⊗C̃T

)
vec(I ).

Thus, the proof of this lemma is accomplished. ��
Theorem 3 Let H̃e(s) be the transfer function of the error system related to the system
(5) and the reduced system (15). Assume that ÃT ⊗ ẼT + ẼT ⊗ ÃT is nonsingular.
If the orthogonal matrix W satisfies (16), then the H2 error bound is given by

∥
∥H̃e(s)

∥
∥2
H2

≤ sup
ω

∥
∥ĤB̂(iω)

∥
∥2
F · vec(I )T

(
B̃T ⊗ B̃T

)

×
(
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1 (
C̃T⊥ ⊗ C̃T⊥

)
vec(I ).

(34)

If the orthogonal matrix W satisfies (17), then the H2 error bound is given by

∥
∥H̃e(s)

∥
∥2
H2

≤ sup
ω

∥
∥
∥ĤB̂∞(iω)

∥
∥
∥
2

F
· vec(I )T

(
B̃T ⊗ B̃T

)

×
(
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1 (
C̃T⊥,∞ ⊗ C̃T⊥,∞

)
vec(I ),

(35)

where C̃⊥, B̂, C̃⊥,∞ and B̂∞ are given by (30) and (32), respectively.

Proof When the matrix W is the orthogonal basis of (16), the factorization of the
transfer function H̃e(s) is given by (29). According to Theorem 1 and Lemma 1, we
find that

∥
∥H̃e(s)

∥
∥2
H2

= 1

2π

∫ +∞

−∞
tr
(
H̃ T
e (−iω)H̃e(iω)

)
dω

= 1

2π

∫ +∞

−∞
∥
∥ĤB̂(iω) · H̃W,⊥(iω)

∥
∥2
F dω

≤ sup
ω

∥
∥ĤB̂(iω)

∥
∥2
F · 1

2π

∫ +∞

−∞
tr
(
H̃ T
W,⊥(−iω)H̃W,⊥(iω)

)
dω

≤ sup
ω

∥
∥ĤB̂(iω)

∥
∥2
F · vec(I )T

(
B̃T ⊗ B̃T

) (
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1

×
(
C̃T⊥ ⊗ C̃T⊥

)
vec(I ).
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If the matrixW is the orthogonal basis of (17), then the factorization of the transfer
function H̃e(s) is shown in (31). Similarly, we can obtain the corresponding H2 error
bound, which is given by (35). Thus, the proof of this theorem is accomplished. ��

Remark 1 Theorem 3 gives two H2 error bounds resulting from the Krylov subspaces
(16) and (17), respectively. After similar analysis and derivation, another two H2
error bounds can also be obtained based on the Krylov subspaces (18) and (19).
Let ĤĈ(s) = Ĉ(s Ê − Â)−1 B̂ + I and ĤĈ∞(s) = Ĉ∞(s Ê − Â)−1 B̂. Assume that

ÃT ⊗ ẼT + ẼT ⊗ ÃT is nonsingular. If the orthogonal basis V satisfies (18), then the
H2 error bound is computed by

∥
∥H̃e(s)

∥
∥2
H2

≤ sup
ω

∥
∥ĤĈ(iω)

∥
∥2
F · vec(I )T

(
B̃T⊥ ⊗ B̃T⊥

)

×
(
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1 (
C̃T ⊗ C̃T

)
vec(I ).

(36)

If V satisfies (19), then the following H2 error bound is obtained

∥
∥H̃e(s)

∥
∥2
H2

≤ sup
ω

∥
∥
∥ĤĈ∞(iω)

∥
∥
∥
2

F
· vec(I )T

(
B̃T⊥,∞ ⊗ B̃T⊥,∞

)

×
(
− ÃT ⊗ ẼT − ẼT ⊗ ÃT

)−1 (
C̃T ⊗ C̃T

)
vec(I ),

(37)

where

PẼV = ẼV
(
V T ẼT ẼV

)−1
V T ẼT , PV = ẼV Ê−1WT ,

B̃⊥ = (I − PV ) B̃, B̃⊥,ẼV = (
I − PẼV

)
B̃,

Ĉ =
(
B̃T

⊥,ẼV
B̃⊥,ẼV

)−1
B̃T

⊥,ẼV
ÃV,

B̃⊥,ẼV,∞ = (
I − PẼV

) (
ÃẼ−1

)2r
B̃, B̃⊥,∞ = (I − PV ) B̃⊥,ẼV,∞,

Ĉ∞ =
(
B̃T

⊥,ẼV,∞
(
I − PẼV

)2
B̃⊥,ẼV,∞

)−1
B̃T

⊥,ẼV,∞ ÃV .

5 Numerical examples

In this section, two numerical examples are presented to illustrate the effectiveness of
our methods. The orthogonal matrix Vr in Algorithm 2 is constructed by the SOAR
procedure. All experiments are operated in Matlab R2010b.

The two examples simulated in this section both are the second-order system with
proportional damping [24], whose coefficient matrices Ei (i = 0, 1, 2) are given by
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Fig. 1 The Bode plot for the reduced order r = 8 in Example 1 (the left one is the magnitude plot, and the
right one is the phase plot)

E0 = β

γ

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2−√
1−βγ√

1−βγ
−1 0 · · · 0

−1 2√
1−βγ

. . .
...

0
. . .

. . .
. . . 0

...
. . . 2√

1−βγ
−1

0 · · · 0 −1 2−√
1−βγ√

1−βγ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×n

,

E2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2+√
1−βγ√

1−βγ
1 0 · · · 0

1 2√
1−βγ

. . .
...

0
. . .

. . .
. . . 0

...
. . . 2√

1−βγ
1

0 · · · 0 1 2+√
1−βγ√

1−βγ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×n

,

and E1 = βE2 + γ E0, where β, γ ∈ (0, 1). But, the orders of these second-order
systems are different.

Example 1 In the first example, the order of the discussed second-order system is set
to n = 200, where B1 = [

1 0 0 · · · 0 ]T , C1 = 1/n
[
1 1 1 · · · 1 ] .

Set β = 0.45 and γ = 0.6. Then, we get α∗ = 0.2782. Here, let α = α∗/2.
With these parameters, the original second-order system is turned into the dissipative
system. After that, the SP-Krylov algorithm and the SPS-Krylov algorithm are used
to produce reduced systems with different orders. We simulate the strictly dissipative
system and its reduced systems on the frequency interval [10−2, 108]. Figures 1 and 2
show the corresponding simulation results, where the reduced orders r = 8 and 20.
Moreover, Table 1 shows the computational time for generating the reduced systems
and the simulation time of the original system and the reduced systems.
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Fig. 2 The Bode plot for the reduced order r = 20 in Example 2 (the left one is the magnitude plot, and
the right one is the phase plot)

Table 1 Computational time (s) and simulation time (s) in Example 1

Reduced order Original system SP-Krylov SPS-Krylov

Computational time

8 – 0.0802 0.0222

20 – 0.0995 0.0277

Simulation time

8 3.1877 0.3053 0.1804

20 3.1544 0.2812 0.1847

From Figs. 1 and 2, we observe that the proposed methods can efficiently reduce
the order of the original system and the reduced systems can well approximate the
original system on the given frequency domain. Table 1 implies that the reduced
systems can effectively save the simulation time. Furthermore, compared with the
SP-Krylov algorithm, the SPS-Krylov algorithm spends less time in generating the
reduced system. Therefore, the effectiveness of these two algorithms is illustrated in
this example.

Example 2 In the second example, we consider the second-order systemwith the order
n = 2000, where BT

1 = C1 = [
1 0 0 · · · 0 ] . The parameters β and γ are chosen as

β = 0.9 and γ = 0.3. Thereby, we get α∗ = 0.2485 and we still let α = α∗/2. Then
the strictly dissipative system is obtained.

The SP-Krylov algorithm and the SPS-Krylov algorithm are applied to reduce
this strictly dissipative system. The corresponding simulation results for the reduced
systems with r = 7 and 17 are presented in Figs. 3 and 4, respectively. Moreover, the
computational time for generating the reduced systems and the simulation time of the
original system and the reduced systems are listed in Table 2.

From Figs. 3 and 4, it is observed that the order of the original system can be
significantly reduced by the proposed methods and the reduced systems perform well
in approximating the original system. Table 2 shows that less time is spent in obtaining
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Fig. 3 The Bode plot for the reduced order r = 7 in Example 2 (the left one is the magnitude plot, and the
right one is the phase plot)
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Fig. 4 The Bode plot for the reduced order r = 17 in Example 2 (the left one is the magnitude plot, and
the right one is the phase plot)

Table 2 Computational time (s) and simulation time (s) in Example 2

Reduced order Original system SP-Krylov SPS-Krylov

Computational time

7 – 399.2054 79.6451

17 – 406.6379 81.6336

Simulation time

7 2949.3041 0.2490 0.2239

17 2949.3296 0.2459 0.1273

the reduced system by the SPS-Krylov algorithm and our methods save the simulation
timegreatly. In conclusion, these results indicate that the proposedmethods are feasible
in this example.
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6 Conclusions

In this paper, the structure-preserving model reduction methods for the second-order
system are presented. First, the second-order system is represented by a strictly dis-
sipative realization. Next, the SP-Krylov algorithm and the SPS-Krylov algorithm
are proposed to obtain the reduced systems, which can preserve the structure of the
original second-order system. Additionally, the factorization of the error system is
used to derive the H2 error bounds related to the original system and its reduced sys-
tem. Finally, the effectiveness of these two algorithms is illustrated by two numerical
examples.
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