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Abstract For a type of multi-block separable convex programming raised in machine
learning and statistical inference, we propose a proximal alternating direction method
of multiplier with partially parallel splitting, which has the following nice properties:
(1) to alleviate the weight of the proximal terms, the restrictions imposed on the
proximal parameters are relaxed substantively; (2) to maintain the inherent structure
of the primal variables xi (i = 1, 2, . . . ,m), the relaxation parameter γ is only attached
to the update formula of the dual variable λ. For the resulted method, we establish
its global convergence and worst-case O(1/t) convergence rate in an ergodic sense,
where t is the iteration counter. Finally, three numerical examples are given to illustrate
the theoretical results obtained.
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1 Introduction

In this paper, we consider the linearly constrained multi-block separable convex
programming, whose objective function is the sum of m functions with decoupled
variables:

min

{ m∑
i=1

θi (xi )|
m∑
i=1

Ai xi = b, xi ∈ Xi , i = 1, 2, . . . ,m

}
, (1.1)

where θi : Rni → R(i = 1, 2, . . . ,m) are closed convex functions (not necessarily
smooth); Ai ∈ Rl×ni (i = 1, 2, . . . ,m); b ∈ Rl and Xi ⊆ Rni (i = 1, 2, . . . ,m)

are nonempty closed convex sets. Throughout this paper, the solution set of (1.1)
is assumed to be nonempty. Many problems encountered in machine learning and
statistical inference can be posed in the model (1.1) [2,20–22,27].

In the last decades, splitting methods for solving large scale (1.1) have been
investigated in depth, e.g., the split-Bregman iteration method [18,30], the fixed-
point proximity methods [6,19], the alternating direction method of multipliers
[13,14,26,28]. The relationship and numerical comparison of the above methods can
be found in [19]. In this paper, we are going to study the alternating direction method
of multipliers (ADMM), which is originally developed by [10], and has been revis-
ited recently due to its success in the applications of separable convex programming
[2,22,23,27]. The kth iterative scheme of ADMM for (1.1) with m = 2 reads as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

x1∈X1

{Lβ

(
x1, xk2 ; λk

)}
,

xk+1
2 = argmin

x2∈X2

{
Lβ

(
xk+1
1 , x2; λk

)}
,

λk+1 = λk − β

(
2∑

i=1

Ai x
k+1
i − b

)
,

(1.2)

where β > 0, and

Lβ(x1, x2; λ) =
2∑

i=1

θi (xi ) −
〈

λ,

2∑
i=1

Ai xi − b

〉
+ β

2

∥∥∥∥∥
2∑

i=1

Ai xi − b

∥∥∥∥∥
2

is the augmented Lagrangian function of the model (1.1) with m = 2; λ ∈ Rl is the
Lagrangian multiplier. Based on the other’s most recent version, the iterative scheme
(1.2) updates the primal variables xi (i = 1, 2) in a sequential way. However, the
ADMM is for two-block case and the global convergence cannot be guaranteed if
it is directly extended m block case (m ≥ 3) [5]. Furthermore, it is not suitable for
distributed computing, which is particularly welcome for the large-scale (1.1) with
big data.

To address the above two issues, in recent years many researchers incorporate
the regularization technique and the parallel iterative technique into the iterative

123



Improved proximal ADMM with partially parallel splitting… 153

scheme (1.2), and propose some proximal ADMM-type methods with fully paral-
lel splitting [7,20] and some ADMM-type methods with partially parallel splitting
[15,28], which not only have global convergence under mild conditions, but also
are suitable for distributed computing. In [7], Deng, Lai, Peng and Yin proposed a
proximal Jacobian ADMM, which regularizes each subproblem by a proximal term
1
2‖x − xki ‖2Pi , where Pi is the proximal matrix and is often required to be pos-
itive semi-definite. Many choices of Pi are presented in [8], e.g., Pi = τi Ini −
βA�

i Ai , which can linearize the third term of the augmented Lagrangian function

Lβ(x1, . . . , xm; λ) := ∑m
i=1 θi (xi ) −

〈
λ,
∑m

i=1
Ai xi − b

〉
+ β

2

∥∥∥∑m

i=1
Ai xi − b

∥∥∥2
and thus the corresponding subproblem in (1.2) often admits closed-form solution in
practice [30]. To ensure the global convergence of the method in [7], the proximal
parameter τi in Pi need to satisfy the condition τi >

mβ
2−γ

‖Ai‖2, where γ ∈ (0, 2).
Similarly, Lin, Liu and Li [20] presented a linearized alternating directionmethodwith
parallel splitting for model (1.1), and to ensure the global convergence of this method,
the proximal parameter τi in Pi need to satisfy the condition τi > mβ‖Ai‖2. Wang
and Song [28] developed a twisted proximal ADMM (denoted by TPADMM) with
partially parallel splitting, which updates x1 and xi (i = 2, 3, . . . ,m) in a sequential
way, but updates the variables xi (i = 2, 3, . . . ,m) in a parallel way. Furthermore, if
we set Pi = τi Ini − βA�

i Ai in [28], then the proximal parameter τi must satisfy the
condition τi > (m − 1)β‖Ai‖2, and the lower bound (m − 1)β‖Ai‖2 is obviously
smaller than mβ‖Ai‖2 in [20].

Fazel et al. [9] have pointed out that the choice of the proximal matrix Pi is very
much problem dependent and the general principle is that Pi should be small as possi-
ble while the subproblem related to the variable xi is still relatively easy to compute.
Therefore, the feasible region of the proximal parameter τi deserves researching.
In this paper, we are going to study the twisted proximal ADMM (TPADMM) in
[28], and show that the greatest lower bound of its proximal parameter can be sub-
stantially reduced. Specifically, a sharper lower bound of the proximal parameter

τi is
4+max{1−γ,γ 2−γ }

5 (m − 1)β‖Ai‖2, where γ ∈ (0, 1+√
5

2 ). If γ = 1, this lower

bound becomes 4(m−1)
5 β‖Ai‖2, which is obviously smaller thanmβ‖Ai‖2 in [20] and

(m − 1)β‖Ai‖2 in [28]. Furthermore, it is worth noting that the relaxation parameter
γ is attached to the update formulas of all variables of TPADMM [28]. However, this
relaxation strategy may destroy the inherent structure of the primal variables which
are stemmed from the subproblems. Then, in our new method, we use the following
relaxing technique: only relax the dual variable λ. That is we only attach the relax-
ation factor γ to the dual variable λ, while the updating formula of the primal variables
xi (i = 1, 2, . . . ,m) are irrelevant to γ .

The rest of this paper is organized as follows. Section 2 offers some notations and
basic results that will be used in the subsequent discussions. In Sect. 3, we present the
proximal ADMM with smaller proximal parameter for the model (1.1) and establish
its global convergence and convergence rate. In Sect. 4, we report some numerical
results to demonstrate the numerical advantage of smaller proximal parameter and
relaxing technique. Finally, a brief conclusion ends this paper in Sect. 5.
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2 Preliminaries

In this section, we define some notations and present the necessary assumptions on
the model (1.1) under which our convergence analysis can be conducted.

Throughout this paper, we set

y = [x2; . . . ; xm] , x = [x1; y] , u = [x; λ] , v = [x2; x3; . . . ; xm; λ] ,

and

θ̄ (y) =
m∑
i=2

θi (xi ), θ(x) = θ1(x1) + θ̄ (y), B = [A2, A3, . . . , Am], A = [A1,B]

X̄ = X2 × · · · × Xm, X = X1 × X̄ .

Furthermore, The domain of a function f (·) : X̃ → (−∞,+∞] is defined as
dom( f ) = {x ∈ X̃ | f (x) < +∞}; The set of all relative interior points of a given
nonempty convex set � is denoted by ri(�); G 
 0 (or G � 0) denotes that the sym-
metric matrix G is positive definite (or positive semi-definite); For any vector x and
a symmetric matrix G with compatible dimensionality, we denote by ‖x‖2G = x�Gx
thoughG may be not positive definite; Diag{A1, A2, . . . , Am} has Ai as its i−th block
on the diagonal.

Throughout, we make the following standard assumptions.

Assumption 2.1 The functions θi (·)(i = 1, 2, . . . ,m) are all convex.

Assumption 2.2 There is a point (x̂1, x̂2, . . . , x̂m) ∈ ri(domθ1 × domθ2 × · · · ×
domθm) such that A1 x̂1 + A2 x̂2 + · · · + Am x̂m = b, and x̂i ∈ Xi , i = 1, 2, . . . ,m.

Assumption 2.3 The matrices Ai (i = 2, 3, . . . ,m) are full column rank.

Using the first-order optimality condition for convex minimization and Assump-
tions 2.1,2.2, themodel (1.1) can be recast as the followingmixed variational inequality
problem, denoted by VI(U , F, θ): Finding a vector u∗ ∈ U such that

θ(x) − θ(x∗) + (u − u∗)�F(u∗) ≥ 0, ∀u ∈ U , (2.1)

where U = X1 × X2 × · · · × Xm × Rl , and

F(u) :=

⎛
⎜⎜⎜⎜⎜⎝

−A�
1 λ

−A�
2 λ
...

−A�
mλ

Ax − b

⎞
⎟⎟⎟⎟⎟⎠ . (2.2)

We denote by U∗ the solution set of (2.1), which is nonempty under Assumtion 2.2
and the fact that the solution set of the model (1.1) is assumed to be nonempty. The
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mapping F(u) defined in (2.2) is affine and satisfies the following simple property

(u′ − u)�(F(u′) − F(u)) = 0, ∀u′, u ∈ U . (2.3)

The following proposition provides a criterion to measure the convergence rate of
the iterative methods for the model (1.1).

Proposition 2.1 [20] Let x̂ ∈ X . Then x̂ is an optimal solution of the model (1.1) if
and only if there exists r > 0 such that

θ(x̂) − θ(x∗) + (
x̂ − x∗)� (−A�λ∗)+ r

2
‖Ax̂ − b‖2 = 0, (2.4)

where (x∗, λ∗) ∈ U∗.

3 The algorithm and its convergence result

In this section, we first present a new version of TPADMM in [28] for the model (1.1),
which is named as the proximal ADMM with smaller proximal parameter, and then
prove its global convergence and convergence rate under Assumptions 2.1–2.3. As
stated earlier, the augmented Lagrangian function for the model (1.1) is defined as
follows:

Lβ(x1, . . . , xm; λ) :=
m∑
i=1

θi (xi ) −
〈

λ,

m∑
i=1

Ai xi − b

〉
+ β

2

∥∥∥∥∥
m∑
i=1

Ai xi − b

∥∥∥∥∥
2

,

based on which, now we describe the proximal ADMMwith smaller proximal param-
eter for solving (1.1) as follows.

Algorithm 1.

Step 0. Let parameters β > 0, γ ∈ (0, 1+√
5

2 ), τ >
4+max{1−γ,γ 2−γ }

5 (m − 1),
the tolerance ε > 0, and the matrices Ḡi ∈ Rni×ni with Ḡi � 0(i = 2, 3, . . . ,m).
Choose the initial point u0 = [x01 ; x02 ; . . . ; x0m; λ0] ∈ U ; Set k = 0, and denote
Gi = Ḡi − (1 − τ)βA�

i Ai (i = 2, 3, . . . ,m).
Step 1. Compute the new iterate uk+1 = [xk+1

1 ; xk+1
2 ; . . . , xk+1

m ; λk+1] via
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 := argmin

x1∈X1

{Lβ(x1, x
k
2 , . . . , x

k
m; λk)

}
,

xk+1
i := argmin

xi∈Xi

{
Lβ(xk+1

1 , xk2 , . . . , x
k
i−1, xi , x

k
i+1, . . . , x

k
m; λk) + 1

2
‖xi − xki ‖2Gi

}
,

i = 2, 3, . . . ,m,

λk+1 := λk − γβ

( m∑
i=1

Ai x
k+1
i − b

)
.

(3.1)

Step 2. If ‖uk − uk+1‖ ≤ ε, then stop; otherwise, set k = k + 1, and go to Step 1.
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Remark 3.1 Since the matrices Ḡi (i = 2, 3, . . . ,m) can be any positive semi-definite
matrices, we can set Ḡi = τi Ini − τβA�

i Ai with τi ≥ τβ‖Ai‖2. Then, Ḡi � 0,
Gi = τi Ini − βA�

i Ai (i = 2, 3, . . . ,m), and the subproblem with respect to the
primal variable xi in (3.1) can be rewritten as

xk+1
i = argminxi∈Xi

{
θi (xi ) + τi

2
‖xi − νki ‖2

}
,

where νki = 1
τi

[τi xki − βA�
i A1x

k+1
1 − βA�

i (
∑
j �=2

A j xkj − b) + A�
i λk] is a vector.

Therefore, when Xi = Rni and θi (xi ) takes some special functions, such as ‖xi‖1,
‖xi‖2, the above subproblem has a closed-form solution [3,17]. Furthermore, from

τi ≥ τβ‖Ai‖2 and τ >
4+max{1−γ,γ 2−γ }

5 (m − 1), we have

τi >
4 + max{1 − γ, γ 2 − γ }

5
(m − 1)β‖Ai‖2.

Therefore, the feasible region of the proximal parameter τi is generally larger than
those in [20,28].

Remark 3.2 Different from γ = 1 in [13], the feasible set of γ in Algorithm 1 is

the interval (0, 1+√
5

2 ), and larger values of γ can often speed up the convergence of
Algorithm 1 (see Sect. 4).

When Assumptions 2.1–2.3 hold and the constant τ satisfy the following condition

τ > max{m − 1 − c0, 4c0 + (m − 1)max{1 − γ, γ 2 − γ }}, (3.2)

where c0 is a positive constant that will be specified later, Algorithm 1 is globally
convergent and has the worst-case O(1/t) convergence rate in an ergodic sense.

Theorem 3.1 Let {uk} be the sequence generated by Algorithm 1 and τ satisfies (3.2),

γ ∈ (0, 1+√
5

2 ). Then, the whole sequence {uk} converges globally to some û, which
belongs to U∗.

Theorem 3.2 Let {uk} be the sequence generated by Algorithm 1, and set

x̂t = 1

t

t∑
k=1

x̂ k,

where t is a positive integer. Then, x̂t ∈ X , and

θ(x̂t ) − θ(x∗) + (x̂t − x∗)�(−A�λ∗) + β

2
min

{
1,

1 + γ − γ 2

γ

}
‖Ax̂t − b‖2 ≤ D

t
,

(3.3)
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where (x∗, λ∗) ∈ U∗, and D is a constant defined by

D = 1

2

(
‖v1 − v∗‖2H + β max

{
1 − γ, 1 − 1

γ

}
‖Ax1 − b‖2 + ‖y0 − y1‖2N

+ c0β
m∑
i=2

‖Ai

(
x0i − x1i

)
‖2
)

. (3.4)

To prove Theorems 3.1 and 3.2, we need the inequality (3.21) below, which is estab-
lished by the following seven lemmas step by step. Based on the first-order optimality
conditions of the subproblems in (3.1), we present Lemmas 3.1 and 3.2, which provide
a lower bound of some vector to be a solution of VI(U , F, θ), and then Lemma 3.3
further rewrites the lower bound as some quadratic terms. Lemma 3.4 provides a lower
bound of some quadratic terms appeared in Lemma 3.3, and Lemma 3.5 gives a lower
bound of the parameter τ . Lemma 3.6 further deals with the lower bound of some
quadratic term and crossing term. Based on the conclusions established in the first six
lemmas, the most important inequality (3.21) is proved in Lemma 3.7.

For convenience, we now define two matrices to make the following analysis more
compact.

G0 =

⎛
⎜⎜⎜⎜⎝

G2 −βA�
2 A3 · · · −βA�

2 Am

−βA�
3 A2 G3 · · · −βA�

3 Am
...

...
. . .

...

−βA�
m A2 −βA�

m A3 · · · Gm

⎞
⎟⎟⎟⎟⎠ , (3.5)

and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ḡ2 + τβA�
2 A2 0 · · · 0 0

0 Ḡ3 + τβA�
3 A3 · · · 0 0

...
...

. . .
...

0 0 · · · Ḡm + τβA�
m Am 0

−A2 −A3 · · · −Am Il/β

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.6)

Lemma 3.1 Let {uk} be the sequence generated by Algorithm 1. Then, we have xki ∈
Xi and

β
(
Axk+1 − b

)� B
(
yk − yk+1

)
≥ (1 − γ )β

(
Axk − b

)� B
(
yk − yk+1

)
+
∥∥∥yk − yk+1

∥∥∥2
G0

−
(
yk − yk+1

)�
G0

(
yk−1 − yk

)
.

(3.7)

Proof By the first-order optimality condition for xi -subproblem in (3.1), we have
xk+1
i ∈ Xi (i = 1, 2, . . . ,m) and
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θi (xi ) − θi

(
xk+1
i

)
+
(
xi − xk+1

i

)�

⎧⎨
⎩−A�

i λk + βA�
i

⎛
⎝A1x

k+1
1 +

m∑
j=2, j �=i

A j x
k
j + Ai x

k+1
i − b

⎞
⎠

+Gi

(
xk+1
i − xki

)}
≥ 0, ∀xi ∈ Xi , i = 2, 3, . . . ,m,

i.e.,

θi (xi ) − θi

(
xk+1
i

)
+
(
xi − xk+1

i

)�
⎧⎨
⎩−A�

i λk + βA�
i

⎛
⎝ m∑

j=1

A j x
k+1
j − b

⎞
⎠

−βA�
i

m∑
j=2, j �=i

A j

(
xk+1
j − xkj

)
+ Gi

(
xk+1
i − xki

)⎫⎬
⎭ ≥ 0, ∀xi ∈ Xi ,

i = 2, 3, . . . ,m.

(3.8)

Then, summing the above inequality over i = 2, 3, . . . ,m, and using the definition of
G0 in (3.5), we get

θ̄ (y) − θ̄
(
yk+1

)
+
(
y − yk+1

)�

×
[
−B�λk + βB� (Axk+1 − b

)
+ G0

(
yk+1 − yk

)]
≥ 0.

Note that the above inequality is also true for k := k − 1 and thus

θ̄ (y) − θ̄
(
yk
)

+
(
y − yk

)� [−B�λk−1 + βB� (Axk − b
)

+ G0

(
yk − yk−1

)]
≥ 0.

Setting y = yk and y = yk+1 in the above inequalities, respectively, and then adding
them, we get

(
yk − yk+1

)� B� [(λk−1 − λk
)

+ β
(
Axk+1 − b

)
− β

(
Axk − b

)]
≥ ‖yk − yk+1‖2G0

−
(
yk − yk+1

)�
G0

(
yk−1 − yk

)
.

By the updating formula for λ in (3.1), we have λk−1 − λk = γβ(Axk − b). Substi-
tuting this into the left-hand side of the above inequality, we get the assertion (3.7)
immediately. This completes the proof. ��

Now, let us define an auxiliary sequence {ûk} = {[x̂ k1 ; x̂ k2 ; . . . ; x̂ km; λ̂k]}, whose
components are defined by

x̂ ki = xk+1
i (i = 1, 2, . . . ,m), λ̂k = λk − β

(
A1x

k+1
1 +

m∑
i=2

Ai x
k
i − b

)
, (3.9)
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Lemma 3.2 The auxiliary sequence {ûk} satisfies ûk ∈ U and

θ(x) − θ
(
x̂ k
)

+
(
u − ûk

)�
F
(
ûk
)

≥
(
v − v̂k

)�
Q
(
vk − v̂k

)
, ∀u ∈ U ,

(3.10)
where the matrix Q is defined by (3.6).

Proof From x̂ k = xk+1, it is obvious that ûk ∈ U . The first-order optimality condition
for x1-subproblem in (3.1) and the definition of λ̂k in (3.9) imply

θ1(x1) − θ1

(
x̂ k1

)
+
(
x1 − x̂ k1

)� (−A�
1 λ̂k

)
≥ 0, ∀x1 ∈ X1. (3.11)

By the definitions of λ̂k and Gi (i = 2, 3, . . . ,m), we can get

−A�
i

[
λk − β

(
m∑
i=1

Ai x
k+1
i − b

)]
− βA�

i

m∑
j=2, j �=i

A j

(
xk+1
j − xkj

)
+ Gi

(
xk+1
i − xki

)

= −A�
i

⎡
⎣λk − β

⎛
⎝A1x

k+1
1 +

m∑
j=2

Ai x
k
i − b

⎞
⎠
⎤
⎦+

(
Gi + βA�

i Ai

) (
xk+1
i − xki

)

= −A�
i λ̂k +

(
Gi + βA�

i Ai

) (
x̂ ki − xki

)
= −A�

i λ̂k +
(
Ḡi + τβA�

i Ai

) (
x̂ ki − xki

)
.

Then, substituting the above equality into the left-hand side of (3.8), we thus derive

θi (xi ) − θi

(
x̂ ki

)
+
(
xi − x̂ ki

)� {−A�
i λ̂k +

(
Ḡi + τβA�

i Ai

) (
x̂ ki − xki

)}
≥ 0,

∀xi ∈ Xi , i = 2, 3, . . . ,m. (3.12)

Furthermore, from the definition of λ̂k , we get the following inequality

(
λ − λ̂k

)�
⎧⎨
⎩
(

m∑
i=1

Ai x̂
k
i − b

)
−

m∑
j=2

A j

(
x̂ kj − xkj

)
+ 1

β

(
λ̂k − λk

)⎫⎬
⎭ ≥ 0, ∀λ ∈ Rl .

(3.13)

Then, adding (3.11), (3.12) over i = 2, 3, . . . ,m, (3.13), and by some simple manip-
ulations, we get the assertion (3.10) immediately. This completes the proof. ��
Remark 3.3 If uk = uk+1, then we have

xk = x̂ k, λk = λ̂k .

Substituting the above two equalities into the right-hand side of (3.10), we obtain

θ(x) − θ(x̂ k) + (u − ûk)�F(ûk) ≥ 0, ∀u ∈ U ,
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i.e.,

θ(x) − θ(xk) + (u − uk)�F(uk) ≥ 0, ∀u ∈ U ,

which implies that uk is a solution of VI(U , F, θ), and thus xk is a solution of the
model (1.1). This indicates that the stopping criterion of Algorithm 1 is reasonable.

The updating formula for λk+1 in (3.1) can be rewritten as

λk+1

= λk −
(

−γβ

m∑
i=2

Ai

(
xki − xk+1

i

))
− γβ

(
A1x

k+1
1 +

m∑
i=2

Ai x
k
i − b

)

= λk −
[
−γβ

m∑
i=2

Ai

(
xki − x̂ ki

)
+ γ (λk − λ̂k)

]
.

Combining the above equality and (3.9), we get

vk+1 = vk − M(vk − v̂k), (3.14)

where

M =

⎛
⎜⎜⎜⎜⎜⎝

In2 0 · · · 0 0
0 In3 · · · 0 0
...

...
. . .

...

0 0 · · · Inm 0
−γβA2 −γβA3 · · · −γβAm γ Il

⎞
⎟⎟⎟⎟⎟⎠ .

Now we define two auxiliary matrices as

H := QM−1 and G := Q� + Q − M�HM.

By simple calculation, we have

H =

⎛
⎜⎜⎜⎜⎜⎝

Ḡ2 + τβA�
2 A2 0 · · · 0 0

0 Ḡ3 + τβA�
3 A3 · · · 0 0

...
...

. . .
...

0 0 · · · Ḡm + τβA�
m Am 0

0 0 · · · 0 Il/(γβ)

⎞
⎟⎟⎟⎟⎟⎠ ,
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and

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G̃2 −γβA�
2 A3 · · · −γβA�

2 Am (γ − 1)A�
2

−γβA�
3 A2 G̃3 · · · −γβA�

3 Am (γ − 1)A�
3

...
...

. . .
...

−γβA�
m A2 −γβA�

m A3 · · · G̃m (γ − 1)A�
m

(γ − 1)A2 (γ − 1)A3 · · · (γ − 1)Am (2 − γ )Il/β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where G̃i = Ḡi + (τ − γ )βA�
i Ai (i = 2, 3, . . . ,m). Obviously, under Assumption

3.3, the matrix H is positive definite, and the following relationship with respect to
the matrices Q, M, H holds

Q = HM. (3.15)

Based on (3.10) and (3.14), it seems that Algorithm 1 can be categorized into the
prototype algorithm proposed in [12]. However, the convergence results of Algorithm
1 cannot be guaranteed by the results in [12] because we cannot ensure that the matrix
G is positive semi-definite, which is a necessary condition for the global convergence
of the prototype algorithm in [12]. To show the matrix G maybe indefinite, we only
need to show that its sub-matrix G(1 : m − 1, 1 : m − 1) maybe indefinite. Here
G(1 : m − 1, 1 : m − 1) denotes the corresponding sub-matrix formed from the rows
and columns with the indices (1 : m − 1) and (1 : m − 1) in the block sense. In fact,
setting Ḡi = 0 (i = 2, 3, . . . ,m), one has

G(1 : m − 1, 1 : m − 1) =

⎛
⎜⎜⎜⎜⎜⎝

(τ − γ )βA�
2 A2 −γβA�

2 A3 · · · −γβA�
2 Am

−γβA�
3 A2 (τ − γ )βA�

3 A3 · · · −γβA�
3 Am

...
...

. . .
...

−γβA�
m A2 −γβA�

m A3 · · · (τ − γ )βA�
m Am

⎞
⎟⎟⎟⎟⎟⎠

= β

⎛
⎜⎜⎜⎜⎜⎝

A�
2 0 · · · 0

0 A�
3 · · · 0

...
...

. . .
...

0 0 · · · A�
m

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

(τ − γ )Il −γ Il · · · −γ Il
−γ Il (τ − γ )Il · · · −γ Il

...
...

. . .
...

−γ Il −γ Il · · · (τ − γ )Il

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

A2 0 · · · 0
0 A3 · · · 0
...

...
. . .

...

0 0 · · · Am

⎞
⎟⎟⎟⎠ .

The middle matrix in the above expression can be further written as

⎛
⎜⎜⎜⎝

τ − γ −γ · · · −γ

−γ τ − γ · · · −γ
...

...
. . .

...

−γ −γ . . . τ − γ

⎞
⎟⎟⎟⎠⊗ Il
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Then, we only need to show the (m − 1)-by-(m − 1) matrix

⎛
⎜⎜⎜⎝

τ − γ −γ · · · −γ

−γ τ − γ · · · −γ
...

...
. . .

...

−γ −γ · · · τ − γ

⎞
⎟⎟⎟⎠

may be indefinite. In fact, its eigenvalues are

λ1 = λ2 = · · · = λm−2 = τ, λm−1 = τ − (m − 1)γ.

Then, the matrix G(1 : m − 1, 1 : m − 1) is positive semi-definite iff τ ≥ (m − 1)γ .
Obviously, we cannot ensure G(1 : m − 1, 1 : m − 1) is positive semi-definite for any

τ ≥ 4+max{1−γ,γ 2−γ }
5 (m − 1). Therefore, the matrix G may be indefinite.

Now, let us rewrite the crossing term (v − v̂k)�Q(vk − v̂k) on the right-hand side
(3.10) as some quadratic terms.

Lemma 3.3 Let {uk} be the sequence generated by Algorithm 1. Then, for any u ∈ U ,
we have

(v−v̂k)�Q(vk−v̂k) = 1

2
(‖v−vk+1‖2H−‖v−vk‖2H )+1

2
(‖vk−v̂k‖2H−‖vk+1−v̂k‖2H ).

(3.16)

Proof By H 
 0, (3.14) and (3.15), we have

(v − v̂k)�Q(vk − v̂k)

= (v − v̂k)�HM(vk − v̂k)

= (v − v̂k)�H(vk − vk+1)

= 1

2
(‖v − vk+1‖2H − ‖v − vk‖2H ) + 1

2
(‖vk − v̂k‖2H − ‖vk+1 − v̂k‖2H ),

where the last equality is obtained by setting a = v, b = v̂k, c = vk, d = vk+1 in the
identity

(a − b)�H(c − d) = 1

2
(‖a − d‖2H − ‖a − c‖2H ) + 1

2
(‖c − b‖2H − ‖d − b‖2H ).

This completes the proof. ��
Substituting (3.16) into the left-hand side of (3.10), for any u ∈ U , we get

θ(x) − θ(x̂ k) + (u − ûk)�F(ûk) ≥ 1

2
(‖v − vk+1‖2H − ‖v − vk‖2H )

+ 1

2
(‖vk − v̂k‖2H − ‖vk+1 − v̂k‖2H ). (3.17)
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The first group-term 1
2 (‖v −vk+1‖2H −‖v −vk‖2H ) on the right-hand side of (3.17)

can be manipulated consecutively between iterates. Therefore, we only to deal with
the second group-term 1

2 (‖vk − v̂k‖2H − ‖vk+1 − v̂k‖2H ).

Lemma 3.4 Let {uk} be the sequence generated by Algorithm 1. Then, we have

‖vk − v̂k‖2H − ‖vk+1 − v̂k‖2H
≥

m∑
i=2

‖xki − xk+1
i ‖2

Ḡi
+ β(τ − (m − 1)max{1 − γ, γ 2 − γ })

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2 + β min

{
1,

1 + γ − γ 2

γ

}
‖Axk+1 − b‖2

+ β max

{
1 − γ, 1 − 1

γ

}
(‖Axk+1 − b‖2 − ‖Axk − b‖2)

+ 2‖yk − yk+1‖2G0
− 2(yk − yk+1)�G0(y

k−1 − yk).

(3.18)

Proof Obviously, λ̂k defined by (3.9) can be rewritten as

λ̂k = λk − β
(
A1x

k+1
1 + Byk − b

)
.

Then, from (3.14) and the definition of H , we can expand ‖vk+1 − v̂k‖2H as

‖vk+1 − v̂k‖2H
= ‖(I − M)(vk − v̂k)‖2H
= 1

γβ
‖(λk − λ̂k) − [−γβB(yk − ŷk) + γ (λk − λ̂k)]‖2

= 1

γβ
‖(λk − λ̂k) − [−γβB(yk − yk+1) + γβ(A1x

k+1
1 + Byk − b)]‖2

= 1

γβ
‖(λk − λ̂k) − γβ(Axk+1 − b)‖2

= 1

γβ
‖λk − λ̂k‖2 − 2(λk − λ̂k)�(Axk+1 − b) + γβ‖Axk+1 − b‖2,

and thus, we have

‖vk − v̂k‖2H − ‖vk+1 − v̂k‖2H
=

m∑
i=2

‖xki − xk+1
i ‖2

Ḡi
+ τβ

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2 + 1

γβ
‖λk − λ̂k‖2

−
(

1

γβ
‖λk − λ̂k‖2 − 2(λk − λ̂k)�(Axk+1 − b) + γβ‖Axk+1 − b‖2

)

123



164 M. Sun, H. Sun

=
m∑
i=2

‖xki − xk+1
i ‖2

Ḡi
+ τβ

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2

+2(λk − λ̂k)�(Axk+1 − b) − γβ‖Axk+1 − b‖2.

From (3.9) again, we have λk − λ̂k = βB(yk − yk+1) + β(Axk+1 − b), and then
2(λk − λ̂k)�(Axk+1 − b) = 2β(Axk+1 − b)�B(yk − yk+1) + 2β‖Axk+1 − b‖2.
Substituting this into the right-hand side of the above equality, we obtain

‖vk − v̂k‖2H − ‖vk+1 − v̂k‖2H
=

m∑
i=2

‖xki − xk+1
i ‖2

Ḡi
+ τβ

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2

+2β(Axk+1 − b)�B(yk − yk+1) + (2 − γ )β‖Axk+1 − b‖2

≥
m∑
i=2

‖xki − xk+1
i ‖2

Ḡi
+ τβ

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2 + β(2 − γ )‖Axk+1 − b‖2

+2β(1 − γ )(Axk − b)�B(yk − yk+1) + 2‖yk − yk+1‖2G0
− 2(yk − yk+1)�

G0(y
k−1 − yk),

where the last inequality comes from (3.7). By applying theCauchy–Schwartz inequal-
ity, we can get

⎧⎪⎪⎨
⎪⎪⎩
2β(1 − γ )(Axk − b)�B(yk − yk+1) ≥ −β(1 − γ )(‖Axk − b‖2

+‖B(yk − yk+1)‖2), if γ ∈ (0, 1],
2β(1 − γ )(Axk − b)�B(yk − yk+1) ≥ −β(γ − 1)( 1

γ
‖Axk − b‖2

+γ ‖B(yk − yk+1)‖2), if γ ∈ (1,+∞).

Substituting this into the right-hand side of the above inequality, we obtain

‖vk − v̂k‖2H − ‖vk+1 − v̂k‖2H
≥

m∑
i=2

‖xki − xk+1
i ‖2

Ḡi
+ τβ

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2

+β min

{
1,

1 + γ − γ 2

γ

}
‖Axk+1 − b‖2

+β max{1 − γ, 1 − 1

γ
}(‖Axk+1 − b‖2 − ‖Axk − b‖2)

−β max{1 − γ, γ 2 − γ }‖B(yk − yk+1)‖2
+2‖yk − yk+1‖2G0

− 2(yk − yk+1)�G0(y
k−1 − yk),

which together with ‖B(yk − yk+1)‖2 ≤ (m − 1)
m∑
i=2

‖Ai (xki − xk+1
i )‖2 implies that

(3.18) holds. This completes the proof. ��
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Now, let us deal with the last two terms 2‖yk−yk+1‖2G0
−2(yk−yk+1)�G0(yk−1−

yk) on the right-hand side of (3.18). For this purpose, we define

N = G0 + c0βDiag
{
A�
2 A2, A

�
3 A3, . . . , A

�
m Am

}
, (3.19)

where c0 is a positive constant that will be specified later.

Lemma 3.5 The matrix N is positive definite if τ > m − 1 − c0.

Proof Since Gi = Ḡi − (1 − τ)βA�
i Ai (i = 2, 3, . . . ,m), then for any v =

[x2; x3; . . . ; xm] �= 0, we have

v�Nv

=
m∑
i=2

‖xi‖2Ḡi
+ β(τ − 1 + c0)

m∑
i=2

‖Ai xi‖2 − β
∑
i �= j

(Ai xi )
�(A j x j )

≥ β(τ + c0 − m + 1)
m∑
i=2

‖Ai xi‖2 > 0,

where the first inequality follows from Ḡi � 0(i = 2, 3, . . . ,m) and the second
inequality comes from τ > m − 1− c0 and Assumption 3.3. Therefore, the matrix N
is positive definite. The proof is completed. ��
Lemma 3.6 Let {uk} be the sequence generated by Algorithm 1. Then,

2‖yk − yk+1‖2G0
− 2(yk − yk+1)�G0(y

k−1 − yk)

≥ ‖yk − yk+1‖2N − ‖yk−1 − yk‖2N − 3c0β
m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2

− c0β
m∑
i=2

‖Ai (x
k−1
i − xki )‖2.

(3.20)

Proof From (3.19), we have G0 = N − c0βDiag{A�
2 A2, A�

3 A3, . . . , A�
m Am}. There-

fore,

2‖yk − yk+1‖2G0
− 2(yk − yk+1)�G0(y

k−1 − yk)

= 2(yk − yk+1)�G0((y
k − yk+1) − (yk−1 − yk))

= 2(yk − yk+1)�[N − c0βDiag{A�
2 A2, A

�
3 A3, . . . , A

�
m Am}]((yk − yk+1)

−(yk−1 − yk))

= 2‖yk − yk+1‖2N − 2(yk − yk+1)�N (yk−1 − yk)

−2c0β(yk − yk+1)�Diag{A�
2 A2, A

�
3 A3, . . . , A

�
m Am}(yk − yk+1)

+2c0β(yk − yk+1)�Diag{A�
2 A2, A

�
3 A3, . . . , A

�
m Am}(yk−1 − yk)
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≥ ‖yk − yk+1‖2N − ‖yk−1 − yk‖2N − 3c0β
m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2

−c0β
m∑
i=2

‖Ai (x
k−1
i − xki )‖2,

where the last inequality follows from the Cauchy–Schwartz inequality. The proof is
completed. ��

Based on the above three lemmas, we can deduce the recurrence relation of the
sequence generated by Algorithm 1 as follows.

Lemma 3.7 Let {uk} be the sequence generated by Algorithm 1. Then,

‖vk+1 − v∗‖2H + β max

{
1 − γ, 1 − 1

γ

}
‖Axk+1 − b‖2 + ‖yk − yk+1‖2N

+ c0β
m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2

≤ ‖vk − v∗‖2H + β max

{
1 − γ, 1 − 1

γ

}
‖Axk − b‖2 + ‖yk−1 − yk‖2N

+ c0β
m∑
i=2

‖Ai (x
k−1
i − xki )‖2

−
m∑
i=2

‖xki − xk+1
i ‖2

Ḡi
− β[τ − 4c0 − (m − 1)max{1 − γ, γ 2 − γ }]

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2 − β min

{
1,

1 + γ − γ 2

γ

}
‖Axk+1 − b‖2.

(3.21)

Proof Substituting (3.20) into (3.18), one has

‖vk − v̂k‖2H − ‖vk+1 − v̂k‖2H
≥

m∑
i=2

‖xki − xk+1
i ‖2

Ḡi
+ β[τ − 4c0 − (m − 1)max{1 − γ, γ 2 − γ }]

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2 + β min

{
1,

1 + γ − γ 2

γ

}
‖Axk+1 − b‖2

+β max

{
1 − γ, 1 − 1

γ

}
(‖Axk+1 − b‖2 − ‖Axk − b‖2)
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+(‖yk − yk+1‖2N − ‖yk−1 − yk‖2N ) + c0β

(
m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2

−
m∑
i=2

‖Ai (x
k−1
i − xki )‖2

)
.

This together with (3.17) implies

2θ(x) − 2θ(x̂ k) + 2(u − ûk)�F(ûk)

≥ (‖v − vk+1‖2H − ‖v − vk‖2H ) +
m∑
i=2

‖xki − xk+1
i ‖2

Ḡi

+ β[τ − 4c0 − (m − 1)max{1 − γ, γ 2 − γ }]
m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2

+ β min

{
1,

1 + γ − γ 2

γ

}
‖Axk+1 − b‖2 + β max

{
1 − γ, 1 − 1

γ

}
(‖Axk+1 − b‖2 − ‖Axk − b‖2) + (‖yk − yk+1‖2N − ‖yk−1 − yk‖2N )

+ c0β

(
m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2 −
m∑
i=2

‖Ai (x
k−1
i − xki )‖2

)
.

(3.22)

Setting u = u∗ ∈ U∗ in the above inequality and using (2.3), we get (3.21). This
completes the proof. ��

With the above conclusions in hand, we can prove the Theorem3.1 andTheorem3.2
as follows.

Proof of Theorem 3.1. By (3.21), (3.2) and γ ∈
(
0, 1+√

5
2

)
, one has

∞∑
k=1

(
m∑
i=2

‖xki − xk+1
i ‖2

Ḡi
+ c1

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2 + c2‖Axk+1 − b‖2
)

≤ ‖v1 − v∗‖2H + c3‖Ax1 − b‖2 + ‖y0 − y1‖2N + c0β
m∑
i=2

‖Ai (x
0
i − x1i )‖2

< +∞,

(3.23)

where c1 = β[τ −4c0 − (m−1)max{1−γ, γ 2 −γ }], c2 = β min{1, 1+γ−γ 2

γ
}, c3 =

β max{1 − γ, 1 − 1
γ
}. This and Assumption 2.3, Ḡi � 0(i = 2, 3, . . . ,m) indicate

that
lim
k→∞ ‖yk − yk+1‖ = lim

k→∞ ‖Axk+1 − b‖ = 0. (3.24)
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Furthermore, by the iterative scheme (3.1) and (3.24), one has

‖A1(x
k
1 − xk+1

1 )‖

= ‖ 1

γβ
(λk−1 − λk) − 1

γβ
(λk − λk+1) −

m∑
i=2

Ai (x
k
i − xk+1

i )‖

≤ 1

γβ
‖λk−1 − λk‖ + 1

γβ
‖λk − λk+1‖ +

m∑
i=2

‖Ai (x
k
i − xk+1

i )‖ → 0(as k → ∞),

which together with Assumption 2.3 implies that

lim
k→∞ ‖xk1 − xk+1

1 ‖ = 0. (3.25)

On the other hand, by H 
 0 and (3.21) again, we have the sequences {‖vk+1 − v∗‖},
{‖Axk+1 − b‖} are both bounded. Then, by

‖A1(x
k+1
1 − x∗

1 )‖

= ‖Axk+1 − b −
m∑
i=2

Ai (x
k+1
i − x∗

i )‖

≤ ‖Axk+1 − b‖ +
m∑
i=2

Ai‖(xk+1
i − x∗

i )‖,

and Assumption 2.3, we have that the sequence {‖xk+1
1 − x∗

1‖} is also bounded. In
conclusion, the sequence {uk} generated by Algorithm 1 is bounded. Then, it has at
least a cluster point, saying u∞, and suppose the subsequence {uki } converges to u∞.
Then, taking limits on both sides of (3.10) along the subsequence {uki } and using
(3.24), (3.25), one has

θ(x) − θ(x∞) + (u − u∞)�F(u∞) ≥ 0, ∀u ∈ U .

Therefore, u∞ ∈ U∗.
Hence, replacing u∗ by u∞ in (3.21), we get

‖vk+1 − v∞‖2H + c3‖Axk+1 − b‖2 + ‖yk − yk+1‖2N + c0β
m∑
i=2

‖Ai (x
k
i − xk+1

i )‖2

≤ ‖vk − v∞‖2H + c3‖Axk − b‖2 + ‖yk−1 − yk‖2N + c0β
m∑
i=2

‖Ai (x
k−1
i − xki )‖2.

From (3.24), (3.25), we have that for any given ε > 0, there exists l0 > 0, such that

c3‖Axk − b‖2 + ‖yk−1 − yk‖2N + c0β
m∑
i=2

‖Ai (x
k−1
i − xki )‖2 <

ε

2
, ∀k ≥ l0.
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Since vki → v∞ for i → ∞, there exists kl > l0, such that

‖vkl − v∞‖2H <
ε

2
.

Then, the above three inequalities lead to that, for any k > kl , we have

‖uk − u∞‖2H
≤ ‖ukl − u∞‖2H + c3‖Axkl − b‖2 + ‖ykl−1 − ykl‖2N + c0β

m∑
i=2

‖Ai (x
kl−1
i − xkli )‖2

< ε.

Therefore the whole sequence {uk} converges to the solution u∞. The proof is com-
pleted. ��

Obviously, to get a large feasible region of τ , from the condition (3.2), we can set
m−1−c0 = 4c0+(m−1)max{1−γ, γ 2−γ }, and solve this linear equation, we get
c0 = m−1−(m−1)max{1−γ,γ 2−γ }

5 , which is obvious greater than zero if γ ∈ (0, 1+√
5

2 ).
Thus, the constant τ only need to satisfy the following conditon

τ >
4 + max{1 − γ, γ 2 − γ }

5
(m − 1).

Remark 3.4 In the recent work [14], He and Yuan proposed an ADMM-like splitting
method for the model (1.1) withm = 3, which belongs to the mixed Gauss–Seidel and
Jacobian ADMMs. More specifically, the iterative scheme of the method proposed in
[14] is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 := argmin

x1∈X1

{Lβ(x1, xk2 , x
k
3 ; λk)

}
,⎧⎪⎨

⎪⎩
xk+1
2 := argmin

x2∈X2

{
Lβ(xk+1

1 , x2, xk3 ; λk) + τ
2‖A2(x2 − xk2 )‖2

}
,

xk+1
3 := argmin

x3∈X3

{
Lβ(xk+1

1 , xk2 , x3; λk) + τ
2‖A3(x3 − xk3 )‖2

}
,

λk+1 := λk − β
(∑3

i=1 Ai x
k+1
i − b

)
,

(3.26)

where τ ≥ 0.6. Though Algorithm 1 and (3.26) both belong to the mixed Gauss–
Seidel and Jacobian ADMMs, Algorithm 1 has an important advantage over (3.26).
That is the matrices Ḡi (i = 2, 3, . . . ,m) can be any positive semi-definite matrices,
and when they are taken some special cases, the subproblems in Algorithm 1 often
admit closed-form solutions; see Remark 3.1. However, when A�

i Ai �= Ini (i = 2, 3),
the subproblemswith respect to xi (i = 2, 3) in (3.26) don’t have closed-form solutions
even if θi (xi ) = ‖xi‖1 or θi (xi ) = ‖xi‖2(i = 2, 3).

Remark 3.5 Algorithm 1 contains the methods in [13,14] as special cases. More pre-
cisely:
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1. For Algorithm 1, setting m = 2, γ = 1, and Ḡ2 = τ2 In2 − τβA�
2 A2 with

τ2 ≥ τβ‖A2‖2, τ > 0.8. Then, Ḡ2 � 0, and G2 = τ2 In2 − βA�
2 A2. It is easy to

check that Algorithm 1 reduces to the method in [13].
2. For Algorithm 1, setting m = 3, γ = 1, and Ḡi = 0(i = 2, 3), then Gi =

(τ − 1)βA�
i Ai (i = 2, 3) with τ > 1.6. It is easy to check that Algorithm 1

reduces to the method (3.26) in [14].

At the end of this section, let us prove the worst-caseO(1/t) convergence rate in an
ergodic sense of Algorithm 1 according to the criterion established in Proposition 2.1.

Proof of Theorem 3.2. From x̂ k ∈ X and the convexity ofX , we have xt ∈ X . Setting
x = x∗, λ = λ∗ in (3.22), and summing the resulted inequality over k = 1, 2, . . . , t ,
we have

t∑
k=1

[
θ(x̂ k) − θ(x∗) + (ûk − u∗)�F(ûk) + β

2
min

{
1,

1 + γ − γ 2

γ

}
‖Ax̂ k − b‖2

]

≤ 1

2
(‖v1 − v∗‖2H + β max

{
1 − γ, 1 − 1

γ

}
‖Ax1 − b‖2 + ‖y0 − y1‖2N

+ c0β
m∑
i=2

‖Ai (x
0
i − x1i )‖2)

(3.27)
Furthermore, the crossing term (ûk − u∗)�F(ûk) on the left-hand side of (3.27) can
be rewritten as

(ûk − u∗)�F(ûk)

= (ûk − u∗)�F(u∗)
= (x̂ k − x∗)�(−A�λ̂k) + (λ̂k − λ∗)�(Ax̂ k − b)

= (b − Ax̂ k)�λ̂k + (λ̂k − λ∗)�(Ax̂ k − b)

= (−λ∗)�(Ax̂ k − b)

= (x̂ k − x∗)�(−A�λ∗),

(3.28)

where the first equality comes from (2.3). Substituting (3.28) into the left-hand side
of (3.27), we get

t∑
k=1

[
θ(x̂ k) − θ(x∗) + (x̂ k − x∗)�(−A�λ∗) + β

2
min

{
1,

1 + γ − γ 2

γ

}
‖Ax̂ k − b‖2

]

≤ 1

2
(‖v1 − v∗‖2H + β max

{
1 − γ, 1 − 1

γ

}
‖Ax1 − b‖2 + ‖y0 − y1‖2N

+ c0β
m∑
i=2

‖Ai (x
0
i − x1i )‖2)

(3.29)
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Then, dividing (3.29) by t and using the convexity of θ(·) and ‖ · ‖2 lead to

θ(x̂t ) − θ(x∗) + (x̂t − x∗)�(−A�λ∗) + β

2
min

{
1,

1 + γ − γ 2

γ

}
‖Ax̂t − b‖2 ≤ D

t
,

where the constant D is defined by (3.4). Then, we get the result (3.3). This completes
the proof. ��

4 Numerical results

In this section, we use Algorithm 1 to solve three concrete models of (1.1), including
the Lasso model (m = 2), the latent variable Gaussian graphical model selection on
some synthetic data sets (m = 3), the linear homogeneous equations (m = 4). We
mainly compare the performance of Algorithm 1 with the method in [24], denoted by
SPADMM, and the method in [28], denoted by TPADMM. All codes were written
in Matlab, and run in MatlabR2010a on a laptop with Pentium(R) Dual-Core CPU
T4400@2.2GHz, 4GB of memory.

Problem 1 The Lasso model
The Lasso model is

min
y∈Rn

μ‖y‖1 + 1

2
‖Ay − b‖2, (4.1)

where A ∈ Rm×n , b ∈ Rm , μ > 0 is a regularization parameter. By introducing a
new variable x , we can rewrite (4.1) as

min
1

2
‖x − b‖2 + μ‖y‖1

s.t. x − Ay = 0,

x ∈ Rm, y ∈ Rn,

(4.2)

which is a special case of problem (1.1) with the following specifications:

θ1(x1) = 1

2
‖x − b‖2, θ2(x2) = μ‖y‖1, A1 = In, A2 = −A, b = 0.

Then, Algorithm 1 with Ḡ1 = 0, Ḡ2 = τ2 In − βτ A�A can be used to solve (4.2),
where τ2 = τβ‖A�A‖, and the closed-form solutions of the subproblems resulted
by Algorithm 1 are similar to those in [2,26], which are not listed here for suc-
cinctness. In this experiment, the matrix A is generated by A=randn(m,n); A =
A*spdiags(1./sqrt(sum(A).2))’,0,n,n). The sparse vector x∗ is gener-
ated by p=100/n; x∗= sprandn(n,1,p), and the observed vector b is generated
via b=A*x∗+sqrt(0.001)*randn(m,1). We set the regularization parameter
μ = 0.1‖A�b‖∞. For Algorithm 1, we set β = 1, τ = (4+max{1− γ, γ 2 − γ })/5.
For SPADMM, we set β = 1 and γ in Table 1 is r in SPADMM. For TPADMM, we
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set β = 1 and utilize the same technique to linear its second subproblem. The initial
points are y = 0, λ = 0, and the stopping criterion is [2]:

‖xk+1 − Ayk+1‖ ≤ εpri and ‖βA(yk+1 − yk)‖ ≤ εdual,

where εpri = √
nεabs+εrel max{‖xk+1‖, ‖Ayk+1‖}, and εdual = √

nεabs+εrel‖yk+1‖
with εabs = 10−4 and εrel = 10−3. The numerical results generated by the tested
methods are reported in Table 1, in which we only report the number of iterations,
because the tested methods has the same structure.

Numerical results in Table 1 indicate that the performance of Algorithm 1 is obvi-
ously better than the other two testedmethods in the sense that the number of iterations
taken by Algorithm 1 is at most 91% of those taken by SPADMM and at most 82%
of those taken by TPADMM. We believe that the improvement should be contributed
to the smaller proximal parameter of Algorithm 1. Then, the advantage of smaller
proximal parameter is verified. Furthermore, though bigger relaxation factor the γ

can often speed up the corresponding iteration method, we observe that Algorithm 1
with γ = 1.0 almost always performs better than Algorithm 1 with γ = 0.8, 1.2. The
reason maybe that τ gives more influence to the performance of Algorithm than γ for
this problem.

Problem 2 The latent variable Gaussian graphical model selection

First, let us review latent variable Gaussian graphical model selection (LVGGMS)
[4,21]. Let X p×1 be the observed variables, and Yr×1(r � p) be the hidden variables
such that (X,Y ) jointly follow a multivariate normal distribution inRp+r , where the
covariance matrix�(X,Y ) = [�X , �XY ;�Y X , �Y ] and the precisionmatrix�(X,Y ) =
[�X ,�XY ;�Y X ,�Y ] are unknown. Under the prior assumption that the conditional
precision matrix of observed variables �X is sparse, the marginal precision matrix of
observed variables, �−1

X = �X − �XY�−1
Y �Y X is a difference between the sparse

term �X and the low-rank term �XY�−1
Y �Y X . Therefore, the problem of interest

is to recover the sparse conditional matrix �X and the low-rank term �XY�−1
Y �Y X

based on the observed variables X . Setting �−1
X = S − L , Chandrasekaran et al. [4]

introduced the following latent variable graphical model selection

min
S,L

〈S − L , �̂X 〉 − logdet(S − L) + α1‖S‖1 + α2Tr(L),

s.t. S − L 
 0, L � 0,
(4.3)

where �̂X is the sample covariance matrix of X ; ‖S‖1 is the �1-norm of the matrix
S defined by

∑p
i, j=1 |Si j |; and Tr(L) denotes the trace of the matrix L; α1 > 0 and

α2 > 0 are given scalars controlling the sparsity and the low-rankness of the solution.
Obviously, the model (4.3) can be rewritten as

min〈R, �̂X 〉 − logdetR + α1‖S‖1 + α2Tr(L)

s.t. R = S − L , R 
 0, L � 0,
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which can be furthered casted as

min〈R, �̂X 〉 − logdetR + α1‖S‖1 + α2Tr(L) + I(L � 0)

s.t. R − S + L = 0,
(4.4)

where the indicator function I(L � 0) is defined as

I(L � 0) :=
{
0, if L � 0,
+∞, otherwise,

The constraint R 
 0 is removed since it is already imposed by the logdetR function.
The convexminimization (4.4) is a special case of themodel (1.1) where x1 = R, x2 =
S, x3 = L , θ1(x1) = 〈R, �̂X 〉 − logdetR, θ2(x2) = α1‖S‖1, θ3(x3) = α2Tr(L) +
I(L � 0), A1 = Ip, A2 = −Ip, A3 = Ip, b = 0. Then, Algorithm 1 with Ḡi =
0(i = 2, 3) can be used to solve (4.4), and its iterative scheme is listed as follows.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rk+1 := argmin
R

{Lβ(R, Sk, Lk;�k)
}
,

Sk+1 := argmin
S

{
Lβ(Rk+1, S, Lk;�k) + β(τ−1)

2 ‖S − Sk‖2F
}

,

Lk+1 := argmin
L

{
Lβ(Rk+1, Sk, L;�k) + β(τ−1)

2 ‖L − Lk‖2F
}

,

�k+1 := �k − γβ
(
Rk+1 − Sk+1 + Lk+1

)
,

(4.5)

where the augmented Lagrangian function Lβ(R, S, L;�) is defined as

Lβ(R, S, L;�) = 〈R, �̂X 〉 − logdetR + α1‖S‖1 + α2Tr(L) + I(L � 0)

−〈�, R − S − L〉 + β

2
‖R − S + L‖2F .

In [21], the authors have elaborated on the similar subproblems as those in (4.5).
Therefore, based on the discussion of [21], we give the closed-form solutions of the
subproblems in (4.5).

• For the given Rk , Sk , Lk and �k , the R subproblem in (4.5) admits a closed-form
solution as

Rk+1 = U ∧̂U�, (4.6)

where U is obtained by the eigenvalue decomposition: UDiag(σ )U� = (�̂X −
�k)/(βτ) − [(τ − 1)Rk + Sk − Lk]/τ , and ∧̂ = Diag(σ̂ ) is obtained by:

σ̂ j =
−σ j +

√
σ 2
j + 4/(τβ)

2
, j = 1, 2, . . . , p.

• For the given Rk+1, Sk , Lk and�k , the S subproblem in (4.5) admits a closed-form
solution as

Sk+1 = Shrink(Zk, α1/(τβ)), (4.7)
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where Zk = −�k/(βτ) + [(τ − 1)Sk + Rk+1 + Lk]/τ and Shrink(Z , τ ) =
sign(Zi j ) · max{0, |Zi j | − τ }.

• For the given Rk+1, Sk , Lk and�k , the L subproblem in (4.5) admits a closed-form
solution as

Lk+1 = U ∧̃U�, (4.8)

where U is obtained by: UDiag(σ )U� is the eigenvalue decomposition of the
matrix �k/(βτ)+[(τ − 1)Lk + Sk − Rk+1]/τ , and ∧̂ = Diag(σ̂ ) is obtained by:

σ̂ j = max{σ j − α2/(τβ), 0}, j = 1, 2, . . . , p.

The synthetic data of our experiment is generated by the following procedures [21].
Given the number of the observed variables p and the number of latent variables r ,
we created a sparse matrixW∈R(p+r)×(p+r) with sparsity around 10%, in which the
nonzero entries were set to −1 or 1 with equality probability. From W , we can get
the true precision matrix K = (W ∗ W�)−1 and then obtain two submatrices of K ,
Ŝ = K (1 : p, 1 : p) ∈ Rp×p and L̂ = K (1 : p, p+1 : p+r)K (p+1 : p+r, p+1 :
p + r)−1K (p + 1 : p + r, 1 : p) ∈ Rp×p, which are the ground truth matrices of the
sparsematrix S and the low-rankmatrix L , respectively. The sample covariancematrix
of the observed variables is defined by �X = 1

N

∑N
i=1 Y

�
i Y�

i , where N = 5p and the

i.i.d. vectors Y1,Y2, . . . ,YN are drew from the gaussian distributionN (0, (Ŝ− L̂)−1).
Throughout this experiment, we use the following stopping criterion:

max

{ ‖Rk+1 − Rk‖F
1 + ‖Rk‖F ,

‖Sk+1 − Sk‖F
1 + ‖Sk‖F ,

‖Lk − Lk‖F
1 + ‖Lk‖F

}
< 10−5.

In the following, we are going to compare Algorithm 1 with TPADMM [28] by
solving (4.4). For Algorithm 1, we set β = 0.5, τ = 2.02(4+max{1−γ, γ 2−γ })/5.
For TPADMM, we set β = v = 0.5, M2 = M3 = v Ip. The initial points are
R0 = eye(p,p), S0 = R0, L0 = zeros(p,p),�0 = zeros(p,p). The numerical
results generated by Algorithm 1 and TPADMM are reported in Tables 2, 3 and 4.

From Tables 2, 3 and 4, several conclusions can be drawn here: (i) Both methods
successfully solved all the tested problems and can deal withmedium scale LVGGMS;
(ii) Numerical results in the three tables show that Algorithm 1 performs better than
TPADMM because Algorithm 1 always takes less number of iterations and less CPU
time. In fact, Algorithm 1 can achieve an improvement of at least 20% (16%) reduction
in the number of iterations (CPU time) over TPADMM; (iii) When the parameters α1
and α2 decrease, the advantage of Algorithm 1 over TPADMMbecomes more clearly;
(iv) Different to Problem 1, numerical results in the three tables also show that, for a
fixed (α1, α2), the performance of Algorithm 1 and TPADMM become better as the
parameter γ increases.

Problem 3 Linear homogeneous equations

Consider a system of linear homogeneous equations in four variables, which is a
special case of (1.1) with a null objective function and takes the form of

A1x1 + A2x2 + A3x3 + A4x4 = 0,
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Fig. 1 Evolution of the values of primal variables with respect to the number of iterations

where

A1 =
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⎞
⎟⎟⎠ .

We once again compare Algorithm 1 with TPADMM, where the various parameters
for the two methods are set as follows: We take β = 0.1, γ = 1.6, τ = 2.98, and
Ḡi = 0(i = 2, 3) for Algorithm 1, β = 0.1, v = 5, M2 = M3 = v I4 for TPADMM.
The initial points are x01 = x02 = x03 = x04 = λ0 = 1. The stopping criterion is set as

RelErr := log
(
max

{
max

i=1,2,3,4
{‖Ai (x

k
i − xk+1

i ‖∞}, ‖λk − λk+1‖∞}
})

< 10−5.

The maximum number of iteration is set 1000. In Figs. 1 and 2, the evolution of the
primal variables and relative error are displayed, respecitvely.

Simulation result of the simple problem shows faster convergence rate can be
obtained by the two methods for k ≤ 58. After k = 58, relative error of TPADMM
declined at a slower rate, and the descent rate of relative error of Algorithm 1 is still
quite stable. The numbers of iterations of Algorithm 1 and TPADMM are 94 and 593,
respectively. In fact, we observe that the performance of TPADMM is quite sensitive
to the parameter ν, and for ν = 1, 2, 10, 11, 12, TPADMM doesn’t satisfy the above
stopping criterion even for k = 1000.
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Fig. 2 Evolution of the values of relative error with respect to the number of iterations

5 Conclusion

This paper provides a sharper lower bound of the proximal parameter in the proximal
ADMM-type method for multi-block separable convex minimization, which can often
alleviate the over-regularization effectiveness for the corresponding subproblem, and
thus may speed up the convergence of corresponding method. The numerical results
have verified the advantage of the smaller proximal parameter.
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