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Abstract Weconsider in this paper an ecologicalmodel, in a predator–prey interaction
with the presence of a herd behavior. For the analysis of the model, the existence of
positive solution and also the existence Hopf bifurcation, Turing driven instability, and
Turing–Hopf bifurcation point have bee proved. Then by calculating the normal form,
on the center of the manifold associated to the Hopf bifurcation points, the stability
of the periodic solution has been proved. In the last part of the paper, numerical
simulations has been given to illustrate our theoretical analysis.
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1 Introduction

Since the works of Volterra [1] a huge improvement has been noticed in popula-
tion dynamics in general and ecosystems in particular; from a half century, several
mathematicians followed their steps and proposed several models for modeling the
interaction between the two species “predators” and “preys”, and each time it was
intended to include a new population phenomenon. someone of them assumed that
predator population has hyperbolic mortality for instance [2], and others assumed that
the predators has a quadratic mortality [3], others changed the interaction functional
to considering a specific population phenomenon. For instance Holling I interaction
functional [4–6], models only the predation of the preys, but for Holling II interaction
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functional [4], models both the predation of the preys and the search of the predators
for the preys. For more examples of interaction types, we cit Beddington–DeAngelis
interaction type [7–9], Holling I–III interaction type [4,10–13], Ratio dependent inter-
action type [14,15].

Recently, herd behavior has been included. It is a behavior that the preys population
uses to defend against predators population. It make a group called “group defense”,
such that when the predators make contact with the preys population, they can’t reach
the inside of the preys groupwhichmeans that the predators hunt only on the boundary
of preys herd. It is the reason of defining this dynamic of preys by the square root of
the preys population; for instance the works of [3,16–20]; and several models in the
same orientation to appear in the interface. Now calling the works of E. Venturino and
Y. Song; in [3,17,18,21–23], they assumed that this phenomenon is a natural behavior
of prey, but in [16] it has been assumed that is an instant cause of a disease that infects
the preys population.

In the present work a standard method has been given to include herd behavior in
some interaction functionals, and a difference between this functionals has been given,
and therefor it is the master key of the present work work. Motivated by the previous
works the proposed model is the following one:

⎧
⎨

⎩

dR
dt = r R

(
1 − R

k

)− aRP
1+b

√
R+cR

,

dP
dt = −mP + eaRP

1+b
√
R+cR

,
(1.1)

where R(t) and P(t) stand respectively for the preys and the predators densities at the
time t, r is the reproduction rate of prey population and k the carrying capacity, e is the
conversion rate of preys biomass into predators biomass and note that 0 < e < 1,m
is the mortality rate, b and c related to search coefficient of the predator for the prey, a
represents the hunting rate, where a

c is the maximum quantity of preys can be captured
by a predator.

In the case of herd behavior, the predators hunt exclusively on the boundary of
preys herd. For the ecological meaning of the interaction functional in system (1.1)
h(R, P) = aRP

1+b
√
R+cR

some previous works are recalled including herd behavior.

In [2,16] the authors use the interaction functional h1(R, P) = a
√
RP where

√
R

models the preys herd. This functional is the Holling I interaction functional with
the presence of prey group. In [3], the authors propose the interaction functional

h2(R, P) = a
√
RP

1+b
√
R
which is the Holling II interaction functional in the presence

of preys herd where b is the search rate of P for R. In this work, the generalized
Holling III interaction functional [11,13,24] defined by h3(R, P) = aR2P

1+bR+cR2 has
been considered, and a simple assumption on this functional has been used to include
the preys herd. In the presence of this behavior the predators hunt only in the boundary
of the preys group which means that the functional h3(R, P) becomes h4(R, P) =
h3(

√
R, P) = aRP

1+b
√
R+cR

; where h4(R, .) saturates at large prey population densities

comparing h1(R, .) and h2(R, .) (see Fig. 1).
In real world, the prey and the predator always in movement, for modeling this

dynamic we will consider that the two populations has a spatial disperse; the spatial
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Fig. 1 Three types of modified Holling interaction functionals in the presence of herd behavior for a =
0.5, b = 0.5, c = 0.5

dynamic of the predator–prey models including spatial diffusion has been widely
studied in literature, see [13–15,25–28]. Here, we will consider that both considered
population are in an insolated patch, which means that the immigration is neglected
using the Neumann boundary conditions. Considering the above discussion the system
(1.1) can be rewritten in the presence of spatial diffusion as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Rt (x, t) − d1Rxx (x, t) = r R(x, t)

(

1 − R(x, t)

k

)

− aR(x, t)P(x, t)

1 + b
√
R(x, t) + cR(x, t)

x ∈ (0, L),

Pt (x, t) − d2Pxx (x, t) = −mP(x, t) + eaR(x, t)P(x, t)

1 + b
√
R(x, t) + cR(x, t)

t ≥ 0,

(1.2)
with the associated Neumann boundary conditions

{
Rx (0, t) = Rx (L , t) = Px (0, t) = Rx (L , t) = 0 ∀t ≥ 0,
R(x, 0) = R0(x) ≥ 0 P(x, 0) = P0(x) ≥ 0 x ∈ (0, L); (1.3)

where x is the covered distance by P or R, and L is the maximum distance that can
be covered by the prey or the predator, d1, d2 are the positive diffusion constants for
the preys and the predators , respectively.

The paper is organized as follow. In Sect. 2, the existence of a positive solution
of the system (1.2) and a priori bound of solution and also the global stability of
the equilibrium state E0 have been proved. In Sect. 3, the roots of the characteristic
equation have been calculated and the existence of Hopf bifurcation and Turing driven
instability also have been proved and the Turing–Hopf bifurcation points has been
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calculated. In Sect. 4 the normal form on the center of themanifold of Hopf bifurcation
has been calculated for determining the direction and the stability of Hopf bifurcation,
also some numerical simulations is used to illustrate the analytic results. A conclusion
section ends the paper. We also mention the works [29–32] for further reading.

2 Existence of a positive solution, a priori bound of solution, global
stability

In this section the existence of a positive solution of the system (1.2) has been proved
under Neumann boundary condition, then some estimation of the solution has been
given, at last the global stability of the equilibrium (k, 0) has been shown under some
condition of the parameters.

Obviously the system (1.2) has three equilibrium states E0 = (0, 0), E1 = (k, 0)
and E∗ = (R∗, P∗) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R∗ =
⎛

⎝
b +

√
b2 + 4( aem − c)

2( aem − c)

⎞

⎠

2

,

P∗ = er
m R∗

(

1 − R∗

k

)

> 0,

(2.1)

which exists if and only if
k > R∗ and ae

m > c, (2.2)

(there may exist a fourth equilibrium state, which is strictly non positive and thus not
biologically significant) for the existence of a positive solution and the bounders of
the solution the following theorem is used:

Theorem 2.1 For P0(x) ≥ 0, R0(x) ≥ 0 and R0(x), P0(x) not identically null, then
the system (1.2) has a unique solution (R(x, t), P(x, t)) such that 0 < R(x, t) <

R∗(t) and 0 < P(x, t) < P∗(t) for t > 0 and x ∈ (0, L) where (R∗(t), P∗(t)) is
the unique solution of the ordinary differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Rt = r R(x)

(

1 − R(x)

k

)

t > 0,

Pt = −mP(x) + eaR(x)P(x)

1 + b
√
R(x) + cR(x)

t > 0,

R(0) = R∗
0 = sup

x∈(0,L)

R0(x), P(0) = P∗
0 = sup

x∈(0,L)

P0(x).

(2.3)

Further we have limt→+∞ sup R(x, t) = k and

lim
t→+∞ sup

1

L
×
∫

�

P(x, t)dx ≤ m + r

m
ek. (2.4)
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Proof By putting

f (R, P) = r R

(

1 − R

k

)

− aRP

1 + b
√
R + cR

,

g(R, P) = −mP + eaRP

1 + b
√
R + cR

, (2.5)

where f and g verify the condition:

fP = − aR

1 + b
√
R + cR

< 0,

gR = eaP

(1 + b
√
R + cR)2

> 0. (2.6)

It is obvious to see that the functionals f and g are Lipschitz functions whichmeans
there exist c1, c2 such that for positive R1, R2, P1, P2 we have

| f (R1, P1) − f (R2, P2)| ≤ c1(|R1 − R2| + |P1 − P2|),
| f (R1, P1) − f (R2, P2)| ≤ c2(|R1 − R2| + |P1 − P2|). (2.7)

From (2.6) to (2.7) then f and g is mixed quasi monotone functional inR(see [33]);
now putting (R2(x, t), P2(x, t)) = (R∗(t), P∗(t)) satisfying the equation:

{
∂R2
∂t − d1R2xx − f (R2, P2) = 0 ≥ 0,
∂P2
∂t − d2P2xx − g(R2, P2) = 0 ≥ 0,

(2.8)

and (R1(x, t), P1(x, t)) = (0, 0) satisfying:

{
∂R1
∂t − d1R1xx − f (R1, P1) = 0 ≤ 0,
∂P1
∂t − d2P1xx − g(R1, P1) = 0 ≤ 0,

(2.9)

and 0 ≤ R0(x) ≤ R∗
0 , 0 ≤ P0(x) ≤ P∗

0 . (R1(x, t), P1(x, t)) and (R2(x, t), P2(x, t))
called the lower and the upper solution (or sub- and super-solution) of the system
(1.2); it is obvious to see that the functions f and g in addition of being Lipschitz, are
homogenous which means f (R1, P) − f (R2, P) ≥ −c1(R1 − R2) and f (R, P1) −
f (R, P2) ≥ −c1(P1 − P2) for R1 > R2 and P1 > P2 where c1 is Lipchitz constant of
the functional f and the same idea for the functional g that means all the conditions of
the Theorem 2.1 in [33] are verified, which leads to the global existence of the solution
of the system (1.2) satisfying the condition 0 ≤ R(x, t) ≤ R∗(t) and 0 ≤ P(x, t) ≤
P∗(t) for t > 0 and x ∈ (0, L).

The strong maximum principle implies that 0 < R(x, t), 0 < P(x, t) for t > 0
and x ∈ (0, L) that completes the first part of the proof.

Note that R(x, t) ≤ R∗(t) and P(x, t) ≤ P∗(t) where R∗(t) is the unique solution
of the equation Rt = r R(x)(1 − R(x)

k
) and R(0) = R∗

0 > 0.
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It is easy to verify that R∗(t) → k as t → +∞ so for any ε > 0 there
exist T0 > 0 such that R(x, t) ≤ k + ε for t > T0, x ∈ [0, L] witch leads to
limt→+∞ sup R(x, t) = k.

Putting

β(t) =
L∫

0

R(x, t)dx δ(t) =
L∫

0

P(x, t)dx, (2.10)

and
w(t) = eβ(t) + δ(t), (2.11)

then

dβ

dt
=

L∫

0

d1Rxxdx +
L∫

0

[

r R

(

1 − R

k

)

− aRP

1 + b
√
R + cR

]

dx,

dδ

dt
=

L∫

0

d2Pxxdx +
L∫

0

[

−mP + eaRP

1 + b
√
R + cR

]

dx . (2.12)

Using Neumann boundary condition
dw

dt
becomes

dw

dt
= e

dβ

dt
+ dδ

dt
,

= −mδ(t) + er

L∫

0

R

(

1 − R

k

)

dx .
(2.13)

Adding and subtracting the term meβ(t)

dw

dt
= −m(eβ(t) + δ(t)) + meβ(t) + er

L∫

0

R

(

1 − R

k

)

dx, (2.14)

which leads to
dw

dt
≤ −mw + eβ(t)(m + r). (2.15)

From limt→+∞ sup R(x, t) = kwe have limt→+∞ β(t) ≤ Lk thus for small ε > 0
there exists T > 0 such that

dw

dt
≤ −mw + eLk(m + r), (2.16)

and note that w(t) is the solution of

dw

dt
= −mw + eL(k + ε)(m + r), (2.17)
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then
lim

t→+∞ w(t) = m + r

m
e(k + ε)L , (2.18)

using the comparison principle and (2.16) we can obtain for T2 > T1

L∫

0

P(x, t)dx = δ(t) < w(t) ≤ m + r

m
e(k + ε)L + ε t > T2, (2.19)

that means

lim
t→+∞ sup

1

L
×

L∫

0

P(x, t)dx ≤ m + r

m
ek. (2.20)

This completes the proof. 
�
Now we consider the carrying capacity of the prey k as a bifurcation parameter, and
the Jacobian matrix of the system (1.1) can be defined as follows:

J (R, P) =
(
a11 a12
a21 a22

)

, (2.21)

where

a11 = r

(

1 − 2R

k

)

− aP
1 + b

√
R + cR − R

(
b

2
√
R

+ c
)

(1 + b
√
R + cR)2

,

a12 = − aR

1 + b
√
R + cR

< 0,

a21 = eaP
1 + b

√
R + cR − R

(
b

2
√
R

+ c
)

(1 + b
√
R + cR)2

> 0,

a22 = −m + eaR

1 + b
√
R + cR

, (2.22)

and D = diag(d1, d2) and corresponding the Neumann boundary condition the real-
valued Sobolev space can be defined as follows.

χ =
{

U = (R, P)T ∈ H2(0, L)�
∂R

∂x
= ∂R

∂x
= 0 at x = 0, L

}

, (2.23)

ForU1,U2 ∈ χ , defining the usual inner product 〈U1,U2〉 = ∫ L
0 (R1R2+ P1P2)dx

and the associated Hilbertian norm of χ noted by ‖ · ‖2,2
The associated eigenvalue problem is given by:

{−�′′ = μ� x ∈ (0, L),

�′(0) = �′(L) = 0,
(2.24)
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it is well known that μn = (
nπ

L
)2 and cos(

nπ

L
x) (n = 0, 1 . . .) are the eigenvalues

and the eigenfunctions of the problem (2.24) on χ , respectively.
Under the boundary condition of we look for the solution of the form:

U =
+∞∑

i=0

(
an
bn

)

cos
(nπ

L
x
)
eλt . (2.25)

In order of the global stability of E1 we have the following results

Theorem 2.2 The equilibrium state E1 = (k, 0) of the system (1.2) is globally asymp-
totically stable when R∗ > k and E∗ does not exist.

Proof The linearized system around the stationary state E1 = (k, 0) is given by:

Ut = D�U + J (k, 0). (2.26)

The eigenvalues of the matrix −(
nπ

L
)2D + J (k, 0) are:

λ1 = −r − d1
(nπ

L

)2
< 0,

λ2 = −m + eak

1 + b
√
k + ck

− d2
(nπ

L

)2
,

(2.27)

−m + eak

(b + √
k)(c + √

k)
= 0 is equivalent to R∗ = k

which means when R∗ > k then λ2 < 0 for any n ≥ 0 leads to the local stability
of the equilibrium E1 for R∗ > k, and it is obvious to see that k = k̃(n) are the
bifurcating points of the forward bifurcation where k̃ are the solution of the equation
of the variable k:

(

m + d2
(nπ

L

)2
)

+ b

(

m + d2
(nπ

L

)2
)√

k +
(

cm + cd2
(nπ

L

)2 − ae

)

k = 0.

(2.28)
Now for the global attraction of E1 the proof of Theorem 2.1 in [33] has been used,

and defining respectively the upper constant and the lower solution of the system (1.2)
by (R1, P1) = (k+ε, M) and (R2, P2) = (ε, 0)where ε and M are positive constants
and ε is sufficiently small; and also the monotone sequences for coupled parabolic

equation defined in [33] by (R
(m)

, P
(m)

) and (R(m), P(m)) for m = 1, 2, . . . such that

⎧
⎪⎪⎨

⎪⎪⎩

R
(m) = R

(m−1) + 1

c1
f (R

(m−1)
, P(m−1)),

P
(m) = P

(m) + 1

c2
g(R

(m−1)
, P

(m−1)
),

(2.29)
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and ⎧
⎪⎪⎨

⎪⎪⎩

R(m) = R(m−1) + 1

c1
f (R(m−1), P

(m−1)
),

P(m) = P(m) + 1

c2
g(R(m−1), P(m−1)),

(2.30)

such that (R
(0)

, P
(0)

) = (k + ε, M) and (R(0), P(0)) = (ε, 0).

FromLemma 2.1 in Pao [33], (R
(m)

, P
(m)

) → (R, P) and (R(m), P(m)) → (R, P)

such that

ε ≤ R(m) ≤ R(m+1) ≤ R ≤ R ≤ R
(m+1) ≤ R

(m) ≤ k + ε,

ε ≤ P(m) ≤ P(m+1) ≤ P ≤ P ≤ P
(m+1) ≤ P

(m) ≤ M,
(2.31)

if ε = 0 then (R(0), P(0)) = (0, 0) leads to P = 0 from [33] (R, P) and (R, P)

verify:
f (R, P) = 0, f (R, P) = 0,
g(R, P) = 0, g(R, P) = 0,

(2.32)

which is equivalent to

r R
(
1 − R

k

)
= 0, −mP + eaRP

1 + b
√
R + cR

= 0,

r R
(
1 − R

k

)
− aRP

1 + b
√
R + cR

= 0, −mP + eaRP

1 + b
√
R + cR

= 0.
(2.33)

From the first equation of (2.33), R = k can be deduced, and the other equations
implies that P = 0, R = k and from Theorem 2.2 of Pao [33] the solution (R, P)

satisfies:
(R, P) → (k, 0) as t → +∞ when ε < R0(x) ≤ k + ε.
Using the comparison theorem the functional η(x, t) that verify R(x, t) ≤ η(x, t)

can be defined where (x, t) ∈ [0, L] × [0,+∞) by the following parabolic equation

⎧
⎨

⎩

ηt = d1ηxx + rη
(
1 − η

k

)
t > 0, x ∈ (0, L),

∂η
∂x (0, t) = ∂η

∂x (L , t) = 0 t > 0,
η(x, 0) = R0(x),

(2.34)

and η(x, t) → k as t → +∞ and there exists t0 > 0 such that R(x, t) ≤ k + ε in
[0, L]×[t0,+∞)which means the equilibrium state E1 globally attracts the solutions
and is locally asymptotically stable, leads to theglobal stability of E1.Which completes
the proof 
�

3 Linear stability, Turing instability and bifurcation analysis

In this section the stability of the positive equilibrium E∗ has been analyzed, the
existence of the Hopf bifurcation, and Turing–Hopf bifurcation points for the system
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(1.2), Throughout the rest part of the paper, the condition (2.2) has been assumed; for
the simplicity to the readers the section has been splitted into three subsections.

3.1 The characteristic equation

The system (1.2) can be rewritten as follows:

Ut = D�U + J (R∗, P∗)U + F(U ), (3.1)

with

J (R∗, P∗) =
(
A(k) B
C(k) 0

)

, (3.2)

where

A(k) = r

(

1 − 2R∗

k

)

− aP∗ 1 + b
√
R∗ + cR∗ − R∗

(
b

2
√
R∗ + c

)

(1 + b
√
R∗ + cR∗)2

, (3.3)

B = −m

e
< 0, (3.4)

C(k) = eaP∗ 1 + b
√
R∗ + cR∗ − R∗

(
b

2
√
R∗ + c

)

(1 + b
√
R∗ + cR∗)2

> 0, (3.5)

and

D� = diag

(

d1
∂2

∂x2
, d2

∂2

∂y2

)

, (3.6)

F(U ) =

⎛

⎜
⎜
⎝

r R

(

1 − R

k

)

− aPR

1 + b
√
R + cR

− A(k)R − BP

−m + eaR

1 + b
√
R + cR

− C(k)R

⎞

⎟
⎟
⎠ . (3.7)

Where F(U ) is a nonlinear function around the equilibrium E∗. The linearized
system of (1.2) around E∗ is given by:

Ut = D�U + J (R∗, P∗)U. (3.8)

The matrix −(
nπ

L
)2D + J (R∗, P∗) is given by

−
(nπ

L

)2
D + J (R∗, P∗) =

⎛

⎜
⎝

A(k) − d1
(nπ

L

)2
B

C(k) −d2
(nπ

L

)2

⎞

⎟
⎠ . (3.9)
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The eigenvalues of the matrix (3.9) are the solution of the characteristic equation
given by

λ2 − Tn(k)λ + Dn(k) = 0, (3.10)

with

Tn(k) = A(k) − (d1 + d2)
(nπ

L

)2
,

Dn(k) = d1d2
(nπ

L

)4 − d2A(k)
(nπ

L

)2 − BC(k).
(3.11)

3.2 Hopf bifurcation

In this subsection, the existence of the Hopf bifurcation and the bifurcation points
have been calculated, further we will give the order of this last. Recall the existence
of Hopf bifurcation occurs if and only if Tn(k) = 0 and Dn(k) > 0.

Obviously D0(k) > 0 and limn→+∞ Dn(k) = +∞.

Lemma 3.1 The positive equilibrium E∗, whenever exists, verify the following con-
dition:

T = R∗ − m

ae

(

1 + 1

2
b
√
R∗
)

> 0. (3.12)

It is easy to prove the Lemma 3.1 using the equation of the existence of equilibrium

point R∗ = b
√
R∗ + 1

( aem − c)
and under the condition (2.2) T can be written as follows

T
(ae

m
− c

)
= b

√
R∗ + 1 − m

ae

(

1 + 1

2
b
√
R∗
)(ae

m
− c

)
, (3.13)

= b
√
R∗
(
1 + mc

ae

)
+ mc

ae
> 0. (3.14)

Recall that the eventual Hopf bifurcation points must be the solution of the equation
in the variable k

A(k) − (d1 + d2)
(nπ

L

)2 = 0, (3.15)

which is equivalent to

r

(

1 − 2R∗

k

)

− aP∗ 1 + b
√
R∗ + cR∗ − R∗

(
b

2
√
R∗ + c

)

(1 + b
√
R∗ + cR∗)2

− (d1 + d2)
(nπ

L

)2 = 0.

(3.16)

Using P∗ = er
m R∗(1 − R∗

k
) and ae

m R∗ = 1 + b
√
R∗ + cR∗ then (3.15) becomes:

r

(

1 − 2R∗

k

)

− mr

eaR∗

(

1 − R∗

k

)(

1 + 1

2
b
√
R∗
)

− (d1 + d2)
(nπ

L

)2 = 0,

(3.17)
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then the eventuels bifurcating points are given by

k(n) =
2r(R∗)2 − rm

ae
R∗
(
1 + 1

2b
√
R∗
)

(

r − (d1 + d2)
(nπ

L

)2
)

R∗ − rm

ae

(
1 + 1

2b
√
R∗
) . (3.18)

Lemma 3.2 Putting

N1 =
[√

rT
R∗
( L

π

)2 1
(d1+d2)

]

. (3.19)

Where [.] is the integer part and k(n) is defined in (3.18); Hopf bifurcation occurs for
the system (1.2) at k = k(n) and for n ≤ N1 and k(n) verify the following estimation:

R∗ < k(0) < k(1) < · · · < k(n) < k(n + 1) < · · · < k(N1) ≤ T∞, (3.20)

with
T∞ = r

R∗ T > 0. (3.21)

Where T is defined in (3.12).

Proof Note that Hopf bifurcation occurs if and only if Tn(k) = 0, leads to

T0(k) = (d1 + d2)
(nπ

L

)2
, (3.22)

with

T0(k) = A(k) = r

(

1 − 2R∗

k

)

− mP∗

eR∗2

(

1 + 1

2
b
√
R∗
)

, (3.23)

and it is easy to see that limk→R∗ T0(k) = −r < 0

A(k) = r

k

(

−2R∗ + mr

ea

(

1 + 1

2
b
√
R∗
))

+ r

R∗

(

R∗ − mr

ea

(

1 + 1

2
b
√
R∗
))

,

(3.24)
then

T ′
0(k) = r

k2

(

2R∗ − mr

ea

(

1 + 1

2
b
√
R∗
))

> 0, (3.25)

which means
T ′
0(k) = r

k2
(R∗ + T ) > 0, (3.26)

and
lim

k→+∞ T0(k) = T∞ > 0. (3.27)

Where T∞ is defined by (3.21); from (3.22) to (3.26), T0(k) is strictly increasing
as a function of k and intersect the horizontal axis at

k∗ = (R∗ + T )R∗

T
> 0, (3.28)
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Fig. 2 Numerical simulation for the existence and the order of Hopf bifurcation points the solution of the
Eq. (3.22) where a = 1.5; b = 1.02; c = 1.02; e = 0.5;m = 0.5; r = 1.2; d1 = 0.02; d2 = 0.1 and
L = 5. Which means R∗ = 8.1497; N1 = 4; T = 7.7404 and T∞ = 1.1397 and its obvious to see that
Fig. 2 show the order of Hopf bifurcation points shown in (3.20)

the Eq. (3.22) possesses a solution if and only if

(d1 + d2)
(nπ

L

)2
< lim

k→+∞ T0(k) = r

R∗ T, (3.29)

in other words, the Eq. (3.22) posses solutions if and only if n < N1 where N1 is
defined in (3.19).

The function (d1 + d2)(
nπ

L
)2 is strictly increasing as a function of n then the

estimation in (3.20) is obviously verified (see Fig. 2) and this completes the proof. 
�
Now we put λ(k) = α(k) ± iω(k) as the solution of the characteristic equation

with:
α(k(n)) = 0 and ω(k(n)) = √

D(k(n))

α′(k(n)) = r

2k2(n)
(R∗ + T ) > 0. (3.30)

Under the condition (3.30) the bifurcation points and their order is given by the fol-
lowing theorem

Theorem 3.3 If there exists N∗ ≤ N1 a critical value j0, . . . , jN∗ such that j0 =
0 < j1 < · · · < jN∗ < N1 and Diξ (k(iξ)) > 0, ξ = 0 . . . N∗ we have the following
estimation:

R∗ < k(0) < k(1) < · · · < k(n) < k(n + 1) < · · · < k( jN∗). (3.31)
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3.3 Linear stability and Turing instability

In this subsection, a sufficient condition for Turing instability has been given, before
that recall that the existence of Turing instability exhibit when the two following
conditions holds:

(i) The equilibrium point is linearly stable in the absence of diffusion.
(ii) The equilibrium point becomes instable in the presence of diffusion.

Obviously D0(k) > 0, then Dn(k) < 0 need to be proved for some values of n.

Dn(k) = D

((nπ

L

)2
)

= d1d2

((nπ

L

)2
)2

− d2A(k)
(nπ

L

)2 − BC(k). (3.32)

Note that D0(k) > 0 so the minimum of the function (3.32) occurs when

(nπ

L

)2 =
(nπ

L

)2

cr
, (3.33)

with (nπ

L

)2

cr
= A(k)

2d1
> 0, (3.34)

and D((
nπ

L
)2cr ) < 0 is a sufficient condition for Turing instability, that is

d1d2

(
A(k)

2d1

)2

− d2A(k)
A(k)

2d1
− BC(k) < 0, (3.35)

− d2
4d1

(A(k))2 − BC(k) < 0, (3.36)

d2
4d1

(A(k))2 > −BC(k) > 0, (3.37)

then

A(k) > 2

√
md1
ed2

c(k) > 0, (3.38)

It is a sufficient condition for having Turing driven instability. for the time biens
we should be focus on studying the intersection between the Hopf bifurcation curve
and Turing driven instability curve, not that this point (whenever it exists) is called
Turing–Hopf bifurcation point.

Obviously the condition Tn = 0 and Dn > 0 is a necessary condition for the
existence of Hopf bifurcation and Tn = 0 which equivalent to

A(k) − (d1 + d2)
(nπ

L

)2 = 0, (3.39)
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leads to

kH (d1, n) = R∗r(R∗ + T )

−(d1 + d2)
(nπ

L

)2
R∗ + rT

, (3.40)

and Dn = 0 equivalent to

d1d2
(nπ

L

)4 − d2A(k)
(nπ

L

)2 − BC(k) = 0, (3.41)

replacing A(k) = −r

k
(R∗ + T )+ r

R∗ T and C(k) = ae2r

mR∗ (R∗ − T )− ae2r

mk
(R∗ − T )

in (3.41)

kT (d1, n) = r
ae(R∗ − T ) − (R∗ + T )

(nπ

L

)2

d1d2
(nπ

L

)4 − r

R∗ T
(nπ

L

)2 + aer

mR∗ (R∗ − T )

, (3.42)

The two curves defined in (3.40) and (3.42) intersect at

d1 = d∗
1 =

(
L

nπ

)2 [

−d22

(nπ

L

)4 R∗

a

(
R∗ + T

R∗ − T

)

+Tr + r R∗(R∗ + T ) − d2
(nπ

L

)2
]

. (3.43)

Defining the functional

f (x) =
(
L

π

)2 1

x

[

−d22

(π

L

)4 R∗

a

(
R∗ + T

R∗ − T

)

x2 + Tr

+r R∗(R∗ + T ) − d2
(π

L

)2
x

]

, (3.44)

with

f ′(x) =
(π

L

)2 1

x2

[

−d22

(π

L

)4 R∗

a

(
R∗ + T

R∗ − T

)

x2 − Tr − r R∗(R∗ + T )

]

< 0,

(3.45)
whichmeans that the functional f is strictly decreasing as n growth and limn→0+ f (x)
= +∞ and limn→+∞ f (x) = −∞ and there exist a positive integer n∗ such that

f (x) =
{

> 0 if 1 ≤ n < n∗,
< 0 if n∗ ≤ n.

(3.46)

leads to 1 ≤ n∗ < n∗ such that the Hopf bifurcation curve defined in (3.40) intersects
the Turing instability curve (3.42) noted by Ln∗ , at the point (k

∗, d∗
2 ) this point called

Turing–Hopf bifurcation point, for the existence of homogenous and nonhomogeneous
periodic solution is given by the following theorem:
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Theorem 3.4 We assume that the existence condition of the positive equilibrium E∗
(2.2) holds, and defining the Hopf curve by Hn in the k − d1 plane defined in (3.40)

(i) If n = 0 the equilibrium E∗ is asymptotically stable when 0 < k <
R∗(R∗ + T )

T
= k∗ and instable when k >

R∗(R∗ + T )

T
(ii) The system (1.2) has a Hopf bifurcation near E∗ when k = kH (d1, n) and has a

homogenous periodic solution for n=0, and nonhomogeneous periodic solution
when n = 1, 2, . . . , jN∗

4 Normal form on the center of manifold for Hopf bifurcation

In this section the papers [15,34–37] has been followed and k has been used as a
bifurcation parameter. Assuming that k∗ = k∗

H (n) where k∗
H (n) is defined by the

Eq. (3.15) and introducing the variable μ = k − k∗
H (n) and rewriting the positive

equilibrium E∗ point in function of μ by putting k = μ + k∗
H (n) then we have:

u∗(μ) = R∗ and v∗(μ) = P∗(μ + k∗). (4.1)

Putting
R̃(., t) = R(., t) − u∗(μ) P̃(., t) = P(., t) − v∗(μ), (4.2)

and
Ũ (t) = (R̃(., t), P̃(., t))T and Ũ∗ = (u∗(μ), v∗(μ))T , (4.3)

Rewriting system (1.2) in the form:

dŨ (t)

dt
= D�Ũ + L0(Ũ ) + g(Ũ , μ), (4.4)

with D = diag(d1, d2) and L0(Ũ ) = J (Ũ∗)Ũ
and

g(Ũ , μ) =
∑

i+ j+l≥2

1

i ! j !l!gi jl R̃
i P̃ jμl , (4.5)

gi jl =
(
g(1)
i jl , g

(2)
i jl

)
, (4.6)
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with

g(k)
i jl = ∂ i+ j+l g(k)(0, 0, 0)

∂ i R∂ j P∂ ilμ
, k = 1, 2, (4.7)

g(1)(R̃, P̃, μ) = r(R̃ + u∗(μ))

(

1 − R̃ + u∗(μ)

μ + k∗

)

− a(P̃ + v∗(μ))(R̃ + u∗(μ))

1 + b
√

R̃ + u∗(μ) + c(R̃ + u∗(μ))

,

g(2)(R̃, P̃, μ) = −m(P̃ + v∗(μ)) + ae(P̃ + v∗(μ))(R̃ + u∗(μ))

1 + b
√

R̃ + u∗(μ) + c(R̃ + u∗(μ))

.

(4.8)

The linearized system of (4.4) around the origin is:

dŨ (t)

dt
= �(Ũ ). (4.9)

Now defining the normalized eigenfunction of the problem (2.6)

ϕn(x) =
cos

(nπ

L
x
)

∥
∥
∥cos

(nπ

L
x
)∥
∥
∥
2,2

, (4.10)

and putting
β1
n (x) = (ϕn(x), 0)

T β2
n (x) = (0, ϕn(x))

T . (4.11)

Let �n be the set of all eigenvalues of (4.9), under the form λ = ±iωn and the
associated invariant manifold set is:

ϒn = span{< ϕ(.), β i
n > β i

n /ϕ(.) ∈ χ, i = 1, 2}. (4.12)

It is easy to see that �(ϒn) ⊂ span{β i
n, i = 1, 2} n ∈ N0; and let Y (t) ∈ R

2 be
such that Y T (t)(β1

n , β
2
n )

T ∈ ϒn .
In the invariant manifold� the linear partial differential equation (4.9) is equivalent

to the linear system:

Ẏ (t) = −
(nπ

L

)2
diag(d1, d2) + L0(Y (t)) Y (t) ∈ R

2. (4.13)

It is obvious to see that (4.9) has the same characteristic equation ( 3.1), nowdefining
the matrix

Mn = −
(nπ

L

)2
diag(d1, d2) + J (R∗, P∗). (4.14)
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Assume there exist n ∈ N0 such that Tn = 0 with k = k∗(n) then the eigenvalues
are ±iωn (or ±√

Dn) leads to
�n = {iωn,−iωn}; Bn = diag(iωn,−iωn); z = (z1, z2)T

Now defining

pn =
(
pn1
pn2

)

=
⎛

⎝
d2
( nπ

L

)2 + iωn

cn(k∗)
1

⎞

⎠ , (4.15)

qn =
(
qn1
qn2

)

=

⎛

⎜
⎜
⎝

cn(k∗)
2iωn

d1
( nπ

L

)2 − A(k∗) + iωn

2iωn

⎞

⎟
⎟
⎠ . (4.16)

Note that pn and qn verified the conditions

Mn pn = iωn pn; MT
n qn = iωnqn, (4.17)

qTn pn = 1, (4.18)

and the decomposition of χ into two subspaces

χ = χC ⊕ χS, (4.19)

with χC := {zq + z̄q̄ : z ∈ C} and the stable subspace χS := {U ∈ χ : 〈q,U 〉 = 0}
for any U ∈ χ there exists z ∈ C and w ∈ χS; and defining the 2 × 2 matrices
�n = (pn, p̄n) �n = col(qTn , q̄Tn ) where p̄n (resp q̄n) is the conjugate of pn (resp
qn); and �n�n = diag(1, 1) = I2.

Using the decomposition of the space χ to write Ũ as follows:

Ũ = z1 pnϕn(x) + z2 p̄nϕn(x) + w z1, z2 ∈ R ;w ∈ χ s . (4.20)

Following the same ideas in [15,26,38], the normal forms can be written as follows

z = Bnz +
(
Bn1z1μ

B̄n1z2μ

)

+
(
Bn2z21z2
B̄n2z1z22

)

+ O(z |μ|2 + |z|4), (4.21)

with

Bn1 = qn2(g
(2)
101 pn1 + g(2)

011 pn2), (4.22)

Bn2 =
⎧
⎨

⎩

1
2π Q021 + 1

4π F021 + 1
2
√

π
G00 if n = 0,

3
4Qn21 + 1

2
√

π
Gn0 + 1

2
√
2π

Gn(2n) if n �= 0,
(4.23)
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where

Qn21 = qTn
[
g300 pn1 |pn1|2 + g030 pn2 |pn2|2 + g210(p

2
n1 p̄n2 + 2pn2 |pn1|2)

+g120(p
2
n2 p̄n1 + 2pn1 |pn2|2)

]
, (4.24)

Fk21 = i

ωn

[

(qTn Cn20)(q
T
n Cn11) −

∣
∣
∣qTn Cn11

∣
∣
∣
2 − 2

3

∣
∣
∣qTn Cn02

∣
∣
∣
2
]

, (4.25)

Cn20 = C̄n02 = g200 p
2
n1 + 2g110 pn1 pn2 + g020 p

2
n2, (4.26)

Cn11 = g200
∣
∣
∣p2n1

∣
∣
∣+ 4g110Re{pn1 p̄n2} + 2g020

∣
∣
∣p2n2

∣
∣
∣ , (4.27)

and

Gni = qTn [(g200 pn1 + g110 pn2)Ani11 + (g110 pn1 + g020 pn2)Ani11

+Ani20(g200 p̄n1 + g110 p̄n2)

+(g110 p̄n1 + g020 p̄n2)Ani20], (4.28)

with

Ani20=
{

1√
π
(2iω0diag(1, 1) − M0)

−1(C020 − qT0 C020 p0 − q̄T0 C020 p̄0) if n, j =0,

cni (2iω0diag(1, 1) − M0)
−1Cn20 if n �= 0, j = 0, 2n,

(4.29)
and

Ani11 =
{

− 1√
π
M0

−1(C011 − qT0 C011 p0 − q̄T0 C011 p̄0) if n, j = 0,

−cni Mi
−1Cn11 if n �= 0, j = 0, 2n,

(4.30)

cni = 〈ϕ2
n(x)ϕi (x)〉. (4.31)

Note that

cni =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1√
π
i = n = 0,

1√
π
i = 0, n �= 0,

1√
π
i = 2n �= 0,

0 otherwise.

(4.32)

Using the change of variables

z1 = V1 − iV2, z2 = V1 − iV2, (4.33)

and
V1 = ρ cos θ, V2 = ρ sin θ, (4.34)
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Fig. 3 Numerical simulation for the intersection point between Hopf bifurcation curve (3.40) and Turing
instability curve (3.42)whenn = 3 ;a = 3.5; b = 1.02; c = 1.02; e = 0.5; m = 0.75; r = 1.2; d2 = 0.1
and L = 5. which means R∗ = 0.3863; ; T = 0.2452 and T∞ = 0.7616, and it is obvious to see that the
conditions (2.2) is verified (for the existence of the positive equilibrium E∗)
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Fig. 4 Trajectory and phase portraits of the system (1.1) when E∗ is locally asymptotically stable and
k = 14.75 < k∗ = 16.7304

then the normal form (4.21) can be written in the real coordinate using the above
change of variable, and becomes:

{
ρ̇ = Vn1μρ + Vn2ρ3 + O(μρ2 + |(μ, ρ)|4),
θ = −ωn + O(|(μ, ρ)|), (4.35)
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Fig. 5 Trajectory and phase portraits of the system (1.1) when E∗ is instable and k = 19 > k∗ = 16.7304

Fig. 6 Numerical simulation of the system (1.2) when the equilibrium (R∗, P∗) = (6.5394, 11.4886)
is locally asymptotically stable for k = 14.5 < k(0) = 14.75 and d1 = 0.2; d2 = 0.1; a = 1.75; b =
1.22; c = 1.12 e = 0.5;m = 0.5; r = 3.2 with the initial condition R(0, x) = 5 and P(0, x) = 10

with
Vn1 = Re{Bn1} Vn2 = Re{Bn2}. (4.36)

The dynamic of the system (1.2) near the bifurcation point is topologically equivalent
to (4.35) in the neighborhood of μ = 0 (μ sufficiently small) and using Lemma 3.1.2
in Wiggins [39,40] and [27,41]. Vn2 determines the direction of Hopf bifurcation and
the stability of periodic solutions, it is given by the following theorem:
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Fig. 7 Numerical simulation of the system (1.2) when the equilibrium (R∗, P∗) = (6.5394, 11.4886) is
instable when k = 15 > k(0) = 14.75 and d1 = 0.2; d2 = 0.1; a = 1.75; b = 1.22; c = 1.12 e =
0.5;m = 0.5; r = 3.2 with the initial condition R(0, x) = 5 and P(0, x) = 10 and shows the existence of
a homogenous periodic solution

Fig. 8 Numerical simulation of the system (1.2) when the equilibrium E∗ does not exist and E1 is globally
asymptotically stable when k = 6 < R∗ = 6.5394 and d1 = 0.02; d2 = 0.01; a = 1.75; b = 1.22; c =
1.12 e = 0.5;m = 0.5; r = 3.2 with the initial condition R(0, x) = 7 and P(0, x) = 3

Theorem 4.1 (i) If Vn2 < 0 then the system (4.20) has a supercriticalHopf bifurcation
in k = k∗

H (n) (that means the periodic solutions are stable) and the periodic solution
exist if Vn1 > 0 and μ > 0 or Vn1 < 0 and μ < 0

(ii) If Vn2 > 0 then the system (4.20)has a subcriticalHopf bifurcation in k = k∗
H (n)

(that means the periodic solutions are instable) and the periodic solution exist if
Vn1 > 0 and μ < 0 or Vn1 < 0 and μ > 0.
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Fig. 9 Numerical simulation of the system (1.2) when the equilibrium E∗ does not exist and E1 is globally
asymptotically stable when k = 6 < R∗ = 6.5394 and d1 = 0.02, d2 = 0.01 a = 1.75, b = 1.22, c =
1.12 e = 0.5;m = 0.5, r = 3.2 with the initial condition R(0, x) = 1 and P(0, x) = 4

5 Conclusion

We have dealt in this paper with a predator prey model with a spatial diffusion, a linear
mortality and a herd behavior. the generalized Holling III interaction functional with
the presence of herd behavior and a Neumann boundary condition have been chosen.

In Sect. 1, a presentation of our model is given and also the ecological meaning of
the parameters is provided. In Sect. 2, the existence of a unique positive solution was
proved using the upper-lower solution (sub super-solution) method, it is also proved
that the solution of the system (1.2) is bounded. Furthermore, the global stability of
E1 in the absence of E∗ is proved.

In Sect. 3, the local stability of the positive equilibrium E∗ has been studied in the
presence of diffusion and also Hopf bifurcation has been analyzed (calculating the
Hopf bifurcation points and their order), also a sufficient condition for Turing driven
instability has been given; and the presence of homogenous periodic solution when
n = 0 and nonhomogeneous periodic solution when n = 1, 2, . . . , N1 is shown. At
last, the intersection between bifurcation curve and Turing driven instability curve is
analyzed to prove the existence of a Turing–Hopf bifurcation point.

In the next section, the normal form of Hopf bifurcation is calculated beside some
properties of the periodic solution (the stability and the instability of the periodic
homogenous and inhomogeneous solution).

At the end of the paper, numerical simulation has been used to illustrate the theoret-
ical results, for instance Fig. 2 represents the order of Hopf bifurcation points shown
in Lemma 3.2, Fig. 3 the existence of Turing–Hopf bifurcation point; Figs. 4 and 5 the
presence of a periodic solution of the system (1.1) such that for k < k∗, the positive
equilibrium E∗ is locally asymptotically stable, but when k > k∗, it becomes instable
and there exists a stable periodic orbit. Figure 6 shows the existence of a periodic spiral
to E∗ when k < k(0); Fig. 7 the existence of a stable periodic homogenous solution

123



148 S. Djilali

of the system (1.2) for k > k(0). Finally Figs. 8 and 9 represent the global stability of
the equilibrium E1 for two different initial conditions when k < R∗.

Acknowledgements I am deeply grateful to the anonymous referees for providing constructive comments
that helped in improving the content of this paper.
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