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Abstract In this paper, an unconditionally stable compact finite difference scheme is
proposed for the solution of Asian option partial differential equation. Second deriva-
tive approximations of the unknowns are eliminated with the unknowns itself and
their first derivative approximations while retaining the fourth order accuracy and tri-
diagonal nature of the scheme. Proposed compact finite difference scheme is fourth
order accurate in spatial variable and second order accurate in temporal variable.More-
over, consistency, stability and convergence of the proposed compact finite difference
scheme is proved and it is shown that proposed compact finite difference scheme
is unconditionally stable. It is shown that for a given accuracy, proposed compact
finite difference scheme is significantly efficient as compared to the central difference
scheme. Numerical results are given to validate the theoretical results.

Keywords Compact finite difference scheme · Option pricing · Asian option

1 Introduction

Besides the plain vanilla options (European [1] and American [2]), there are some
other types of options known as exotic options [3]. Asian options [4,5], as one of
the example of exotic options, first appeared in 1987 when the Bankers Trust Tokyo
(hence the name Asian options) office developed a commercially used pricing formula
for options on the average crude oil price. Asian options are securities whose payoffs
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depend on the average value of the underlying asset price over some time period.
Because of this averaging feature, Asian options are difficult to price as compared
to the standard European options. A comparison between Asian options and plain
vanilla options is given in [6]. Asian options can be divided into two main categories
on the basis of taking average namely geometric Asian options and arithmetic Asian
options. Geometric Asian options [7] have closed form solution because geometric
mean of randomvariables also follows log-normal distribution. In practice,most Asian
options use the arithmetic average. Since the probability distribution of the sum of
log-normally distributed random variables is analytically intractable, the problem of
pricing arithmetic Asian options does not have a closed form solution. Therefore
various numerical techniques have been applied to price the Asian options.

Let us review some existing literature forAsian options. Zvan et al. [8] demonstrated
that numerical PDE techniques commonly used in finance for standard options are
inaccurate in the case of Asian options. They have used flux limiter to retain accuracy
while preventing oscillations. Vecer [9] has characterized Asian options by a one
dimensional PDE (by considering Asian options as a option on a traded account)
which could be applied to both discrete and continuous average Asian options. He
applied classical finite difference method to solve the Asian options PDE. Nothing is
said about the rate of convergence of the proposed method. Marcozzi [10] provided
variational methods for pricing the Asian options. A theoretical framework is given
by Marcozzi in his paper as numerical analysis of a finite element implementation.
He provided the method to find the price of Asian options which has early exercise
feature. Dubois et al. [11] has applied classical finite difference method to the Asian
options PDE on a moving grid and showed that their method is much faster than
method presented in [9]. They have not discussed about the rate of convergence of
their method in their paper. D’halluin et al. [12] gave a semi-Lagrangian approach
to price continuously observed fixed strike Asian options. A one-dimensional partial
integro differential equations (PIDEs) has been solved in this paper at each time step
and solution is updated using semi-Lagrangian time stepping. Rogers and Shi [5] has
obtained lower-bounds for both types of Asian options. Lower bound formulas in [5]
restrict the options maturity to exactly 1 year. This limitation has been removed by
Chen et al. [13] and Rogers–Shi formula is extended to general maturities. There are
someothermethods alsowhich has been applied to different types ofAsian options. For
eg. Fusai et al. [14] presented a new methodology based on maturity randomization to
price discretely monitored arithmetic Asian options when the underlying asset evolves
according to a generic Levy process. Foschi et al. [15] developed approximations for
the density, the price and the Greeks of path dependent options of Asian style, in a
general local volatility model. Zhang et al. [16] proposed an efficient pricing method
for arithmetic and geometric Asian options under exponential Levy processes based
on Fourier cosine expansions and Clenshaw–Curtis quadrature. Recently, Kumar et
al. [17] presented a numerical study of Asian options with radial basis functions based
on finite differences method.

The growing popularity of compact finite different schemes in recent years have
brought about a renewed interest towards the finite difference approach. High-order
compact finite difference schemes which consider not only the value of the function
but also those of its first or higher derivatives as unknowns at each discretization point
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have been extensively studied and widely used to solve the PDEs arising in com-
putational fluid dynamics and many areas of applied mathematics. In compact finite
difference schemes, high-order accuracy is obtained even for small number of grid
points. High-order compact schemes leads to a system of equations with coefficient
matrix having smaller band width as compared to classical finite difference schemes.
Various efforts towards numerical approximation of convection-diffusion equation
using high-order compact finite difference approach can now be seen in literature
[18–20]. For eg. in [18,19], modified differential equation approach is used to derive
the high-order accurate first and second derivative approximations and the truncation
error is compactly approximated. In these paper, original second order differential
equation is considered as an auxiliary relation and original equation is differentiated
in order to get the expressions for higher derivatives. Deriving compact schemes using
modified differential approach for variable coefficient PDEs is difficult in general. A
fourth order accurate compact finite difference scheme for convection-diffusion equa-
tion is proposed by Rigal [20]. He eliminated the highest order term in Taylor series
in order to get a fourth order accurate compact finite difference scheme. High-order
compact schemes have also been used in computational finance in order to compute
the option prices. In 2004, During et al. [21] discussed the convergence of high-order
compact finite difference scheme for nonlinear Black-Scholes equation. Zhao et al.
[22] discussed the high-order compact schemes for pricing American options. Tang-
man et al. [23] in 2008 discussed the high-order compact scheme for numerical pricing
of European and American options under Black-Scholes model.

In this paper,we propose an unconditionally stable compact finite difference scheme
for the solution of Asian option PDE. The main advantages of the proposed compact
finite difference scheme are as follows:

– Proposed compact finite difference scheme does not require the original equation
as an auxiliary equation. In proposed compact finite difference scheme, second
derivative approximations of the unknowns are eliminated with the unknowns
itself and their first derivative approximations while retaining the fourth order
accuracy and tri-diagonal nature of the scheme. Moreover the proposed compact
finite difference scheme can be used for constant as well as variable coefficient
PDEs without any modification.

– Proposed compact finite difference scheme is compared with the classical finite
difference schemes and Padé schemes for second derivative using Fourier analy-
sis and it is observed that proposed compact finite difference scheme has better
resolution characteristics.

– We apply the proposed compact finite difference scheme to the Asian option PDE
with various parameters and it is observed that proposed compact finite difference
scheme is fourth order accurate. Consistency, stability and convergence of the
proposed compact finite difference scheme is proved and it is shown that proposed
compact finite difference scheme is unconditionally stable.

– Moreover, efficiency of the proposed compact finite difference scheme is compared
to the central difference scheme by calculating the CPU time for a given accuracy
and it is observed that proposed compact finite difference scheme is more efficient
than central difference scheme.
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The rest of the paper is organized as follows. In Sect. 2, arithmetic Asian options
PDE is given. In Sect. 3, high-order compact finite difference approximations for first
and second derivatives are discussed. Fourier analysis for different finite difference
schemes is also discussed in this sections. In Sect. 4, temporal and spatial discretization
for Asian option PDE is given. Consistency, stability and convergence of the proposed
compact finite difference scheme is also proved in this section. In Sect. 5, numerical
results for arithmetic Asian options with high-order compact finite difference method
are given and obtained results are compared with the existing literature. In Sect. 6,
conclusion of this paper is given and future work is proposed.

2 Mathematical model

Asian options, introduced by Ingersoll [4], can be expressed as the solution of a two
dimensional PDE for pricing of path dependent options which can be written as:

∂V

∂t
+ 1

2
σ 2S2

∂2V

∂S2
+ r S

∂V

∂S
+ S

∂V

∂ I
− rV = 0, (2.1)

with the final condition.

V (S, I, t) = max

(
I

T
− K , 0

)
, (2.2)

where r is interest rate, T is the time to expiration, K is the stock price and σ is the
volatility of underlying asset and

I (t) =
∫ t

0
S(ξ)dξ.

As we know that it is numerically expensive to solve a two dimensional PDE, some
authors (eg. Rogers and Shi [5]) have tried to convert the above equation into one
dimensional PDE by using the transformations

V = Su(z, t), z = K − 1
T

∫ t
0 S(ξ)dξ

S
,

the above two-dimensional PDE (2.1) can be reduced to following one dimensional
PDE:

∂u

∂t
+ 1

2
σ 2z2

∂2u

∂z2
+

(
− 1

T
− r z

)
∂u

∂z
= 0, (z, t) ∈ (0,∞) × [0, T ), (2.3)

with the following terminal and boundary conditions
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u(z, T ) = max(−z, 0), z ∈ (0,∞),

u(0, t) = 1

rT
(1 − e−r(T−t)), t ∈ [0, T ],

lim
z→∞ u(z, t) = 0, t ∈ [0, T ].

(2.4)

Asian option PDE (2.3) with terminal and boundary condition (2.4) is backward in
time, so now take x = e−z and τ = T − t , the following initial boundary value
problem for Asian option is obtained:

∂u

∂τ
= 1

2
σ 2x2(ln x)2

∂2u

∂x2
+

[(
1

T
− r ln x

)
x

+1

2
σ 2x(ln x)2

]
∂u

∂x
, (x, τ ) ∈ (0, 1) × (0, T ], (2.5)

u(x, 0) = 0, x ∈ (0, 1),

u(0, τ ) = 0, τ ∈ [0, T ],
u(1, τ ) = 1

rT
(1 − e−rτ)), τ ∈ [0, T ]. (2.6)

The aboveAsian option PDE (2.5) is solved by compact finite difference schemewhich
is discussed in the following sections. The price of arithmetic averageAsian call option
is obtained from the solution of above PDE by the relation V (x, I, t) = Su(z, τ ).

3 High-order compact finite difference approximations for first and
second derivatives

In this section, we derive fourth order accurate second derivative approximations of
unknowns with the help of unknowns itself and their first derivative approximations.
From Taylor series, second order accurate central difference approximation for first
derivative can be written as follows

Δx fi = fi+1 − fi−1

2h
, (3.1)

and similarly second order accurate central difference approximation for second
derivative can be written as

Δ2
x fi = fi+1 − 2 fi + fi−1

h2
, (3.2)

where h is the grid size along x-direction and fi is the value of f (xi ) at a typical grid
point xi . Now, fourth-order accurate compact finite difference approximation for first
derivative (Padé scheme for first derivative) can be written as

1

4
f ′
i−1 + f ′

i + 1

4
f ′
i+1 = 1

h

[
−3

4
fi−1 + 3

4
fi+1

]
, (3.3)
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where f ′
i is first derivative approximation of unknown f at grid point xi . Similarly,

fourth order accurate compact finite difference approximation for second derivative
(Pad é scheme for second derivative) can be written as

1

10
f ′′
i−1 + f ′′

i + 1

10
f ′′
i+1 = 1

h2

[
6

5
fi−1 − 12

5
fi + 6

5
fi+1

]
, (3.4)

where f ′′
i is second derivative approximation of unknown f at grid point xi . Second

derivative approximations of unknowns are eliminated using the unknowns itself and
their first order derivative approximations while preserving the tri-diagonal nature of
the scheme. If f ′

i are also considered as a variable then from Eq. (3.3), we obtain

1

4
f ′′
i−1 + f ′′

i + 1

4
f ′′
i+1 = 1

h

[
−3

4
f ′
i−1 + 3

4
f ′
i+1

]
, (3.5)

Eliminating f ′′
i−1 and f ′′

i+1 from Eqs. (3.4) and (3.5), we obtain second derivative
approximation as follows

f ′′
i = 2

fi+1 − 2 fi + fi−1

h2
− f ′

i+1 − f ′
i−1

2h
. (3.6)

Using Eqs. (3.1) and (3.2) in above Eq. (3.6), we obtain

f ′′
i = 2Δ2

x fi − Δx f
′
i . (3.7)

In Eq. (3.7), f ′
i is obtained from Eq. (3.3). It is observed that Eqs. (3.3) and (3.7) pro-

vides fourth order accurate compact approximation to the first and second derivatives.
The elimination of second order derivatives was initially proposed by Adam [24,25].
In case of non-periodic boundary conditions, additional compact relations are required
at the boundary points. For the additional boundary formulations of various orders,
one can see [25,26].We compare the proposed schemes with classical finite difference
scheme and other compact finite difference schemes as follows.

3.1 Fourier analysis

Fourier analysis is a classical technique to compare two difference schemes in numer-
ical analysis. Fourier analysis of a finite difference scheme quantifies the resolution
characteristics of the difference approximation. By resolution characteristics, wemean
that the accuracy with which difference schemes represents the exact value over the
full grid. For more details about the Fourier analysis of finite difference schemes, one
can see [27].

Fourier analysis for first derivative approximation If we denote the wave number
by ω and modified wave number for first derivative approximation by ω′, then for
fourth order accurate compact finite difference approximation Eq. (3.3)
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ω′ = 3sin(ω)

2 + cos(ω)
. (3.8)

For second order accurate classical finite difference approximation Eq. (3.1)

ω′ = sin(ω), (3.9)

and for fourth order accurate classical finite difference approximation

ω′ = −sin (2ω)

6
+ 4sin(ω)

3
. (3.10)

In Fig. 1a modified wave numbers are plotted with respect to the wave numbers
for exact differentiation (ω′ = ω), fourth order accurate compact finite difference
approximation Eq. (3.8), second order accurate classical finite difference approxi-
mation Eq. (3.9) and fourth order accurate classical finite difference approximation
Eq. (3.10). It can be seen from Fig. 1a that fourth order accurate compact finite differ-
ence approximation has better resolution characteristics as compared to the classical
finite difference approximations.

Fourier analysis for second derivative approximation If we denote modified wave
number for second derivative approximation by ω′′, then for fourth order accurate
compact finite difference approximation Eq. (3.7)

ω′′ = 5 − 4cos(ω) − cos2(ω)

2 + cos(ω)
. (3.11)

For fourth order accurate compact finite difference Padé approximation Eq. (3.4)

ω′′ = 12 (1 − cos(ω))

2 + cos(ω)
. (3.12)

For second order accurate classical finite difference approximation Eq. (3.2)

ω′′ = 2 − 2cos(ω), (3.13)

and for fourth order accurate classical finite difference approximation

ω′′ = cos(2ω)

6
− 8cos(ω)

3
+ 5

2
. (3.14)

In Fig. 1b modified wave numbers are plotted with respect to the wave numbers for
exact differentiation (ω′′ = ω2), compact finite difference approximation for second
derivative Eq. (3.12), classical finite difference second order approximation Eq. (3.13)
and classical finite difference fourth order approximation Eq. (3.14). It can be seen
from Fig. 1b that compact finite difference approximation has better resolution char-
acteristics as compared to the classical finite difference approximation.
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Fig. 1 Modified wave number versus wave number for various finite difference schemes a first derivative
approximation, b second derivative approximation

4 Fully discrete problem

Asian option PDE (2.5) can be written as follows

∂u

∂τ
= Lu, (4.1)

with the given initial and boundary conditions in Eq. (2.6), where

Lu = p(x, τ )
∂u

∂x
+ q(x, τ )

∂2u

∂x2
, (4.2)

and

p(x, τ ) =
[(

1

T
− r ln x

)
x + 1

2
σ 2x(ln x)2

]
, (4.3)

and

q(x, τ ) = 1

2
σ 2x2(ln x)2. (4.4)

Now we discretize the Eq. (4.1) in finite domain (x, τ ) ∈ (Ω = [0, 1]) × (0, T ] as
follows.

4.1 Temporal semi-discretization

To study the convergence analysis of Eq. (2.5), Crank–Nicolson scheme is used to
discretize the temporal variable, keeping the space variable x continuous for a fixed
step-size δτ = T

M , where M is the number of grid points in time direction. Time
semi-discretization of Eq. (2.5) gives:

um+1 − um

δτ
= 1

2
Lxu

m + 1

2
Lxu

m+1,
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or

(I − 1

2
δτLx )u

m+1 = (I + 1

2
δτLx )u

m,

um(0) = 0, um(1) = 1

rT
(1 − e−rτm ),

u0(x) = 0, for m = 1, ..., M,

(4.5)

where

Lxu
m(x) = p(x, τm)

∂um

∂x
+ q(x, τm)

∂2um

∂x2
,

and um(x) is the approximation of the solution u(x, τ ) at any time level τm . Now we
discuss the stability for time semi-discrete Eq. (4.5) as follows:

4.1.1 Stability analysis

Now suppose ûm(x) is the solution of the following problem with a perturbation of
the data

(I − 1

2
δτLx )û

m+1 = (I + 1

2
δτLx )û

m + δτεm+1/2(x),

ûm(0) = 0, ûm(1) = 1

rT
(1 − e−rτm ),

û0(x) = ε̂0(x), for m = 1, ..., M,

(4.6)

where εm+1/2(x) = ε(x, τm + 1
2δτ) and û0 = u0 + ε̂0(x). A temporal semi-

discretization scheme to the problem (2.5)– (2.6) is stable, if ‖um − ûm‖∞ is bounded
by the upper bound of perturbation,i.e.

‖um − ûm‖∞ ≤ C

(
ε̂0 + max

0≤ j≤m−1
‖ε j+1/2‖∞

)
. (4.7)

In order to prove the above result for time semi-discrete Eq. (4.5), we need following
Lemmas:

Lemma 1 (Maximum and Minimum principles) The operator (I − 1
2δτLx ) ≡ L̂x

satisfies maximum and minimum principle at any time level m, i. e. u can not attain
its maximum and minimum at an interior point unless it is constant.

Proof For proof, one can see [28]. 	

With the help of Lemma. 1, it is observed that operator L̂x , defined by

L̂x (w) = v, in Ω, w = 0, on Ω̄ \ Ω.

is a bijective linear operator.
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Lemma 2 Let the operator (I − 1
2δτLx )

−1 ≡ L̂
−1
x be such that L̂−1

x (v) is solution
‘w′ of the following problem

L̂x (w) = v, w = 0, on Ω̄ \ Ω.

then

‖L̂−1
x ‖∞ ≤ 1

1 + 1
2δτ γ̂

.

Proof For proof of above Lemma, one can see [29]. 	

In order to prove the stability of Crank-Nicolson scheme, we introduce the notations
as follows: ζm = ûm − um, m = 0, 1, ..., M − 1 So from Eq. (4.5), we obtain

ζ 0 = ε̂0,

(I − 1

2
δτLx )ζ

m+1 = (I + 1

2
δτLx )ζ

m + δτεm+1/2,

ζm(0) = 0,

ζm(1) = 0,

(4.8)

This implies

ζm+1 = (I − 1

2
δτLx )

−1
[
(I + 1

2
δτLx )ζ

m + δτεm+1/2
]

. (4.9)

Since (I − 1
2δτLx )

−1 is linear, Eq. (4.9) yields

ζm =
⎛
⎝m−1∏

j=0

Rm− j

⎞
⎠ ε̂0 + δτ(I − 1

2
δτLx )

−1εm−1/2

+ δτ

m−1∑
i=1

⎛
⎝i−1∏

j=0

Rm− j

⎞
⎠ (I − 1

2
δτLx )

−1εm−1/2−i , (4.10)

where

m−1∏
j=0

Rm− j = RmRm−1...R1.

The operator, Rm ≡ R(δτLx ), 1 ≤ m ≤ M , is defined in such a way that u1 ≡ Rmu
is the solution of

(I − 1

2
δτLx )u1 = (I + 1

2
δτLx )u1, in Ω,

u1 = 0, on Ω̄ \ Ω.
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Now, following the argument of [30] for the operator Rm , ∃ a constant C > 0 such
that ∥∥∥

n−1∏
j=0

Rm− j

∥∥∥∞ ≤ C ∀ n = 1, 2, ...,m, 1 ≤ m ≤ M. (4.11)

Now using Eq. (4.11) and Lemma 2 in Eq. (4.10), we get

‖ζm‖∞ = ‖um − ûm‖∞ ≤ C

(
ε̂0 + max

0≤ j≤m−1
‖ε j+1/2‖∞

)
.

Hence we get the following result:

Theorem 1 The temporal semi-discretization method (4.5) is unconditionally stable.

4.1.2 Truncation error analysis and convergence

In order to discuss the error introduced in time semi-discretization, the local truncation
error em+1 is defined as follows

em+1 = u(x, τm+1) − ũm+1,

where, ũm+1 is the solution obtained from semi-discrete scheme after one time step
taking exact value as initial condition, i.e.

(I − 1

2
δτLx )ũ

m+1(x) = (I + 1

2
δτLx )u(x, τm)

ũm+1(0) = 0, ũm+1(1) = 1

rT
(1 − e−rτm+1).

(4.12)

The global truncation error at any point τm is given as:

Em = u(x, τm) − um .

Lemma 3 If

∣∣∣∂ i+ j u(x, τ )

∂xi∂τ j

∣∣∣ ≤ C, 0 ≤ j ≤ 3, 0 ≤ i ≤ 4,

then local truncation error for semi-discrete scheme Eq. (4.12) satisfies

∥∥em∥∥∞ ≤ C(δτ )3,

where C is a constant independent of M.
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Proof Since u is sufficiently smooth and |uτττ | ≤ C , therefore we can write from the
Taylor series expansion

u(x, τm+1) = u
(
x, τm+ 1

2

)
+ 1

2
δτut

(
x, τm+ 1

2

)
+ δτ 2

8
uττ

(
x, τm+ 1

2

)
+ O(δτ 3),

u(x, τm) = u
(
x, τm+ 1

2

)
− 1

2
δτu

(
x, τm+ 1

2

)
+ δτ 2

8
uττ

(
x, τm+ 1

2

)
+ O(δτ 3).

From above expressions, we get

u(x, τm+1) − u(x, τm)

δτ
= uτ

(
x, τm+ 1

2

)
+ O(δt2). (4.13)

Now using Eq. (2.5) in Eq. (4.13), we get

u(x, τm+1) − u(x, τm)

δτ
= Lxu

(
x, τm+ 1

2

)
+ O(δτ 2).

Since

1

2
(u(x, τm+1) + u(x, τm)) = u

(
x, τm+ 1

2

)
+ δt2

8
uττ

(
x, τm+ 1

2

)
+ O(δτ 3),

and we have

Lx

[
1

2
u(x, τm+1) + 1

2
u(x, τm)

]
= Lxu

(
x, τm+ 1

2

)
+ O(δτ 2),

which implies

Lxu
(
x, τm+ 1

2

)
= Lx

[
1

2
u(x, τm+1) + 1

2
u(x, τm)

]
+ O(δτ 2).

From above relation and Eq. (4.13), we get

(I − 1

2
δτLx )u(x, τm+1) =

[
I + 1

2
δτLx

]
u(x, τm) + O(δτ 3).

Using Eq (4.12) and above relation, we get

(I − 1

2
δτLx )e

m+1 = O(δτ 3),

em+1(0) = 0, em+1(1) = 0,

By using Lemma 2, we get
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‖em‖∞ ≤ C(δτ )3,

which completes the proof. 	

Lemma 4 If ‖Em‖∞ represents the maximum norm of the global truncation error,
then global truncation error for the scheme (4.12) satisfies:

‖Em‖∞ ≤ C(δτ )2, (4.14)

where C is a constant independent of M.

Proof The global truncation error at any time τm can be written as follows:

Em = u(x, τm) − um = u(x, τm) − ũm + ũm − um . (4.15)

From Eq. (4.5), we get

(I − 1

2
δτLx )(ũ

m − um) = (I + 1

2
δτLx )(u(x, τm−1) − um−1). (4.16)

A recurrence relation in terms of global truncation error is obtained from the
Eqs. (4.15)–(4.16) as follows:

Em = E0

⎛
⎝m−1∏

j=0

Rm− j

⎞
⎠ + em +

m−1∑
i=1

⎛
⎝i−1∏

j=0

Rm− j

⎞
⎠ em−i ,

E0 = u(x, τ0) − u0 = 0.

From Eq. (4.11), we have

‖Em‖∞ ≤ m.C. max
1≤i≤m

‖ei‖∞,

= mδτ.
C

δτ
. max
1≤i≤m

‖ei‖∞,

≤ TC.
1

δτ
max
1≤i≤m

‖ei‖∞.

(4.17)

Using Lemma 3, we get the desired result

‖Em‖∞ ≤ C(δτ )2.

	

Now by using Theorem. 1, Lemma. 4 and Lax equivalence theorem [31], we get the
following result.

Theorem 2 The time semi-discrete method (4.5) is second order convergent.
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4.2 Spatial discretization

High-order compact finite difference approximations as discussed in Sect. 3 are used
for the spatial discretization of Eq. (4.5). If Um

n represents the numerical solution of
Eq. (4.1) at (xn, τm) then Eq. (4.5) can be written in discrete form as follows

Um+1
n −Um

n

δτ
= 1

2
LΔU

m
n + 1

2
LΔU

m+1
n , (4.18)

where
LΔU

m
n = p(xn, τm)Um

xn + q(xn, τm)Um
xxn , (4.19)

and Um
xn , U

m
xxn represents fourth order accurate first and second derivative compact

finite difference approximation ofU at (xn, τm). Now using the compact finite differ-
ence approximation (3.7) for second derivative in Eq. (4.18), we get

Um+1
n −Um

n

δτ
=

[
1

2
qmn (2Δ2

xU
m
n − ΔxU

m
xn ) + 1

2
qm+1
n (2Δ2

xU
m+1
n − ΔxU

m+1
xn )

]

+
[
1

2
pmn U

m
xn + 1

2
pm+1
n Um+1

xn

]
, (4.20)

where 1 ≤ n ≤ N , 1 ≤ m ≤ M and N , M are the number of grid points in space
and time direction respectively. Hence proposed compact finite difference scheme for
Asian option PDE results to the fully-discrete problem as follows:

[1 − qm+1
n δτΔ2

x ]Um+1
n = [1 − qmn δτΔ2

x ]Um
n

+1

2
δτ [pm+1

n −qm+1
n Δx ]Um+1

xn + 1

2
δτ [pmn − qmn Δx ]Um

xn .

Um
0 = 0, Um

N = 1

rT
(1 − e−rτm ). (4.21)

We discuss the consistency, stability and convergence of the scheme (4.21) in the
following section. We prove that proposed compact finite difference scheme is uncon-
ditionally stable and second and fourth order accurate in time and spatial variable
respectively.

4.2.1 Consistency, stability and convergence analysis

At first, we discuss the consistency of the proposed compact finite difference
scheme (4.21).

Theorem 3 (Consistency)
Let v ∈ C∞ ([0, 1] × (0, T ]) satisfy the initial and boundary conditions (2.6). Then
as h, δτ → 0,

123



A numerical study of Asian option with high-order... 481

∂v

∂τ
(xn, τm) − Lv(xn, τm) −

(
v(xn, τm+1) − v(xn, τm)

δτ
− LΔv(xn, τm)

)

= O(δτ 2 + h4), (4.22)

where L and LΔ are defined in Eqs. (4.2) and (4.19) respectively and (xn, τm) ∈
(0, 1) × (0, T ].

Proof From the fact that compact finite difference approximations for first and second
derivatives discussed in Sect. 3 are O(h4) accurate and by using the Lemma. 4, result
follows. 	


Stability analysis is very crucial aspect for the solution of time dependent problems
using numerical algorithms. Since the coefficients of the Eq. (2.5) will always be
bounded in sup norm for a discrete problem, principle of frozen coefficients can
be used to prove the stability for compact finite difference scheme (4.21). Stability
analysis for central difference schemes for variable coefficient problems is discussed
in [32] using the principle of frozen coefficients. We carry out von-Neumann stability
analysis for the compact finite difference scheme (4.21) as follows:

Theorem 4 (Stability) The compact finite difference scheme (4.21) is unconditionally
stable.

Proof Let Um
n = bmeimω where ω = 2πh/λ is the phase angle with wavelength λ

and bm is the amplitude at time level m then from Eqs. (3.9), (3.13) and (3.8) we can
write

ΔxU
m
n = i

sin(ω)

h
Um
n , (4.23)

Δ2
xU

m
n = 2cos(ω) − 2

h2
Um
n , (4.24)

Um
xn = i

3sin(ω)

h(2 + cos(ω))
Um
n . (4.25)

Using relation (4.23), (4.24) and (4.25) in the difference scheme (4.21), we get

[
1 − 2qδτ

(
cos(ω) − 1

h2

)]
Um+1
n

=
[
1 + 2qδτ

(
cos(ω) − 1

h2

)]
Um
n

+ 1

2
δτ

[(
q
sin(ω)

h
+i p

)
3sin(ω)

h(2+cos(ω))

]
Um+1
n

+ 1

2
δτ

[(
q
sin(ω)

h
+ i p

)
3sin(ω)

h(2 + cos(ω))

]
Um
n ,

(4.26)
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Then amplification factor AF can be written as

AF =
1 + 1

2δτ
[(

q cos2(ω)+4cos(ω)−5
h2(2+cos(ω))

)
+ i

(
p 3sin(ω)
h(2+cos(ω))

)]

1 − 1
2δτ

[(
q cos2(ω)+4cos(ω)−5

h2(2+cos(ω))

)
+ i

(
p 3sin(ω)
h(2+cos(ω))

)] . (4.27)

If

P = δτq

(
cos2(ω) + 4cos(ω) − 5

h2(2 + cos(ω))

)
,

Q = δτp

(
3sin(ω)

h(2 + cos(ω))

)
,

then

AF = 1 + 1
2 (P + i Q)

1 − 1
2 (P + i Q)

. (4.28)

This implies

|AF |2 = (1 + P
2 )2 + 1

4Q
2

(1 − P
2 )2 + 1

4Q
2
. (4.29)

Stability condition |AF | ≤ 1 implies

2P ≤ 0. (4.30)

Since q is always positive from Eq. (4.4) and

(
cos2(ω) + 4cos(ω) − 5

h2(2 + cos(ω))

)
≤ 0 ∀ ω ∈ [0, 2π ],

which implies P ≤ 0. Hence, inequality (4.30) is always satisfied and compact finite
difference scheme (4.21) is unconditionally stable. 	

Now, in order to prove the convergence of the fully discrete problem, we use the
following Lemmas:

Lemma 5 The matrix associated with [1 − qm+1
n δtΔ2

x ] is an M-matrix.

Proof In [1−qm+1
n δtΔ2

x ],Δ2
x is the second derivative central difference approximation

defined inEq. (3.2). Letai, j be the i th rowand j th columnentry of thematrix associated
to [1 − qm+1

n δtΔ2
x ], then

ai,i = 1 + 2qm+1
n

δτ

h2
,

and for i = j
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ai, j = −qm+1
n

δτ

h2
.

It is observed from Eq. (4.4) that qm+1
n will always be positive. Using the tri-diagonal

nature of the central difference approximation, it is clear that there will be only two
off diagonal entries in each row. It gives that matrix associated to [1− qm+1

n δτΔ2
x ] is

diagonally dominant and has non-positive off diagonal entries. Then it follows from
[33] that matrix associated to [1 − qm+1

n δtΔ2
x ] is an M-matrix.

Lemma 6 (Discrete maximum principle) The operator [1 − qm+1
n δτΔ2

x ] given in
Eq. (4.21) satisfies discrete maximum principle, i.e. if vi andwi are two mesh function
such that v0 ≥ w0, vN ≥ wN and [1 − qm+1

n δτΔ2
x ]vi ≥ [1 − qm+1

n δτΔ2
x ]wi ∀

1 ≤ i ≤ N − 1, then vi ≥ wi ∀ i .

Proof We proved that matrix associated to [1−qm+1
n δτΔ2

x ] is an M-matrix. By using
the same argument as Lemma 3.1 in [34], result follows. 	

Let Ũm

n be the solution of fully discrete problem (4.21) after one time step taking exact
solution as the initial condition i.e.

(I − 1

2
δτLΔ)Ũm+1

n = (I + 1

2
δτLΔ)umn ,

Ũm
0 = 0,

Ũm
N = 1

rT
(1 − e−rτm ).

(4.31)

In order to prove the convergence of the proposed compact finite difference
scheme (4.21), we use following Lemma.

Lemma 7 Let ũm(x) be the solution of (4.12) and Ũm
n be the solution of (4.31). Then

|ũmn − Ũm
n | ≤ Cδτh4, 1 ≤ n ≤ N ,

where C is independent of δτ and N.

Proof We proved in Lemma 6 that operator [1 − qm+1
n δτΔ2

x ] given in Eq. (4.21)
satisfies discrete maximum principle. Now using Lemma 5 of [35], result follows. 	

Theorem 5 (Convergence) Let u(x, τ ) be the exact solution of (2.5) and U be the
solution of fully discrete problem (4.21). Then for a constant C, independent of h and
δτ , such that

|u(xn, τm) −Um
n | ≤ C[δτ 2 + h4], 1 ≤ n ≤ N , 1 ≤ m ≤ M.

Proof Global error at any time level m can be written as follows

|u(xn, τm) −Um
n | ≤ |u(xn, τm) − ũmn | + |ũmn − Ũm

n | + |Ũm
n −Um

n |.
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Using Lemmas. 3 and 7 in the above expression, we get

|u(xn, τm) −Um
n | ≤ Cδτ(δτ 2 + h4) + |Ũm

n −Um
n |. (4.32)

In order to find the bound for last term of above expression (4.32), we consider that
Ũm
n −Um

n can bewritten as the solution at one time step of fully discrete problem (4.21)
with zero boundary condition and u(x, τm+1)−Um+1 as the final value. Then we can
write

|Ũm
n −Um

n | ≤ C‖u(x, τm+1) −Um+1‖∞. (4.33)

From Eqs. (4.32) and (4.33), we get

|u(xn, τm) −Um
n | ≤ Cδτ(δτ 2 + h4) + C‖u(x, τm+1) −Um+1‖∞,

≤ 2Cδτ(δτ 2 + h4) + C‖u(x, τm) −Um‖∞,

≤ ...

≤ MCδτ(δτ 2 + h4) + C‖u(x, τ0) −U 0‖∞,

≤ C[δτ 2 + h4],

(4.34)

which completes the proof. 	

We conclude our result as a particular case of the Theorem 5 as follows:

Corollary 1 Let all the assumptions in the Theorem 5 are satisfied. For δτ = h2, ∃ a
positive constant C ′ independent of δτ and h such that

|u(xn, τm) −Um
n | ≤ C ′(h4), 1 ≤ n ≤ N , 1 ≤ m ≤ M.

4.3 Solution to algebraic system

Solution of algebraic system associated with the difference scheme (4.21) is discussed
in this section. If we denote

U = (U1,U2, ...,Un)
T and Ux = (Ux1,Ux2 , ...,Uxn )

T ,

then system of equations corresponding to the difference scheme (4.21) can be written
in matrix form as follows

AUm+1 = F(Um,Um
x ,Um+1

x ). (4.35)

It is observed that proposed compact finite difference scheme leads to a diagonally-
dominant, tri-diagonal system of linear equations which can be efficiently solved by
Thomas algorithm, requiring O(N ) operations. The value of Um

x can be obtained by
solving a tri-diagonal system of equations from Eq. (3.3). The main problem is due to
the presence ofUm+1

x on the right hand side of the Eq. (4.35). For this we use correcting
to convergence approach [36] which is summarized in the following algorithm.
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Algorithm for correcting to convergence approach

1. Start with Um .
2. Obtain Um

x using Eq. (3.3).
3. Take Um+1

old = Um , Um+1
xold = Um

x .
4. Correct to Um+1

new using Eq. (4.35).
5. If ‖Um+1

new − Um+1
old ‖ < tolerance, then Um+1

new = Um+1
old .

6. Obtain Um+1
xnew using Eq. (3.3).

7. Um+1
old = Um+1

new , Um+1
xold = Um+1

xnew and go to step 4.

Stopping criterion for inner iteration is taken tolerance= 10−12 in above approach.
In correcting to convergence approach, it is not known in advance that how many
iterations will be required to achieve desired accuracy. Let nm be the number of itera-
tions required by correcting to convergence approach at fixed time level m and denote
ns= max

1≤m≤M
nm . A tri-diagonal system of equations is solved for each iteration with

O(N ) operations. Therefore, maximum computational complexity of the proposed
compact finite difference scheme will be of order O (ns NM), where M and N are the
number of grid points in time and space direction respectively.

5 Numerical results

In this section, we verify the theoretical results obtained in the previous sections
numerically. Numerical results for Asian options PDE Eq. (2.5) are given in this
section. Since exact solution of our problem is not available, numerical results are
compared with the existing literature [5,7,37,38].

We have plotted the solution of Asian option PDE at time t = 0 for various parame-
ters. In Fig. 2a, solution is plotted for maturity T = 1 and various value of volatilities.
Effect of various values of volatility can be seen in the figure. In Fig. 2b, solution
is plotted for long maturity T = 3 and various value of volatilities. Value of Asian
options as function of time and asset price is also plotted for various values of volatil-
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Fig. 2 Value of arithmetic average Asian call option at t = 0, K = 100, r = 0.09 and various values of σ

for a T = 1, b T = 3
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Fig. 3 Value of arithmetic averageAsian call option as a function of time and asset pricewith the parameters
t = 0, K = 100, r = 0.15, T = 1 and a σ = 0.05, b σ = 0.5

Table 1 Comparison of value of Asian options by various methods for different volatilities and interest
rates for S = 100, T = 1, number of grid points N = 256 and δτ = h2

r σ K Present scheme Zhang [37] Chen–Lyuu [38] Lower bound [5] Upper bound [5]

0.05 0.10 90 11.951022 11.9510927 11.951076 11.951 11.973

100 3.641465 3.6413864 3.641344 3.641 3.663

110 0.331530 0.3312030 0.331074 0.331 0.353

0.09 90 13.385286 13.3851974 13.385190 13.385 13.410

100 4.915267 4.9151167 4.915075 4.915 4.942

110 0.630486 0.6302713 0.630064 0.630 0.657

0.15 90 15.399433 15.3987687 15.398767 15.399 15.445

100 7.029775 7.0277081 7.027678 7.028 7.066

110 1.413228 1.4136149 1.413286 1.413 1.451

0.05 0.20 90 12.597643 12.5959916 12.595602 12.595 12.687

100 5.763544 5.7630881 5.762708 5.762 5.854

110 1.990346 1.9898945 1.989242 1.989 2.080

0.09 90 13.832664 13.8314996 13.831220 13.831 13.927

100 6.788845 6.7773481 6.776999 6.777 6.872

110 2.548323 2.5462209 2.545459 2.545 2.641

0.15 90 15.643654 15.6417575 15.641598 15.641 15.748

100 8.413884 8.4088330 8.408519 8.408 8.515

110 3.558633 3.5556100 3.554687 3.554 3.661

0.05 0.30 90 13.955422 13.9538233 13.952421 13.952 14.161

100 7.946673 7.9456288 7.944357 7.944 8.153

110 4.073546 4.0717942 4.070115 4.070 4.279

0.09 90 14.983689 14.9839595 14.982782 14.983 15.194

100 8.829477 8.8287588 8.827548 8.827 9.039

110 4.699342 4.6967089 4.694902 4.695 4.906

0.15 90 16.514844 16.5129113 16.512024 16.512 16.732

100 10.209544 10.2098305 10.208724 10.208 10.429

110 5.729678 5.7301225 5.728161 5.728 5.948
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Table 2 Comparison of value of Asian options by various methods for different volatilities for S = 100,
r = 0.09 and T = 1, number of grid points N = 256 and δτ = h2

σ K Present scheme Zhang [37] Zhang-AA2 [7] Zhang-AA3 [7] Chen–Lyuu [38]

0.05 95 8.808794 8.808839 8.80884 8.80884 8.808839

100 4.308244 4.3082350 4.30823 4.30823 4.308231

105 0.958352 0.9583841 0.95838 0.95838 0.958331

0.1 95 8.911823 8.9118509 8.91171 8.91184 8.911836

100 4.915096 4.9151167 4.91514 4.91512 4.915075

105 2.070020 2.0700634 2.07006 2.07006 2.069930

0.2 95 9.995385 9.9956567 9.99597 9.99569 9.995362

100 6.776743 6.7773481 6.77758 6.77738 6.776999

105 4.295972 4.2965626 4.29643 4.29649 4.295941

0.3 95 11.654643 11.6558858 11.65747 11.65618 11.654758

100 8.827461 8.8287588 8.82942 8.82900 8.827548

105 6.516544 6.5177905 6.51763 6.51802 6.516355

0.4 95 13.508865 13.5107083 13.51426 13.51182 13.507892

100 10.921764 10.9237708 10.92507 10.92474 10.920891

105 8.728562 8.7199362 8.72936 8.73089 8.726804

0.5 95 15.439622 15.4427163 15.44890 15.44587 15.437069

100 13.029882 13.0281555 13.03015 13.03017 13.022532

105 10.924875 10.9296247 10.92800 10.93253 10.923750

ities. For small value of volatility (σ = 0.05), the value of Asian option as function
of time and asset price is plotted in Fig. 3a. In Fig. 3b, the value of Asian option as
function of time and asset price is plotted for large value of volatility (σ = 0.5). It
is observed that proposed compact finite difference scheme is accurate for both small
and large volatilities.

We apply the proposed compact finite difference scheme to the Asian option PDE
with the parameters, S = 100, T = 1 for various values of volatility (σ ), interest rates
(r) and strike prices (K ). Results obtained from these parameters for Asian option
PDE are given in Table 1 and compared with the results given in [37] and [38]. Lower
and upper bounds for different Asian options are taken from [5]. It is observed from
the Table 1 that results obtained from proposed compact finite difference scheme are
in a good accuracy with the existing literature.

Now, proposed compact finite difference scheme is applied to the Asian option
PDE for small and large volatilities at different strike prices (K ) with the parameters,
S = 100, T = 1, r = 0.09. The values of Asian option and their comparison with the
results in [7,37] and [38] are given in Table 2. From the Table 2, it is observed that
proposed compact finite difference scheme is accurate for small and large both type
of volatilities.

In Table 3, values of Asian option obtained from proposed compact finite difference
scheme for large maturity time (T = 3) at different strike prices (K ) and volatilities
with the parameters, S = 100, T = 3, r = 0.09 are presented. The values of Asian
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Table 3 Comparison of value of Asian options by various methods for different volatilities for S = 100,
r = 0.09 and T = 3 number of grid points N = 256 and δτ = h2

σ K Present scheme Zhang [37] Ju [39] Hsu [40] Kumar [17]

0.05 95 15.116316 15.1162646 15.11626 15.116230 15.116784

100 11.304521 11.3036080 11.30360 11.304036 11.303619

105 7.554853 7.5533233 7.55335 7.554073 7.550559

0.1 95 15.213952 15.2138005 15.21396 15.213921 15.214139

100 11.637522 11.6376573 11.63798 11.637813 11.637450

105 8.390654 8.3912219 8.39140 8.391189 8.390679

0.2 95 16.638433 16.6372081 16.63942 16.637276 16.637222

100 13.767687 13.7669267 13.76770 13.767043 13.766921

105 11.219965 11.2198706 11.21879 11.220047 11.219881

0.3 95 19.023244 19.0231619 19.02652 19.023263 19.023123

100 16.585898 16.5861236 16.58509 16.586222 16.586118

105 14.393766 14.3929780 14.38751 14.393083 14.392999

0.4 95 21.741821 21.7409242 21.74461 21.740973 21.740921

100 19.585638 19.5882516 19.58355 19.588307 19.588251

105 17.625127 17.6254416 17.61269 17.625501 17.625444

0.5 95 24.571934 24.5718705 24.57740 24.571913 24.571875

100 22.630648 22.6307858 22.62276 22.630828 22.630790

105 20.843231 20.8431853 20.82213 20.843226 20.843189

option are compared with the results in [17], [37,39], and [40]. From the Table 3, it is
observed that proposed compact finite difference scheme is accurate for large maturity
time also.

Rate of convergence We have proved in Sect. 4 that proposed compact finite dif-
ference scheme is fourth order accurate in spatial variable. In order to show the
convergence rate numerically, we take δτ = h2. In Fig. 4, error in sup norm between
the numerical solution at grid size h and h/2 (Error = ‖Uh −Uh

2
‖∞) for K = 100,

S = 100, σ = 0.30, r = 0.06 and T = 1 is plotted with respect to the number of
grid points. It can be observed from the Fig. 4 that proposed compact finite difference
scheme exhibit approximately fourth order convergence rate.

Efficiency of proposed compact finite difference scheme for Asian option PDE In
Fig. 5, error in sup norm between the numerical solution at grid size h and the ref-
erence solution (Error = ‖Uref − Uh‖∞) for K = 100, S = 100, σ = 0.30,
r = 0.15 and T = 1 is plotted with respect to the CPU time. Reference solu-
tion (Uref ) is computed for the same parameters with h = 9.765625e − 004. We
compute the error and corresponding CPU time at grid points N=8, 16, 32, 64, 128
using central difference scheme and proposed compact finite difference scheme. It
can be observed from the figure that for a given accuracy, proposed compact finite
difference scheme is significantly efficient as compared to the central difference
scheme.
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Fig. 4 Error in sup norm
between the numerical solution
at grid size h and h/2 for
K = 100, S = 100, σ = 0.30,
r = 0.06 and T = 1 versus N
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Fig. 5 Efficiency: CPU time
and max error for central
difference schemes and proposed
compact finite difference
scheme for Asian option PDE
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6 Conclusion and future work

An unconditionally stable compact finite difference scheme is proposed to solve the
Asian option PDE. In the proposed scheme, second derivative approximations of the
unknowns are eliminated with the unknowns itself and their first derivative approx-
imations while retaining the tri-diagonal nature of the scheme. Fourier analysis of
the difference schemes is presented and it is concluded that proposed compact finite
difference approximations have better resolution characteristics as compared to clas-
sical finite difference schemes. Proposed compact finite difference scheme results a
diagonally dominant system of linear equations which can be solved using Thomas
algorithm efficiently. Consistency, stability and convergence is proved for the fully dis-
crete problem and it is shown that proposed compact finite difference scheme is second
order accurate in time variable and fourth order accurate in space variable. Error with
the reference solution and CPU time is also plotted and it is observed that for a given
accuracy, proposed compact finite difference scheme is more efficient as compared
to the central difference schemes. In future, we would also like to use the proposed
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compact finite difference scheme for other types of exotic options, for eg. Barrier
options, Look-back options. Since the proposed compact finite difference scheme is
easily extendable for the two dimensional problems in a similar manner, we would
like to extend the proposed compact finite difference scheme for two dimensional
problems.
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