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Abstract In this present article, we propose and analyze a cannibalistic predator–prey
model with disease in the predator population. We consider two important factors for
the dynamics of predator population. The first one is governed through cannibalistic
interaction, and the second one is governed through the disease in the predator pop-
ulation via cannibalism. The local stability analysis of the model system around the
biologically feasible equilibria are investigated. We perform global dynamics of the
model using Lyapunov functions. We analyze and compare the community structure
of the system in terms of ecological and disease basic reproduction numbers. The
existence of Hopf bifurcation around the interior steady state is investigated. We also
derive the sufficient conditions for the permanence and impermanence of the system.
The study reveals that the cannibalism acts as a self-regulatory mechanism and con-
trols the disease transmission among the predators by stabilizing the predator–prey
oscillations.
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1 Introduction

The dynamics of the predator–prey system is complex, and the complexity is enhanced
in the presence of the disease either in prey or predator or in both the populations.We
cannot ignore this factor as it is common innatural systemand takes amajor role for reg-
ulating community size. Disease in the predator species of the system leads to an array
of interestingdynamics in ecological interaction [27–29,32,57].Anderson andMay [1]
showed that infectious disease can destabilize the prey–predator interaction. Hadeler
and Freedman [26] studied an susceptible-infected (SI) model which is a modification
of a Rosenzweing prey–predator system [48], and they found that the appearance of an
infected steady state or periodic solution around the infected steady state is depend-
ing on some threshold value. Haque and Venturino [28] suggested that the disease
in the predator population leads to a destabilizing effect on predator–prey popula-
tion. The disease transmission in prey population, mostly occurred from contact with
infected prey [1,10,12,13,24,26,31,50–52,56], whereas the predators are infected
either through consumption of infected preys [1,26,55] or by contacts of infected
predators [5,57]. Although, cannibalism is another important disease transmission
route in several species, such as Gill-associated virus [53] in Penaeusmondon and
Spawner-isolated mortality virus [22] in Pandalusplatyceros are transmitted among
the species.

Cannibalism is awell-known andwidespread phenomenon of consuming amember
of its own species, and is common in many taxes ranging from invertebrates to mam-
mals such as crustaceans, arachnids, zooplankton, insects, fishes, amphibians, reptiles,
birds, etc. [16,21]. It can be occurred for many factors such as density-dependent [6],
density-independent [47], ecological and environmental [25]. For example, cannibal-
ism among cephalopod is density dependent due to their aggressive predatory nature.
It also depends on food availability and of the reproductive seasons [37]. In ecological
interactions such as predation, competition, mutualism, parasitism and cannibalism
can influence the evolution of interacting species [44]. In general, cannibalism acts as
the fitness benefits to the species, such as increased survival, growth rate, longevity and
fecundity [9]. It also has indirect benefits to the species for removing potential competi-
tors, suppressing a population outbreak, and intra specific predators [21,44].Moreover,
it could determine the population dynamics such as survival of the species [8], min-
imizes competition [21,44], alter community structure (size [44,61], age [15,21]),
evolution of life history [41] and decrease the rate of parasitism [34,46,58]. In the
ecological system, the cannibalistic interacting dynamical models have been studied
from various aspects such as regulating population size [15], controlling chaos [2],
transmission route of diseases [9,42], stabilization [4,39,54] and destabilization or
chaotic effect on the species [30,40]. Cannibalism can promote the dynamics of the
population depending on the model and parameter values under which it is practiced
[11,14] in the sense of stability or instability aspects.
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Cannibalism played a major role to increase disease transmission as well as mortal-
ity rates among the species in frog, fish and amphibians. Moreover, the transmission
of viral host–pathogens occurred through cannibalism in aquatic systems [38]. Some-
times, cannibalism by multiple individuals on one prey (group cannibalism) is a
necessary precondition in spreading diseases via cannibalism [49]. Notable exceptions
arise in octopus species (Enteroctopus megalocyathus, Octopus tehuelchus) cannibal-
ize their juveniles and female octopus (Bathypolypus arcticus) feed on their own
nonviable or sick eggs to prevent the spread of infections [36,45,59]. This shows
that cannibalism may work as a self-regulatory mechanism. In a study, Rudolf and
Antonovics [49] have combined a cannibalistic predator–prey system with a model
of classical susceptible-infected system and investigated the characteristic of disease
transmission by cannibalism. Recently, Biswas et al. [3] proposed and analyzed a
three-species prey–predator model with disease in predator population in which trans-
mission of disease occurred through horizontal and vertical transmission. They also
modified the model by considering that predator population is of cannibalistic nature.
They observed that under some certain conditions, inclusion of cannibalism in preda-
tors can remove the disease propagation in predator species.

In general cannibalistic species with high size variation or high densities of
conspecifics and/or low food resources, smaller individuals are more vulnerable to
cannibalize by larger conspecifics [21,44]. So, cannibalistic type interaction depends
on the size of both cannibal and victim but the precise relationship between the size of
these two conspecific species is rarely known. Although there is an exception, when
disease is present in conspecific species. In this case, the susceptible and infected
individuals’ conspecifics are not equally likely to be cannibalistic nature because the
infected conspecifics are more prone to be cannibalized than the susceptible con-
specific due to the infected conspecifics are weakened by the infection [23]. In this
paper, we study a Lotka–Volterra type of predator–prey interaction model with disease
present in the predator population. The predator population is cannibalistic in nature
and the disease also transmitted in the predator population by cannibalism. In addition,
functional response is one of the most crucial elements that describe the number of
prey killed/ consumed by per individual predator per unit time. Many researchers sug-
gested that type II response is the characteristic of predators. It determines the stability
and bifurcation dynamics of the model. Usually, feeding rate of predator is saturated,
so it is more realistic to consider prey dependence functional response Holling type
II. Thus we incorporate Holling type II functional response to describe the predation
strategy. The control of infectious disease transmission in a prey–predator system is
one of the important challenging issues. The objective of this study is to find the
condition(s) for which the disease could be prevented.

The paper is organized as follows. In Sect. 2, we describe the model formula-
tion, which is based on some basic assumptions and hypothesis. Section 3 contains
some preliminary results of existence, positivity and boundedness of solutions, and
extinction criterion of the species. Section 4 performs an analysis of the model; in
this section, we identify equilibria and their feasibility conditions, stability analysis
around various steady states, from local as well as global point of view, and biological
significance of threshold parameters and community structure. In this section, we also
study the existence of Hopf bifurcation around the interior steady state of the system.
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In Sect. 5, we find the conditions for the permanence and impermanence of the system.
We performed extensive numerical simulations to validate our analytical findings and
is presented in Sect. 6. Finally, the paper ends with a conclusion in Sect. 7.

2 Model formulation

We consider a system of two interacting species prey and predator with x(t) is the
numbers of prey species, p(t) is the numbers of predator species at time t . We make
the following assumptions for formulating the mathematical model of a prey–predator
system.

1. In the absence of predation, the prey population x(t) grows according to logistic
fashion with an intrinsic growth rate r ∈ R+ and environmental carrying capacity
k ∈ R+ such that

dx

dt
= r x

(
1 − x

k

)
. (2.1)

2. In the presence of predation, we use the classical prey–predator model [48] which
is of the form

dx

dt
= r x

(
1 − x

k

)
− α1xp

γ + x
,

dp

dt
= αα1xp

γ + x
− dp.

(2.2)

Hereα1 is themaximumpredation rate for predator, α is the conversion rate of prey
to predator, d is the constant natural death rate of predator. The functional response
of predator follows Holling type II function with a half-saturation constant γ .

3. In the presence of disease in predator, the total predator population p(t) is split
into two classes, viz. susceptible predator whose population density is denoted
by y(t) and infected predator whose population density is denoted by z(t). Thus
p(t) = y(t) + z(t) represents the total density of the predator at any time t .

4. The disease spreads among the predator species only, and the disease is not geneti-
cally inherited. The susceptible predator population becomes infected through the
contact with the infectious predators at a rate λ, follows the mass action law λyz
[1,55,57].

5. The susceptible and infected predators consume the prey with different predation
rates, denoted respectively by α1 and α2, with α1 > α2. This is due to the fact that
the susceptible predators are more efficient to catch the prey than the infected ones,
weakened by the infection. It is assumed that infected predators do not recover
from the disease. Considering the above assumptions, the model (2.2) takes the
following form
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dx

dt
= r x

(
1 − x

k

)
− (α1y + α2z)x

γ + x
,

dy

dt
= α(α1y + α2z)x

γ + x
− λyz − dy,

dz

dt
= λyz − (d + e)z,

(2.3)

where e is the additional disease-related mortality rate.
6. We assume that, cannibalism is present in the predator species and the disease also

spreads among the predator population via cannibalism.
7. In the presence of cannibalism, the susceptible and infected predators are reduced

with two different rates βσ and σ (0 < β < 1). This is due to the fact that
both the susceptible and infected predator populations are not equally likely to be
cannibalized. In nature, the infected predators are more prone to be cannibalized
than healthy ones as infected predators are weakened by the infection [23].

8. The susceptible population is increased at different conversion rates c1 and c1 due
to resources gained through cannibalism. The dimensionless quantities c1 and c2
are conversion rates to the susceptible predator for the species y and z respectively.
It is assumed that a predator cannot produce more than one susceptible predator
per predator consumed, that is, c1, c2 < 1.

9. The susceptible predator becomes infected via cannibalistic transmission and this
process is assumed to follow the simple law of mass action with σ l f measuring
the force of infection. Here σ is a non-negative constant, and defined by the num-
ber of predators killed and consumed per predator per time or attack rate due to
cannibalism. l is the probability of transmission for cannibalistic interaction and
f is the number of predators sharing one conspecific predator.

On the basis of the above assumptions we propose the following mathematical
model,

dx

dt
= r x

(
1 − x

k

)
− (α1y + α2z)x

γ + x
,

dy

dt
= α(α1y + α2z)x

γ + x
+ c1σ(βy + z)y

+ c2σ(βy + z)z − σ(βy + z)y − σ l f yz − λyz − dy,

dz

dt
= λyz + σ l f yz − σ(βy + z)z − (d + e)z.

(2.4)

System (2.4) is to be analyzed with the following initial conditions

x(0) > 0, y(0) > 0, z(0) > 0.

Since all the parameters of (2.4) are non-negative, the right hand side is a smooth
function of the variables x, y, z in the positive region E = {(x, y, z); x, y, z ∈ R+}.
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3 Some preliminary results

3.1 Existence, positive invariance

Proposition 1 Every solution of the system (2.4)with positive initial values exists and
is unique in the interval [0 ∞) and x(t) > 0, y(t) > 0, z(t) > 0,∀ t ≥ 0.

Proof Denoting Z ≡ (x, y, z)T and F(Z) = [F1(Z), F2(Z), F3(Z)]T such
that F1 = r x(1 − x

k ) − (α1y+α2z)x
γ+x , F2 = α(α1y+α2z)x

γ+x + c1σ(βy + z)y + c2σ
(βy+z)z−σ(βy+z)y−σ l f yz−λyz−dy, F3 = λyz+σ l f yz−σ(βy+z)z−(d+e)z.
Then system (2.4) can be written in the form Ż = F(Z), where F : C+ −→ R3+ with
Z(0) = Z0 ∈ R3+, Fi ∈ C∞(R+), for i = 1, 2, 3. Thus, vector function F is a locally
Lipschitzian and completely continuous function of the variables x, y, z in the positive
octant E = {(x(t), y(t), z(t)); x > 0, y > 0, z > 0}. Applying the lemma in [60], we
can say that any solution (x, y, z) of the system (2.4) with positive initial values exists
and is unique in the interval [0 c],∀ t ≥ 0, where c is a finite positive real number. �	

3.2 Boundedness

Proposition 2 All feasible solutions of the system (2.4) are uniformly bounded in the
region

Eε =
{
(x, y, z) ∈ R3+ : x + y + z ≤ k̂(r + 1)

m
+ ε

}
.

Proof Let V (x, y, z) = x + y + z, then we have

dV

dt
= r x

(
1 − x

k

)
− (1 − α)

x(α1y + α2z)

σ + x
− σ(βy + z)[(1 − c1)y + (1 − c2)z)]

− dy − (d + e)z (by using (2.4))

≤ r x
(
1 − x

k

)
− dy − (d + e)z (since α, c1, c2 < 1)

= x
[
r
(
1 − x

k

)
+ 1
]

− x − dy − (d + e)z

≤ x(r + 1) − x − dy − (d + e)z.

In particular, lim
t→∞ sup x(t) ≤ k̂ since dx

dt ≤ r x(1− x
k ), where k̂ = max{x(0), k}. Thus,

x(t) is bounded and defined on [0,∞) ∀ t ≥ 0.
Hence, dV

dt + mV ≤ k̂(r + 1), where m = min{1, d, d + e}.
Now applying the theory of differential inequality we get,

0 < V (x, y, z) ≤ k̂(r + 1)

m
+ e−mtV (x(0), y(0), z(0))

which implies 0 < V (x, y, z) ≤ k̂(r+1)
m as t → ∞.
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So all the solutions of (2.4) with positive initial values are confined in the region

Eε =
{
(x, y, z) ∈ R3+ : x + y + z ≤ k̂(r + 1)

m
+ ε

}
for any ε > 0.

Hence the result.

3.3 Extinction criterion

Proposition 3 If α1y(t) ≥ r(γ + k̂), then limt→∞x(t) = 0. If {λ + σ l f − σβ}y(t)
≤ (d + e), then limt→∞z(t) = 0. If αα1 ≤ d, then limt→∞y(t) = 0.

Proof

dx

dt
= r x

(
1 − x

k

)
− (α1y + α2z)x

γ + x
≤ x

(
r − α1y

γ + x

)

Therefore, x(t) = x(t0) exp {∫ tt0(r − α1y(ξ)
γ+x(ξ)

)}dξ

x(t) ≤ x(t0) exp

{∫ t

t0

(
r − α1y(ξ)

γ + k̂

)}
dξ, since limt→∞ sup x(t) ≤ k̂.

Thus if α1y(t) ≥ r(γ + k̂), then limt→∞x(t) = 0.

dz

dt
= λyz + σ l f yz − σ(βy + z)z − (d + e)z ≤ z{(λ + σ l f − σβ)y − (d + e)}

z(t) ≤ z(t0) exp

[∫ t

t0
(λ + σ l f − σβ)y(ξ) − (d + e)

]
dξ.

Hence limt→∞z(t) = 0 provided (λ + σ l f − σβ)y(t) ≤ (d + e).
Again from second and third equations of the system (2.4) we have

dy

dt
+ dz

dt
= α(α1y + α2z)x

γ + x
− σ(1 − c1)(βy + z)y − σ(1 − c2)(βy + z)z − d(y + z) − ez

d

dt
(y + z) ≤ αα1(y + z)x

γ + x
− d(y + z)

≤ (αα1 − d)(y + z).

Therefore, y(t) + z(t) = [y(t0) + z(t0)] exp {∫ tt0(αα1 − d)}dξ ≤ [y(t0) + z(t0)] exp
{(αα1 − d)(t − t0)}.
Thus limt→∞{y(t) + z(t)} = 0 provided αα1 ≤ d.
Again limt→∞z(t) = 0 hence limt→∞y(t) = 0.
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4 Qualitative analysis of the model

4.1 Equilibria and their existence

The system (2.4) has four equilibrium points. B0(0, 0, 0) is the trivial equilibrium
point. The predator free axial equilibrium point is B1(k, 0, 0). Disease-free planar
equilibrium point is B2(x2, y2, 0), where y2 = 1

σβ(1−c1)
( αα1x2

γ+x2
− d) and x2 is the

unique positive real root of the cubic equation

a0x
3
2 + 3a1x

2
2 + 3a2x3 + a3 = 0, (4.1)

wherea0 = rσβ(1−c1)
k , 3a1 = (

2γ
k −1)rσβ(1−c1), 3a2 = αα2

1−α1d−2rσβγ + rσβγ 2

k
and a3 = −{rσβγ 2(1 − c1) + dα1γ }.

The above Eq. (4.1) has exactly one real positive root if G2 + 4H3 > 0 with
G = a20a3 − 3a0a1a2 + 2a31 and H = a0a2 − a21 . If ξ0 denotes one of the cubic root
of 1

2 [−G + √
G2 + 4H3] and by Cardano’s method, the root is 1

a0
[ξ0 − a1 − H

ξ0
]. If

G2+4H3 = 0 then the Eq. (4.1) has two equal roots and the conditionG2+4H3 < 0
together with H < 0 gives three distinct real roots. B2 denotes the one and only
one positive disease-free planar equilibrium point of the system (2.4) but when the
Eq. (4.1) has three distinct positive roots, so we can get three different equilibrium
points, denoting them by B(i)

2 , B(ii)
2 and B(i i i)

2 .
The interior equilibrium point is given by B∗(x∗, y∗, z∗), where z∗ = 1

α
[(λ+σ l f −

σβ)y∗ − (d+e)], x∗ and y∗ are the positive roots of the following set of two equations

b1x
2 + b2x + b3y + b4 = 0,

d1y
2 + d2

xy

γ + x
+ d3y + d4

x

γ + x
+ d5 = 0, (4.2)

where b1 = r
k , b2 = r( γ

k − 1), b3 = α1 + α2( f l − β + λ
σ
), b4 = −{rγ + α2(d +

e)}, d1 = c2(λ+σ l f −σβ)2+(c1σ−σ−σ l f −λ)(λ+σ l f −σβ)+(c1σβ−σβ)σ, d2 =
α[α1σ + α2(λ + σ l f − σβ)], d3 = −[(c1σ − σ − σ l f − λ)(d + e) + 2c2(d + e)(λ +
σ l f − σβ) + σd], d4 = −αα2(d + e) and d5 = c2(d + e)2.
The equilibrium points B0, B1 always exist. The equilibrium point B2 is admissible if
αα1x2
γ+x2

> d. The existence condition of interior equilibrium is y∗ >
(d+e)

λ+σ l f −σβ
.

4.2 Stability analysis

In this section, we deal with local and global stability of the system (2.4) around each
of the equilibria. The Jacobian matrix J of the system (2.4) at any arbitrary point
(x, y, z) is given by

J ≡

⎡
⎢⎢⎢⎢⎢⎣

r(1 − 2 x
k ) − (α1 y+α2z)

γ+x + (α1 y+α2z)x

(γ+x)2
− α1x

γ+x − α2x
γ+x

α(α1 y+α2z)
γ+x − α(α1 y+α2z)x

(γ+x)2
αα1x
γ+x + c1σ(2βy + z) + c2σβz

αα2x
γ+x + c1σ y + c2σ(βy + 2z)

−σ(2βy + z) − σ l f z − λz − d −σ y − σ l f y − λy

0 λz + σ l f z − σβz λy + σ l f y − σ(βy + 2z) − (d + e)

⎤
⎥⎥⎥⎥⎥⎦

.
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4.2.1 The behavior of the system around B0(0, 0, 0)

Let J0 be the Jacobian matrix of the system (2.4) at equilibrium point B0, then eigen-
values at B0 are r,−d and −(d + e). Then there exists a two-dimensional differential
stable manifold in yz-plane and one-dimensional unstable manifold in x-axis. Thus,
the system (2.4) is always unstable around B0.

4.2.2 The behavior of the system around B1(k, 0, 0)

Theorem 1 (a) The axial equilibrium point B1(k, 0, 0) of the system (2.4) is locally
asymptotically stable if R01 < 1, where R01 = αα1k

d(γ+k) .
(b) B1 is globally asymptotically stable if d ≥ α1(α + k).

Proof (a) The eigenvalues associated with the Jacobian matrix J1 around the axial
equilibrium point B1 are −r,−(d + e) and αα1k

γ+k − d. Therefore, the system is
locally asymptotically stable if R01 < 1.

(b) Let R3+x = {(x, y, z) ∈ R3+ : x > 0, y ≥ 0, z ≥ 0} and consider a positive
definite function Υ : R3+x → R about B1(k, 0, 0), given by

Υ (x, y, z) = 1

2
(x − k)2 + y + z.

The derivative of Υ w.r.t time t along the solution of the system (2.4), we get

Υ̇ = (x − k)
[
r x
(
1 − x

k

)
− (α1y + α2z)x

γ + x

]
+ α(α1y + α2z)x

γ + x
+ c1σ(βy + z)y + c2σ(βy + z)z − σ(βy + z)y − dy

− σ(βy + z)z − (d + e)z

≤ −r x(x − k)2

k
− (α1y + α2z)x2

γ + x
+ k(α1y + α2z) + α(α1y + α2z)

− σ(1 − c1)(βy + z)y − σ(1 − c2)(βy + z)z − d(y + z) − ez

= −r x(x − k)2

k
− (α1y + α2z)x2

γ + x
− σ(1 − c1)(βy + z)y

− σ(1 − c2)(βy + z)z − (d − α1k − αα1)y − (d + e − α2k − αα2)z

≤ 0, if d ≥ max{α1(α + k), α2(α + k) − e} = α1(α + k) (since α1 > α2 and
c1, c2 < 1); and Υ̇ = 0 at (x, y, z) = (k, 0, 0). Hence, the equilibrium point B1 is
globally asymptotically stable for d ≥ α1(α + k).

4.2.3 The behavior of the system around B2(x2, y2, 0)

Theorem 2 (a) The disease-free equilibrium point B2(x2, y2, 0) of the system (2.4)
is locally asymptotically stable if R02 < 1, σ > σ [2] and r > r [2], where R02 =
(λ+σ l f )y2
σβy2+d+e , σ

[2] = x2
β(1−c1)y2

[
αy2

(γ+x2)2
− r

k

]
, r [2] = αky2

(γ+x2)2
.
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(b) If rγ + (1 − c1)σβ ≥ α1, then local stability of the axial equilibrium point B2
ensures its global stability in the regionR2+ of xy-plane, whereR2+ = {(x, y); x >

0, y > 0}.
Proof (a) The Jacobian matrix around B2 is given by

J2 =

⎡
⎢⎢⎣

− r x2
k + α1 y2x2

(γ+x2)2
− α1x2

γ+x2
− α2x2

γ+x2
αα1γ y2
(γ+x2)2

σβ(c1 − 1)y2
αα2x2
γ+x2

+ c1σ y2 + c2σβy2 − σ y2 − σ l f y2 − λy2

0 0 (λ + σ l f − σβ)y2 − (d + e)

⎤
⎥⎥⎦ .

The characteristic roots of the Jacobian matrix J2 are (λ+σ l f −σβ)y2 − (d + e)
and other two roots are given by

μ2 + π1μ + π2 = 0,

where

π1 = r x2
k

+ σβ(1 − c1)y2 − α1y2x2
(γ + x2)2

,

π2 = σβ(1 − c1)x2y2

[
r

k
− α1y2

(γ + x2)2

]
+ αα2

1x2y2
(γ + x2)3

.

Hence, the system is locally asymptotically stable around B2 if R02 < 1, σ > σ [2]
and r > r [2].

(b) For the equilibrium point B2(x2, y2, 0), we consider �(x, y) = γ+x
x2 y

, ϕ1(x, y) =
r x(1 − x

k ) − α1yx
γ+x , ϕ2(x, y) = αα1yx

γ+x + c1σβy2 − σβy2 − dy and

D(x, y) = ∂(ϕ1�)

∂x
+ ∂(ϕ2�)

∂y
.

Thus, �(x, y) > 0∀x > 0, y > 0. Then we can get

D = −rγ

x2
− r

yk
− 1

x2
(σβ − c1σβ − α1) − 1

x
(1 − c1)σβ

= − 1

x2
[rγ + σβ(1 − c1) − α1] − r

yk

− 1

x
(1 − c1)σβ < 0 if rγ + (1 − c1)σβ ≥ α1.

By Bendixson–Dulac criteria, we observe that if rγ + (1 − c1)σβ ≥ α1, then D
does not change sign and is not identically zero in the interior of first quadrant of
xy-plane. Therefore, the system (2.4) has no periodic solution in the positive quadrant
of xy-plane. Thus, if B2 is locally asymptotically stable, then it will be globally
asymptotically stable in the region R2+ of xy-plane.
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4.2.4 Biological significance of threshold parameters and community structure

We discuss the biological significance of threshold parameters obtained from local
stability analysis of axial and planar equilibrium points. Each threshold parameter has
clear and distinct biological meanings. The community composition of the model sys-
tem can be completely explained in terms of ecological and disease basic reproduction
numbers. We define the threshold parameter R01 by

R01 = αα1k

d(γ + k)

which determines the local stability of the axial equilibrium point B1(k, 0, 0). This
expression can be considered as the disease-free demographic reproduction number.
The term αα1k

γ+k is the birth rate of predator and 1
d is the mean lifespan of a healthy

predator. Subsequently, the above two relations together give the mean number of
newborn predators by a predator. So, R01 is also interpreted as the ecological basic
reproduction number. We also note that Pielou [43] first formulated this term and
explained as the average number of prey converted to predator biomass in a course
of predator’s life span [31]. The condition R01 < 1 implies that the predator goes to
extinct and only the prey populations survive in the predator-free system.

For local stability of the system at the disease-free planar equilibrium point
B2(x2, y2, 0) is related to a basic reproduction number R02, where

R02 = (λ + σ l f )y2
σβy2 + d + e

.

Here, the term (λ + σ l f )y2 is the infection rate of a new infective predator appearing
in a totally susceptible predator population in the absence of the disease infection and
σβy2 + d + e is the removal rate of infected predator population around B2. So, R02
is interpreted as disease basic reproduction number in the predator population. The

parameter R02, together with σ [2]
σ

and r [2]
r govern whether disease is wipeout from the

system. If R02 < 1, σ > σ [2] and r > r [2], the infection will die out in the long run
i.e., the disease-free steady-state B2 is locally stable on the xy-plane. When R02 > 1,
clearly the disease-free steady state loses its local stability, and the infection is able to
spreads among the predators. Thus, there exists a stable interior steady-state in which
disease is always present in the predator population.

4.2.5 The behavior of the system around B∗(x∗, y∗, z∗)

Theorem 3 (a) The interior equilibrium point B∗(x∗, y∗, z∗) of the system (2.4) is
locally asymptotically stable if Θ1 > 0,Θ3 > 0 and Θ1Θ2 −Θ3 > 0, where Θi ’s
are prescribe in the proof of the theorem.

(b) If

I.
r

k
≥ max

[α1y∗ + α2z∗
γ (γ + x∗)

,
α1y∗ + α2z∗
γ (γ + x∗)

+ 1

4σ(1 − c1)β

(α1

γ

)2]
, (4.3)
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II. α1 ≥ max

⎡
⎢⎣
√

αγ

γ + x∗
α2z∗
y

,
αα2γ z∗(

1 − αγ
γ+x∗

)
(γ + x)(γ + x∗)y

+ 2r(γ + x)2

α2k
(
1 − αγ

γ+x∗

) {σ(1 − c1) + σβ(1 − c2)},

αα2γ z∗(
1 − αγ

γ+x∗

)
(γ + x∗)y

+
2α2

{
σ(1 − c1)β + c2σ z∗

2

y∗y + αα2x∗z∗
(γ+x∗)y∗y

}
(
1 − αγ

γ+x∗

){
σ(1 − c1) + σβ(1 − c2)

}

⎤
⎥⎦ ,

(4.4)

III. σ (1 − c1) + σβ(1 − c2) > c2σ
z

y
+ c2σ

z∗
y

+ αα2x

(γ + x)y
and (4.5)

IV. γ ≥ α1(γ + x)y

αα2z∗
(4.6)

then, the existence of positive interior equilibrium point B∗ of the system (2.4) implies
its global stability around the positive interior equilibrium point.

Proof See Appendix 1. �	
We have also summarized the existence, local stability and global stability criteria of
the equilibrium points of the system (2.4) in Table 1.

Remark 1 The system (2.4) is stable around the predator-free equilibrium (B1) if
R01 < 1 and becomes unstable if R01 > 1. Therefore, the predator-free equilibrium
undergoes a transcritical bifurcation at R01 = 1. Furthermore, the system (2.4) is
stable around the disease-free equilibrium (B2) if R02 < 1 and becomes unstable if
R02 > 1 and the disease starts to persist in the system. Therefore, another transcritical
bifurcation occurs at R02 = 1.

Hopf bifurcation analysis We know that, the steady state B∗ will lose its stability
when one of the parameters changes. We choose σ , the cannibalistic attack rate as the
bifurcation parameter. We shall find out the conditions for which the solution of the
system (2.4) enters into Hopf bifurcation on some submanifold in parameter space

Table 1 Community composition and stability of equilibria

Equilibrium
pt.

Existence criterion LAS criterion Sufficient conditions
for GAS

B0(0, 0, 0) Always exists Always unstable Always unstable

B1(k, 0, 0) Always exists R01 < 1 α1(α + k) ≤ d

B2(x2, y2, 0)
αα1x2
γ+x2

> d R02 < 1, σ > σ [2]
and r > r [2]

rγ + (1 − c1)σβ ≥ α1

B∗(x∗, y∗, z∗) y∗ >
(d+e)

λ+σ l f −σβ
and

Eq. (4.2)
Θ1 > 0, Θ3 > 0 and

Θ1Θ2 − Θ3 > 0
Eqs. (4.3)–(4.6)
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corresponding to fixed σ = σ ∗. Now the system (2.4) will admit a Hopf bifurcation
around the interior steady state B∗ follows the theorem is stated at below.

Theorem 4 If cannibalistic attack rate σ passes through the critical value σ ∗ and the
following conditions hold:

(i) Θ1(σ
∗) > 0,Θ2(σ

∗) > 0;
(ii) Θ3(σ

∗) = Θ1(σ
∗)Θ2(σ

∗);
(iii) Θ́3(σ

∗) > [Θ1(σ
∗)Θ2(σ

∗)]′
,

then the system (2.4) undergoes a Hopf bifurcation at the interior equilibrium point
B∗.

Proof See Appendix 2. �	

5 Permanence and impermanence

Here we wish to discuss the permanence and impermanence of the system (2.4) with
positive initial conditions. Biologically, permanence of the system means the coex-
istence of all species of the system in future time. Mathematically, permanence of
the system means that strictly positive solutions having no omega limit points on the
boundary of the non negative cone.

Theorem 5 Suppose that R01 > 1, and if there exists a finite number of periodic
solutions x = ϕq(t), y = ψq(t), q = 1, 2, . . . , n, in the xy-plane, then system (2.4)
is uniformly persistent provided for each periodic solutions of period T ,

ζq = −(d + e) + 1

T

∫ T

0
[(λ + σ l f − σβ)ϕq − σψq ]dt > 0,∀ q = 1, 2, . . . , n.

Proof See Appendix 3. �	
Before starting our theorem on impermanence of the system (2.4), we give a defi-

nition of impermanence of the system. Let κ = (κ1, κ2, κ3) be the population vector,
B = {κ : κi > 0 ∀ i = 1, 2, 3}, ∂B is the boundary of B, and d0〈., .〉 is the distance
in R3+.

Consider the system of equations, given by

κ̇ = f j (κ) j = 1, 2, 3,

where f j : R3+ → R and f j ,∈ C1.
Let κ(t) be a solution with initial value κ(0) = κ0, then the semi orbit γ + is defined

by the set {κ(t) : t > 0}.
According to Hutson and Law (1985), the above system is said to be impermanent

iff there is an κ ∈ B such that limt→∞d0 < κ(t), ∂B >= 0. Thus, a community is
impermanent if there is at least one semi-orbit which tends to the boundary.
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Fig. 1 The figure depicts the solution of the system (2.4) in the absence of disease and cannibalism for
parameter values are r = 0.4; k = 60.0;α1 = 0.2; α2 = 0.1;α = 0.4; γ = 0.7; d = 0.02; e = 0.01; λ =
0.0; σ = 0.0

Theorem 6 The system (2.4) is impermanent if R01 < 1 or R02 < 1.

Proof The equilibrium point B1 is locally stable on the boundary when R01 < 1. The
condition R02 < 1 implies that B2 is a saturated fixed point on boundary. Thus, there
exists at least one orbit in positive cone that converges to the boundary [33]. Hence
the system (2.4) is impermanent [35].

6 Numerical simulations

In this section, we perform numerical simulations of the system (2.4) by using
4th order Runge–Kutta method [7] in Matlab 7.6 software. The numerical simulation
can also be performed by the multistage Adomian decomposition method as another
efficient alternative [17–20]. Here cannibalistic attack rate σ , conversion rates c1, c2
due to cannibalism, disease transmission rate λ and conversion efficiency α of predator
are important parameters under investigation. The main purpose of this section is to
study the dynamical behavior of themodel for a wide range of above parameter values.
To validate the analytical findings of themodel, we choose a set of biologically feasible
hypothetical parameter values r = 0.4; K = 60.0;α1 = 0.2;α2 = 0.1;α = 0.4; γ =
0.7; d = 0.02; e = 0.01; λ = 0.004; σ = 0.005, c1 = 0.3; c2 = 0.2;β = 0.3; l =
0.01; f = 10.0 (see Table 2).

It is observed from Fig. 1 that the prey and predator populations coexist with
oscillatory nature in the absence of disease and cannibalism (λ = 0, σ = 0). But
Fig. 2 demonstrates that in the absence of cannibalism, the disease spreads among the
predators for a certain disease transmission rate λ = 0.004.
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Fig. 2 The figure depicts the solution of the system (2.4) in the absence of cannibalism for λ = 0.004 and
other parameter values as in Fig. 1

6.1 Role of cannibalistic attack rate σ

We have already stated that cannibalistic attack rate among the predators has a signif-
icant impact on the dynamics of the system. We like to observe the dynamics of the
system (2.4) for changing the cannibalistic attack rate σ . Figure 2 shows all species
coexist in oscillatory dynamics for σ = 0 and the other parameters remain same
as in Table 2. Figure 3 represents all species coexist around the interior equilibrium
point B(ii)∗ (43.4216, 21.0632, 6.6379) for σ = 0.005. The above results indicate that
in the absence of cannibalism, all species coexist through an oscillatory manner. But
it is interesting to note that all the species settle down to a stable position from the
oscillatory behavior due to presence of cannibalism.

For σ = 0.005, the system (2.4) has two positive interior equilibrium points
B(i)∗ (15.1342, 20.5234, 6.3140) and B(ii)∗ (43.4216, 21.0632, 6.6379). The eigenval-
ues of the system at B(i)∗ are 0.180296 and −0.0310664 ± 0.0450505i , so there
exists an one-dimensional unstable manifold in x-axis and two-dimensional sta-
ble manifold in yz-plane. Therefore, the system is always unstable at B(i)∗ . On the
other hand, the eigenvalues of another equilibrium point B(ii)∗ are −0.179895 and
−0.0353087 ± 0.0468876i . Thus the system is always locally asymptotically stable
around B(ii)∗ . In addition, Fig. 4 shows that the system is globally stable at the inte-
rior steady state B(ii)∗ i.e., any trajectory starting from the positive region E ∈ R3+
(independent of initial conditions) converges to B(ii)∗ .

For σ = 0.009017 and the other parameters are same as in Table 2, the sys-
tem (2.4) has two disease-free planar equilibrium points B(i)

2 (0.2956, 1.9814, 0), B(ii)
2

(29.1531, 30.6932, 0), and two interior equilibria B(i)∗ (13.5781, 21.1779, 1.83203),
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Table 2 List of variables and parameters

Variable/Parameter Biological meaning Parameter value

x Prey population size –

y Susceptible predator population size –

z Infected predator population size –

r Intrinsic per capita growth rate of prey 0.4

k Carrying capacity of prey 60.0

α1 Predation rate of susceptible predator 0.2

α2 Predation rate of infected predator 0.1

γ Half-saturation constant 0.7

α Conversion efficiency of predator 0.4

λ Disease transmission rate 0.004

d Natural death rate of predator 0.02

e Additional disease-related mortality rate 0.01

σ Attack rate due to cannibalism 0.005

c1 Conversion rate of predator for cannibalism of susceptible predator 0.3

c2 Conversion rate of predator for cannibalism of infected predator 0.2

β Dimensionless quantity (0 < β < 1) 0.3

l Probability of transmission for cannibalistic interaction 0.01

f Number of predator sharing one conspecific predator 10.0
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Fig. 3 Shows that all species coexist in stable position for σ = 0.005, c1 = 0.3; c2 = 0.2;β = 0.3;
l = 0.01; f = 10.0 and other parameter values as in Fig. 2

B(ii)∗ (44.9951, 21.8564, 1.99731). At the equilibrium point B(i)
2 , μ1 = −0.025648,

μ2,3 = 0.056228 ± 0.055224i ; similarly, at B(ii)
2 , μ1 = 0.037420, μ2 = −0.051630,

μ3 = −0.00003268; and at B(i)∗ , μ1 = 0.199053, μ2,3 = −0.027732 ± 0.024687i .
Thus the planar equilibria B(i)

2 and B(ii)
2 as well as one interior equilibrium point
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Fig. 4 Global stability of the system (2.4) around interior equilibrium point B(ii)∗ (43.4216, 21.0632,
6.6379) for σ = 0.005 and other parameter values as in Table 2

B(i)∗ of the system are always unstable around their corresponding equilibria, see
Fig. 5. But only one interior equilibrium point B(ii)∗ is locally asymptotically stable,
since Routh–Hurwitz criteria Θ1 = 0.264792 > 0,Θ3 = 0.000331857 > 0 and
Θ1Θ2 −Θ3 = 0.00351124 > 0 are satisfied at B(ii)∗ . Moreover, Fig. 5b shows that the
interior equilibrium point B(ii)∗ of the system is globally stable because Ω is positive
definite. This means that the disease can invade in the system and go to the endemic
levels.

Figure 6 demonstrates that the system will be disease free for σ = 0.018. By
Cardano’s method the Eq. (4.1) has three distinct positive roots, so there are three
different equilibrium points namely B(i)

2 (0.3791, 2.1446, 0), B(ii)
2 (7.2744, 14.0152, 0)

and B(i i i)
2 (50.9464, 15.5862, 0). In this case among the three equilibrium points only

one disease-free equilibrium point B(i i i)
2 is locally stable, since at B(i i i)

2 the disease
basic reproduction number R02 = 0.7918 < 1, andσ = 0.018 > σ [2] = −0.0674 and
r = 0.4 > r [2] = 0.1402. Thus the prey and susceptible predator population coexist in
locally asymptotically stable position around the disease-free steady-state B(i i i)

2 ,which
rule out the presence of disease. Moreover, the sufficient condition rγ + (1−c1)σβ =
0.2838 ≥ α1 = 0.2 together with local stability conditions imply its global stability
around B(i i i)

2 . Figure 7a shows that the trajectories of the system (2.4) approach to the
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Fig. 5 The global dynamics of the system (2.4) for σ = 0.009017 and other parameter values as in Table 2.

a Two planar equilibria B(i)
2 (0.2956, 1.9814, 0) and B(ii)

2 (29.1531, 30.6932, 0) of the model are unstable.

b Interior equilibrium point B(ii)∗ (44.9951, 21.8564, 1.99731) of the model is globally stable
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Fig. 6 Shows that extinction of infected predator in stable position for σ = 0.018 and other parameter
values as in Fig. 2

steady-state B(i i i)
2 regardless of initial conditions. For σ = 0.05 the system (2.4) has

only one disease-free planar equilibrium point B2(57.0811, 5.6219, 0) and is locally
as well as globally stable around unique planar equilibrium point B2, see Fig. 7b.

Numerical simulation of the system (2.4) shows that all species coexist in limit
cycle oscillation nature for σ ≤ 0.0026. Disease-free system exhibits limit cycle
oscillations in the range 0.0027 ≤ σ ≤ 0.0048 and the system (2.4) shows a stable
situation around the positive interior steady-state in the interval 0.0049 ≤ σ < 0.013.
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Fig. 7 The dynamics of the system (2.4) for a σ = 0.018, b σ = 0.05 and other parameter values as
in Table 2. The green line represents x-nullcline and black one denotes the y-nullcline. a Global stabil-

ity of the model around B(i i i)
2 (50.9464, 15.5862, 0) and the other equilibria B(i)

2 (0.3791, 2.1446, 0) and

B(ii)
2 (7.2744, 14.0152, 0) are unstable. b Global stability of the model around unique planar equilibrium

point B2(57.0811, 5.6219, 0). (Color figure online)

Finally, system (2.4) goes into the disease-free stable situation from the stable posi-
tion around the interior equilibrium state for σ > 0.013. The bifurcation diagram
(Fig. 8) w.r.t bifurcating parameter σ also reflects the above fact. It follows that there
are three critical attack rate values so that (i) the unstable internal steady-state B∗
switches to disease-free planar steady-state B2 in an unstable situation (ii) comes back
from unstable disease-free steady-state to interior steady-state in a stable position
as σ increases, (iii) further increasing of cannibalistic attack rate σ , stable interior
steady state switches to disease-free steady-state in stable position. Based on above
numerical results, we get an interval [0, 0.0026] where all species survive in limit
cycle oscillation and for σ ∈ [0.0027, 0.0048] disease goes into extinction, and prey
and predator species survive in oscillatory behavior. Next, for σ ∈ [0.0049, 0.013]
all species survive in a stable position and for σ > 0.013 the disease is wipe out
from the system. Thus, there exist three threshold values of σ which are denoted
by σ ∗

1 (=0.0026), σ ∗
2 (=0.0048) and σ ∗

3 (=0.013). Our numerical experiments suggest
that to control the disease propagation in predator population, a minimum threshold
of cannibalistic attack rate σ ∗

1 (=0.0026) is required. The disease-free predator–prey
oscillations become stable when σ crosses a critical value σ ∗

2 (=0.0048). Although,
the disease is further spreads among the predator species. Thereafter, the disease can-
not spread among the predators when σ passing through σ ∗

3 . This result indicates that
there is a maximum threshold of cannibalistic attack rate σ ∗

3 (=0.013) above which the
infected predator does not exist. Therefore, cannibalism can prevent the population
oscillation as well as disease in the system.
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Fig. 8 Bifurcation diagram of system (2.4) for σ ∈ [0.0, 0.02] and other parameter values as in Table 2

6.2 Dynamics of the system (2.4) for variation of both cannibalistic conversion
rates c1, c2

Nowwe are interested to observe the effects of conversion rates c1 and c2 in the system
(2.4). To do this, we first vary the parameter c1, keeping c2 and other parameter values
fixed.Next, we vary c2, keeping c1 and other parameter values fixed as in the Table 2. In
some situation, conversion rates due to cannibalism help the coexistence of all species
or disease eradicated from the predator species. We observed that for a certain range
of conversion rate c1, the infected predator population extinct. All species coexist in a
stable position for c1 ∈ [0, 0.3]. It is observed that infected predator goes to extinction
as well as disease-free predator and prey population exist in oscillatory nature in
the range (0.3, 0.9). Clearly, the situation represents the dynamics of a disease-free
system. Further, if we increase the value of c1 from 0.9, the disease is again spreading
among the predators, and all species coexist in a limit cycle nature. For clear dynamics,
we draw a bifurcation diagram (Fig. 9) for different values of c1.

Figure 10 indicates a situation where the infected predator survives in a stable
steady-state for c2 ∈ [0, 0.265]. Also the infected predator increases as increasing
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Fig. 9 Bifurcation diagram of system (2.4) for c1 ∈ (0.0, 1.0) and other parameter values as in Table 2

with c2 in the range 0 ≤ c2 ≤ 0.265 and goes to its maximum value at c2 ≈ 0.265.
When c2 cross a critical value c02(=0.265), the disease wipes out from the system and
disease-free predator, and prey population exists in limit cycle oscillation. In this case,
a minimum conversion efficiency c02 is required to control the disease propagation
among the predators. Thus we conclude that all species will be disease free for higher
values of conversion rates c1 (but not exceeding 0.9) and c2.

6.3 Effect of disease transmission rate λ in the system (2.4)

From a biological point of view, the disease in predator population also plays an impor-
tant role. We observe the effect of disease in the system (2.4) for the variation of force
of infection λ, keeping the other parameters are fixed as in Table 2. For λ < 0.004
the system shows limit cycle oscillation dynamics in a prey and disease-free preda-
tor populations (Fig. 11a). All species coexist around B(ii)∗ (43.4216, 21.0632, 6.6379)
and the system enters into the steady-stable position from limit cycle oscillation for
λ = 0.004 (see Fig. 11b). In this situation, the disease basic reproduction number
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Fig. 10 Bifurcation diagram of system (2.4) for c2 ∈ (0.0, 1.0) and other parameter values as in Table 2

at B(ii)∗ is R02 = 1.53884 > 1, so the disease spreads among the predators. Thus a
minimum strength of infection (λmin = 0.004) is required for propagation of disease
in the predator population or stabilize the oscillatory existence of disease-free system
into stable coexistence of all species. From above numerical result, we get an interval
[0, 0.004) on λ in which disease-free prey–predator species exist in oscillatory behav-
ior. To make it clearer, we plot a bifurcation diagram of all species for variation of
infection rate λ, see Fig. 12. It is observed from Fig. 12 susceptible predator decrease
as increasing with λ but the infection cannot invade among the whole predator pop-
ulation. We finally conclude that there is a critical value of disease transmission rate
(λmin), so that the disease-free planar steady-state B2 switches from unstable to stable
interior steady state B∗.

6.4 Role of different conversion efficiency α of predator

Now we observe the effects on the system (2.4) for changing the conversion effi-
ciency α in the predator species. The Fig. 13 indicates that predator-free prey only
steady-state exists in a stable position at a positive level for α ∈ [0, 0.1], disease-
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Fig. 11 The dynamics of the system (2.4) for a λ = 0.003, b λ = 0.004 and other parameter values as
in Table 2. a Oscillatory behavior of the system around B2(0.2658, 1.9231, 0). b Stability of the system

around interior equilibrium point B(ii)∗ (43.4216, 21.0632, 6.6379)
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Fig. 12 Bifurcation diagram of system (2.4) for λ ∈ [0.0, 0.1] and other parameter values as in Table 2
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Fig. 13 Bifurcation diagram of system (2.4) for α ∈ (0.0, 1.0) and other parameter values as in Table 2

free predator and prey populations coexist in a stable position at a positive level for
α ∈ (0.1, 0.15). Further, it is observed that all species coexist in a stable position
around the interior steady-state for α ∈ [0.15, 0.4]. It is worthy to note here that the
system (2.4) undergoes a transcritical bifurcation between predator-free equilibrium
point (B1) and disease-free equilibrium point (B2) at α = 0.1.We also observe that at
α = 0.15 the system (2.4) undergoes a transcritical bifurcation between disease-free
equilibrium point (B2) and the interior equilibrium point (B∗). Again, increasing the
value of α(>0.4) implies that the prey and susceptible predator population exist in
limit cycle oscillation. Thus we can get an important result that the higher value of the
conversion efficiency α, control the spreads of disease in the predator population and
can give rise a bifurcating periodic solution around disease-free equilibrium point. So
there is a maximum threshold of the conversion rate α (αmax = 0.4) above which the
infected predator doesn’t survive in the system.

For better visualization of the stability dynamics of the system (2.4), we draw the
stability region of the equilibrium points B1, B2 and B∗. We draw the stability region
of the system (2.4) in σ − λ parameter space (Fig. 14). In Fig. 14, the blue shaded
region (R2) indicates the stability region of the disease-free equilibrium (B2), the red

123



A cannibalistic eco-epidemiological model... 185

σ

λ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R1

R3

R2

R4

Fig. 14 Domains of stability and instability of the system (2.4) in σ–λ parameter space where other
parameter values are taken from Table 2. The horizontal axis represents the cannibalistic attack rate σ and
the vertical axis represents the disease transmission coefficient λ. The green region (R1) depicts that the
disease-free equilibrium point B2 is oscillation in nature; the blue region (R2) depicts that the disease-free
equilibrium B2 is stable; the red region (R3) indicates the stability region of the interior equilibrium point
B∗; on the other hand, The black region (R4) depicts that the interior equilibrium point B∗ is oscillation in
nature. (Color figure online)

region (R3) indicates the stability region of the interior equilibrium B∗, the black region
(R4) indicates the limit cycle oscillation region of the interior equilibrium B∗, and the
green region (R1) indicates the limit cycle oscillation region around the disease-free
equilibrium point (B2).

We observe that for any value of λ (<0.0039), if the cannibalistic attack rate σ is
above (or below) a threshold value, then the systembecomes disease free (or limit cycle
oscillatory nature around the disease-free equilibrium point B2). We also observe that
for the small value of σ (<0.005), if the force of infection λ is greater than a threshold
value, then the system becomes oscillatory nature around the interior equilibrium B∗.
For the moderate value of cannibalistic attack rate σ , all species coexist in a stable
nature. Now if the value of cannibalistic attack rate is high enough, i.e. cannibalistic
attack together with disease induced extra mortality reduces the infection in predator,
then the system becomes disease free.

We have drawn the stability region of the system (2.4) in σ − α parameter space.
In Fig. 15, green (R1), blue (R2), red (R3) and yellow (R4) shaded regions indicate
the oscillation of the disease-free (B2), stability of disease-free (B2), stability of the
interior equilibrium point (B∗) and the stability of prey only equilibrium point (B1),
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Fig. 15 Domains of stability and instability of the system (2.4) in σ–α parameter space where other
parameter values are taken from Table 2. The horizontal axis represents the cannibalistic attack rate σ and
the vertical axis represents the conversion efficiency α. The green region (R1) depicts that the disease-free
equilibrium point B2 is oscillation in nature; the blue region (R2) depicts that the disease-free equilibrium
B2 is stable; the red region (R3) indicates the stability region of the interior equilibrium point B∗; on the
other hand, the yellow region (R4) indicates the stability region of prey only equilibrium point B1. (Color
figure online)

respectively. We observe that for any value of σ , if the conversion efficiency (α) of
predator is less than a threshold value, then the system becomes predator free (B1).
For the moderate value of conversion efficiency, then all species coexist in the system
when the attack rate σ is low. Now if the value of σ is high enough, the system becomes
disease free. Disease-free equilibrium point (B2) is oscillatory nature when α is high
enough and the value of σ is moderate. Further, if we increase the cannibalistic attack
rate σ , then the disease-free equilibrium point (B2) becomes stable.

We have also drawn the stability region of the system (2.4) in λ−α parameter space.
In Fig. 16, black (R1), blue (R2), red (R3) and yellow (R4) shaded regions indicate the
oscillation of interior equilibrium point (B∗), stability of disease-free (B2), stability of
the interior equilibrium point (B∗) and the stability of predator-free equilibrium point
(B1), respectively. We observe that for any value of λ, if α is less than a threshold
value, then the system becomes predator-free (B1). For the moderate value of α, the
system becomes disease-free (B2) when the value of force of infection λ is moderate.
We also observe that for the value of α is greater than a threshold value, then the system
becomes oscillatory nature around the interior equilibrium B∗ when λ is small. Now
if the value of force of infection λ is high enough, then all the species coexist in the
system.
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Fig. 16 Domains of stability and instability of the system (2.4) in λ–α parameter space where other
parameter values are taken from Table 2. The horizontal axis represents the disease transmission coefficient
λ and the vertical axis represents the conversion efficiency α. The black region (R1) depicts that the interior
equilibrium point B∗ is oscillation in nature; the blue region (R2) depicts that the disease-free equilibrium
B2 is stable; the red region (R3) indicates the stability region of the interior equilibrium point B∗; on the
other hand, the yellow region (R4) indicates the stability region of prey only equilibrium point B1. (Color
figure online)

7 Conclusion

In this article, we proposed and analyzed a cannibalistic eco-epidemiological model
with disease in the predator population. The characteristic behavior of the predator
species follows Holling type II functional response. In the presence of disease, the
predator community is subdivided into two classes viz. susceptible and infected. The
susceptible predator becomes infected through contact with infected predator and/
or disease spreading among predators during the process of cannibalistic interaction
with infected predator. We have considered that the contact rate between the infected
and susceptible predator obeys the law of mass action. The main objective of this
work is to study the effects of cannibalistic attack rate (σ ), cannibalistic conversion
rates (c1, c1), force of infection (λ), and conversion efficiency (α) of predators in the
system dynamics. We have identified and analyzed the different equilibrium points
of the model for ecological importance: (i) axial steady state consisting only of the
prey species (ii) the boundary disease-free steady state, and (iii) the coexistence steady
state. The preliminary results like existence, positivity and boundedness of solutions,
and extinction criterion of the species of the model (2.4) are prescribed in Sect. 3. We
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have analyzed the disease-free boundary steady state from local as well as global per-
spective. We have obtained disease basic reproduction number R02, threshold values
σ [2] of cannibalistic attack rate and r [2] of prey’s intrinsic growth rate such that for
R02 < 1, σ > σ [2] and r > r [2], the system become locally disease-free stable char-
acteristic. These results imply, a higher cannibalistic attack rate is required to eradicate
the disease from the system because R02 and r [2] are decreasing as increases with σ . So
cannibalism pressure plays a crucial role to prevent the spread of the disease infection
among the predators. In addition, the system becomes the globally stable characteristic
of the disease-free region in xy-plane if it is locally stable with additional sufficient
condition rγ + (1 − c1)σβ ≥ α1 is required. Thus cannibalism has important con-
sequences for control of disease transmission and/ extinction of infection in the host
population.

Investigation of local as well as global stability of the model around the interior
steady state showed that the system will exhibit local asymptotic stability around B∗
if the conditions stated in the Theorem 3(a) hold. We study the global nature using
Lyapunov functions. To visualize the role of key parameter cannibalism pressure (σ )
for local as well as global perspective, we provide a comparison Table 1. Next, we
have investigated the bifurcation dynamics around the endemic steady state. TheHopf-
bifurcation diagrams with respect to key parameters σ, c1, c1, λ and α are drawn.
Stability switching of prey and predator species is clear from bifurcation diagrams
(see Figs. 8, 9, 10, 12, 13). Finally, applying the Butler–McGehee lemma, we find the
conditions for the permanence of the system.

Our numerical observations suggest that the disease will spread among the preda-
tors when the force of infection (λ) in predator species is above some threshold value.
Also, it has been observed that low rate of cannibalistic attack rate is needed for
coexistence of prey and predator population in oscillatory nature. Although, when the
cannibalistic attack rate (σ ) is above a critical value, the oscillation in the popula-
tions disappears; stability switching occurs and the system becomes stable. This result
disagrees with the result: cannibalism act as a destabilizing force in a predator–prey
system studied by Magnússon [40]. Many species (see [21,44]) showed stabilizing
effect of cannibalism on population dynamics. Therefore, cannibalism enhances the
stability of the population dynamics as the increase in cannibalistic attack implies
an increase of predator mortality, which decreases predator population size and the
predation pressure on prey population. This leads to increase prey species size. Thus
cannibalism can act as a mechanism that provides the necessary mortality to stabilize
a host population during the adverse environmental conditions. Further, when the can-
nibalistic attack rate is high enough the system becomes disease-free. Therefore, it
follows that the cannibalism pressure in the predator population is crucial for disease
eradication and controlling the oscillation of the populations.
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Appendix 1

(a) The Jacobian matrix around the interior equilibrium point B∗(x∗, y∗, z∗) is given
by

J ∗ =
⎡
⎣
V11 V12 V13
V21 V22 V23
V31 V32 V33

⎤
⎦ ,

where V11 = − r x∗
k + (α1y∗+α2z∗)x∗

(γ+x∗)2 , V12 = − α1x∗
γ+x∗ , V13 = − α2x∗

γ+x∗ , V21 =
α(α1y∗+α2z∗)

γ+x∗ − α(α1y∗+α2z∗)x∗
(γ+x∗)2 , V22 = αα1x∗

γ+x∗ + c1σ(2βy∗ + z∗) + c2σβz∗ −
σ(2βy∗ + z∗) − σ l f z∗ − λz∗ − d, V23 = αα2x∗

γ+x∗ + c1σ y∗ + c2σ(βy∗ + 2z∗) −
σ y∗ − σ l f y∗ − λy∗, V31 = 0, V32 = λz∗ + σ l f z∗ − σβz∗, V33 = −σ z∗. The
characteristic equation for J ∗ is

μ3 + Θ1μ
2 + Θ2μ + Θ3 = 0, (7.1)

where Θ1 = −(V11 + V22 + V33),Θ2 = V11V22 + V11V33 + V22V33 − V12V21 −
V23V32,Θ3 = −det (J ∗) = V11V23V32 + V12V21V33 − V13V21V32 − V11V22V33.
According to the Routh–Hurwitz criteria the interior equilibrium point B∗ is stable
if the conditions stated in the theorem hold.

(b) Let Σ be a positive definite Lyapunov function about B∗(x∗, y∗, z∗), given by

Σ = Σx + Σy + Σz,

where Σx = x − x∗ − x∗ln x
x∗ ,Σy = y − y∗ − y∗ln y

y∗ ,Σz = z − z∗ − z∗ln z
z∗ .

Now, computing the time derivative of Σx along the solution of (2.4), we obtain

Σ̇x = (x − x∗)

[
r
(
1 − x

k

)
− α1y + α2z

γ + x

]

= (x − x∗)

[
−r(x − x∗)

k

)
− α1

(
y

γ + x
− y∗

γ + x∗

)
− α2

(
z

γ + x
− z∗

γ + x∗

)]

= − r

k
(x − x∗)2 − α1

(γ + x)
(x − x∗)(y − y∗) − α2

(γ + x)
(x − x∗)(z − z∗)

+ (α1y∗ + α2z∗)

(γ + x)(γ + x∗)
(x − x∗)2.

Similarly,

Σ̇y = (y − y∗)
[
α(α1y + α2z)x

(γ + x)y
+ c1σ(βy + z)

+ c2σ

(
β + z

y

)
z − σ(βy + z) − σ l f z − λz − d

]
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= (y − y∗)
[
αα1

(
x

γ + x
− x∗

γ + x∗

)
+ αα2

{
xz

(γ + x)y
− x∗z∗

(γ + x∗)y∗

}

− σ(1 − c1)β(y − y∗) − {σ(1 − c1) − c2σβ + σ l f + λ}(z − z∗)

+ c2σ

(
z2

y
− z∗2

y∗

)]

=
{

αα1γ

(γ + x)(γ + x∗)
+ αα2γ z∗

(γ + x)(γ + x∗)y

}
(x − x∗)(y − y∗)

+
[
c2σ

z

y
+ c2σ

z∗
y

− {σ(1 − c1) − c2σβ + σ l f + λ}

+ αα2x

(γ + x)y

]
(y − y∗)(z − z∗)

−
{

σ(1 − c1)β + c2σ z∗
2

y∗y
+ αα2x∗z∗

(γ + x∗)y∗y

}
(y − y∗)2,

Σ̇z = (z − z∗)[λy + σ l f y − σ(βy + z) − (d + e)]
= (λ + σ l f − σβ)(y − y∗)(z − z∗) − σ(z − z∗)2.

Adding these quantities and after some algebraic calculations, we can obtain

Σ̇ = −
[
{ r
k

− (α1y∗ + α2z∗)
(γ + x)(γ + x∗)

}(x − x∗)2

+
{

σ(1 − c1)β + c2σ z∗
2

y∗y
+ αα2x∗z∗

(γ + x∗)y∗y

}
(y − y∗)2 + σ(z − z∗)2

+
{

α1

(γ + x)
− αα1γ

(γ + x)(γ + x∗)
− αα2γ z∗

(γ + x)(γ + x∗)y

}

×(x − x∗)(y − y∗)

+
{
σ(1 − c1) + σβ(1 − c2) − c2σ

z

y
− c2σ

z∗
y

− αα2x

(γ + x)y

}
(y − y∗)(z − z∗)

+ α2

(γ + x)
(x − x∗)(z − z∗)

]

The above expression can be written in the form−wTΩw, wherew = (x−x∗, y−
y∗, z − z∗) and Ω is the symmetric matrix given by

Ω =
⎛
⎝

Ω11 Ω12 Ω13
Ω12 Ω22 Ω23
Ω13 Ω23 Ω33

⎞
⎠ ,
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with Ω11 = r
k − (α1y∗+α2z∗)

(γ+x)(γ+x∗) ,Ω12 = 1
2 { α1

(γ+x) − αα1γ
(γ+x)(γ+x∗) − αα2γ z∗

(γ+x)(γ+x∗)y },Ω13 =
1
2

α2
(γ+x) ,Ω22 = σ(1−c1)β + c2σ z∗

2

y∗y + αα2x∗z∗
(γ+x∗)y∗y ,Ω23 = 1

2 {σ(1−c1)+σβ(1−c2)−
c2σ

z
y − c2σ

z∗
y − αα2x

(γ+x)y },Ω33 = σ .

Thus, Σ̇ is negative definite if the symmetric matrix Ω is positive definite. The
matrix Ω is positive definite, if all the principal minors P1 = Ω11,P2 = Ω11Ω22 −
Ω2

12,P3 = Ω11Ω22Ω33 + 2Ω12Ω13Ω23 − Ω11Ω
2
23 − Ω22Ω

2
13 − Ω33Ω

2
12 of Ω are

positive, i.e.,

(i) P1 = r
k − (α1y∗+α2z∗)

(γ+x)(γ+x∗) > 0,

(ii) P2 = [ rk − (α1y∗+α2z∗)
(γ+x)(γ+x∗) ][σ(1 − c1)β + c2σ z∗

2

y∗y + αα2x∗z∗
(γ+x∗)y∗y ] − [ 12 { α1

(γ+x)

− αα1γ
(γ+x)(γ+x∗) − αα2γ z∗

(γ+x)(γ+x∗)y }]2 > 0,

(iii) P3 = Ω33(Ω11Ω22 − Ω2
12) + Ω23(Ω12Ω13 − Ω11Ω23) + Ω13(Ω12Ω23

− Ω22Ω13) > 0.

For P1, we have by (4.3) P1(x) = r
k − (α1y∗+α2z∗)

(γ+x)(γ+x∗) > P1(0) = r
k − (α1y∗+α2z∗)

γ (γ+x∗) > 0

since Ṗ1(x) = (α1y∗+α2z∗)
(γ+x)2(γ+x∗) > 0.

For P2, using (4.3) and (4.4), we have

P2 =
[
r

k
− α1y∗ + α2z∗

(γ + x)(γ + x∗)

][
σ(1 − c1)β + c2σ z∗

2

y∗y
+ αα2x∗z∗

(γ + x∗)y∗y

]

−
[
1

2

{
α1

(γ + x)
− αα1γ

(γ + x)(γ + x∗)
− αα2γ z∗

(γ + x)(γ + x∗)y

}]2

=
[{(r

k
− α1y∗ + α2z∗

(γ + x)(γ + x∗)

)
σ(1 − c1)β − 1

4

(
α1

γ + x

)2}

+
{ r
k

− α1y∗ + α2z∗
(γ + x)(γ + x∗)

}{c2σ z∗2
y∗y

+ αα2x∗z∗
(γ + x∗)y∗y

}

+ 1

2

αα1α2γ z∗
(γ + x)2(γ + x∗)y

(
1 − αγ

γ + x∗

)
+ 1

4

αα2
1γ

(γ + x)2(γ + x∗)

(
1 − αγ

γ + x∗

)

+ 1

4

αγ

(γ + x)2(γ + x∗)

{
α2
1 − αα2

2γ z
∗2

(γ + x∗)y2
}]

>
[{(r

k
− α1y∗ + α2z∗

γ (γ + x∗)

)
σ(1 − c1)β

− 1

4

(α1

γ

)2}+
{r
k

− α1y∗ + α2z∗
γ (γ + x∗)

}{c2σ z∗2
y∗y

+ αα2x∗z∗
(γ + x∗)y∗y

}

+ 1

2

αα1α2γ z∗
(γ + x)2(γ + x∗)y

(
1 − αγ

γ + x∗

)
+ 1

4

αα2
1γ

(γ + x)2(γ + x∗)

(
1 − αγ

γ + x∗

)

+ 1

4

αγ

(γ + x)2(γ + x∗)

{
α2
1 − αα2

2γ z
∗2

(γ + x∗)y2
}]

> 0.
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Now for P3, we have

Ω12Ω13 − Ω11Ω23

= 1

4

[{ α1

(γ + x)
− αα1γ

(γ + x)(γ + x∗)
− αα2γ z∗

(γ + x)(γ + x∗)y

}

× α2

(γ + x)
− 2
{r
k

− (α1y∗ + α2z∗)
(γ + x)(γ + x∗)

}

×
{
σ(1 − c1) + σβ(1 − c2) − c2σ

z

y
− c2σ

z∗
y

− αα2x

(γ + x)y

}]

= 1

4

[{ α2

(γ + x)

( α1

(γ + x)
− αα1γ

(γ + x)(γ + x∗)

− αα2γ z∗
(γ + x)(γ + x∗)y

)
− 2r

k

(
σ(1 − c1) + σβ(1 − c2)

)}

+ 2{σ(1 − c1) + σβ(1 − c2)} α1y∗ + α2z∗
(γ + x)(γ + x∗)

+ 2
{ r
k

− α1y∗ + α2z∗
(γ + x)(γ + x∗)

}

×
{
c2σ

z

y
+ c2σ

z∗
y

+ αα2x

(γ + x)y

}]

= 1

4

[{ α2

(γ + x)

( α1

(γ + x)
− αα1γ

(γ + x)(γ + x∗)
− αα2γ z∗

(γ + x)(γ + x∗)y

)

− 2r

k

(
σ(1 − c1) + σβ(1 − c2)

)}
+ 2{σ(1 − c1)

+ σβ(1 − c2)} α1y∗ + α2z∗
(γ + x)(γ + x∗)

+ 2
{ r
k

− α1y∗ + α2z∗
γ (γ + x∗)

}

×
{
c2σ

z

y
+ c2σ

z∗
y

+ αα2x

(γ + x)y

}]
> 0 (Using (4.3) and (4.4)).

From (4.5),wehaveΩ23 = 1
2 {σ(1−c1)+σβ(1−c2)−c2σ

z
y−c2σ

z∗
y − αα2x

(γ+x)y } > 0.
Using (4.4) and (4.6), for P3, we get

Ω12Ω23 − Ω22Ω13 = 1

4

[{ α1

(γ + x)
− αα1γ

(γ + x)(γ + x∗)
− αα2γ z∗

(γ + x)(γ + x∗)y

}

×
{
σ(1 − c1) + σβ(1 − c2) − c2σ

z

y
− c2σ

z∗
y

− αα2x

(γ + x)y

}

−
{
σ(1 − c1)β + c2σ z∗

2

y∗y
+ αα2x∗z∗

(γ + x∗)y∗y

} 2α2

(γ + x)

]

= 1

4

[{(
σ(1 − c1) + σβ(1 − c2)

)

×
( α1

(γ + x)
− αα1γ

(γ + x)(γ + x∗)
− αα2γ z∗

(γ + x)(γ + x∗)y

)

−
(
σ(1 − c1)β + c2σ z∗

2

y∗y
+ αα2x∗z∗

(γ + x∗)y∗y

) 2α2

(γ + x)

}
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+
{
c2σ

z

y
+ c2σ

z∗
y

}
×
{ αα2γ z∗
(γ + x)(γ + x∗)y

− α1

(γ + x)

}

+ αα2x

(γ + x)y

{ αα2γ z∗
(γ + x)(γ + x∗)y

− α1

(γ + x)

}

+ αα1γ

(γ + x)(γ + x∗)

{
c2σ

z

y
+ c2σ

z∗
y

+ αα2x

(γ + x)y

}]
> 0

Above results suggest that P3 > 0, so the conditions (i), (ii) and (iii) imply that
Σ̇ < 0 along the trajectories. Therefore, system (2.4) is globally stable around the
interior equilibrium point B∗ according as the conditions stated in the theorem hold.

Appendix 2

Letμ(σ) = �(σ)+iς(σ ) for all σ ∈ R+, the characteristic value of the characteristic
Eq. (7.1). Substituting this value in Eq. (7.1), and separate real and imaginary parts as

�3 − 3�ς2 + (�2 − ς2)Θ1 + �Θ2 + Θ3 = 0, (7.2)

3�2ς − ς3 + 2�ςΘ1 + ςΘ2 = 0. (7.3)

A necessary condition for a Hopf bifurcation of B∗ is that the characteristic equa-
tion (7.1) should have purely imaginary solutions. For the Hopf bifurcation to occur
at σ = σ ∗, substituting Θ1(σ

∗)Θ2(σ
∗) = Θ3(σ

∗) into Eq. (7.1), the characteristic
equation must be of the form

[μ2 + Θ2(σ
∗)][μ + Θ1(σ

∗)] = 0. (7.4)

Thus, the characteristic values of theEq. (7.4) areμ1,2(σ
∗) = ±i

√
Θ2(σ ∗) = ±iς∗

andμ3(σ
∗) = −Θ1(σ

∗). By using the condition (i) of the Theorem 4, we have ς∗ > 0
and μ3(σ

∗) < 0.
Now, we can verify the transversality condition

[
d

dσ
[Re{μ(σ)}]

]

σ=σ ∗
�= 0. (7.5)

Calculating the derivative of (7.2) and (7.3) w.r.t. σ and substituting � = 0, ς = ς∗
and σ = σ ∗, we get

P
[
d[Re{μ(σ }]

dσ

]

σ=σ ∗
− Q

[
d[Im{μ(σ)}]

dσ

]

σ=σ ∗
= L,

Q
[
d[Re{μ(σ)}]

dσ

]

σ=σ ∗
+ P

[
d[Im{μ(σ)}]

dσ

]

σ=σ ∗
= M,

(7.6)

where P = −2Θ2(σ
∗),Q = 2Θ1(σ

∗)
√

Θ2(σ ∗),L = Θ́1(σ
∗)Θ2(σ

∗) − Θ́3(σ
∗),

M = −Θ́2(σ
∗)

√
Θ2(σ ∗).
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Solving for μ́(σ ∗) from system (7.6) we obtained

[
d

dσ
[Re{μ(σ)}]

]

σ=σ ∗
= μ́(σ ∗) = LP + MQ

P2 + Q2

= 2Θ2(σ
∗){Θ́3(σ

∗) − Θ1(σ
∗)Θ́2(σ

∗) − Θ́1(σ
∗)Θ2(σ

∗)}
P2 + Q2 .

Hence μ́(σ ∗) > 0, if Θ2(σ
∗) > 0 and Θ́3(σ

∗) > [Θ1(σ
∗)Θ2(σ

∗)]′
. Therefore,

the transversality condition is satisfied and a Hopf bifurcation occurs when σ passes
through the critical value σ ∗.

Appendix 3

Let p̃ be a point in the positive quadrant and o( p̃) be orbit through p̃ and Ω̃( p̃) be the
bounded omega limit set of the orbit through p̃. Ws(Br ) denotes the stable manifold
of Br , r = 1, 2.

Clearly B0 /∈ Ω̃( p̃). If possible, let B0 ∈ Ω̃( p̃) then by the Butler-McGehee
lemma there exists a point m in Ω̃( p̃) ∩ Ws(B0). But, o(m) lies in Ω̃ and Ws(B0) is
the yz-plane, which shows that o(m) is unbounded, a contradiction.

Next we show that B1 /∈ Ω̃( p̃). If B1 ∈ Ω̃( p̃), the condition R01 > 1 implies that
B1 is a saddle point, then applying the Butler–McGehee lemma there exists a point m
in Ω̃( p̃)∩Ws(B1). Now Ω̃( p̃)∩Ws(B1) is the xz-space and hence orbit in this plane
emanate from either B1 or an unbounded orbit lies in Ω̃( p̃), which is a contradiction.

Finally, we show that no periodic orbit solution in the xy-space or B2 ∈ Ω̃( p̃). If
q j , j = 1, 2, . . . , n denote the closed orbit of the periodic solution (ϕq(t), ψq(t)) in
xy-space such that q j lies inside q j−1. Let, the Jacobian matrix J of the system (2.4)
corresponding to q j be denoted by Jq(ϕq(t), ψq(t), 0). The fundamental matrix of the
linear periodic system is given by

Ż = Jq(t), Z(0) = Z0. (7.7)

We find that, eζqT is the Floquet multiplier of (7.7) in the direction of z. Then
applying the process as proposed by Kumar and Freedman (1989), we conclude that
noq j lies on Ω̃ . Therefore, Ω̃ lies in the positive quadrant and system (2.4) is persistent.
Since only the closed orbits and the equilibria from the omega limit set of the solutions
are on the boundary of R3+ and system (2.4) is dissipative. Thus, the system (2.4) is
uniformly persistent by the main theorem of Butler et al. (1986).
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