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Abstract This paper deals with a single machine common due window assignment
resource allocation scheduling problemwith job-dependent learning effect. The objec-
tive is to find the due window starting time, a due window size, resource allocation and
a job schedule such that total resource consumption cost is minimized subject to a cost
function associated with the window location, window size, earliness, tardiness and
makespan is less than or equal to a fixed constant number. We show that the problem
can be solved in polynomial time. Some extensions of the problem are also given.

Keywords Scheduling · Single-machine · Due-window · Resource allocation ·
Learning effect
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1 Introduction

We consider the following optimization problem. A set of n jobs J = {J1, J2, . . . , Jn}
has to be processed on a single machine, and all the jobs are available for processing
at time zero. The machine can handle at most one job at a time and job preemption is
not allowed. The actual processing time of job J j when executed in the r th position
in a sequence is

pA
j =

(
p jra j

u j

)k

, u j > 0, (1)
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716 N. Yin

where k is a positive constant, p j is the normal processing time of job J j , a j ≤ 0 is a
position-dependent learning index of job J j , and u j is the amount of resource that can
be allocated to job J j . Each job J j has a unique due window [d1j , d2j ] with d1j ≤ d2j .

In this paper we consider a common due window, that is d1j = d1, d2j = d2. Note that

the window size, denoted by D = d2 − d1, is identical for all jobs.
For a given schedule S, let C j = C j (S) denote the completion time of job

J j ,Cmax = max{C j | j = 1, 2, . . . , n} be the makespan, E j = max{0, d1 − C j }
be the earliness value of job J j , Tj = max{0,C j − d2} be the tardiness value of job
J j , j = 1, 2, . . . , n. The objective is to determine (i) a job schedule S, (ii) a resource
allocation u = (u1, u2, . . . , un), (iii) a due window starting time d1, and (iv) a due
window size D such that the following objective function is minimized

n∑
j=1

G ju j , (2)

subject to
∑n

j=1(αE j + βTj + δd1 + γ D) + ηCmax ≤ C , where G j is the per time
unit cost associated with the resource allocation and C > 0 is a given constant. Using
the three-field notation of Graham et al. [2], Biskup [1] and Shabtay and Steiner [11],

the problem can be denoted as 1
∣∣∣pA

j =
(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D)

+ ηCmax ≤ C
∣∣∣∑n

j=1 G ju j .

As far as we know, some resource allocation scheduling problems with learning
effect has been considered in the literature. Wang et al. [16] considered the sin-

gle machine scheduling problems 1

∣∣∣∣pA
j =

(
p j ra

u j

)k∣∣∣∣ δ1Cmax + δ2TC + δ3T ADC +
∑n

j=1 G ju j and 1

∣∣∣∣pA
j =

(
p j ra

u j

)k∣∣∣∣ δ1Cmax + δ2TW + δ3T ADW + ∑n
j=1 G ju j ,

where TC = ∑n
j=1 C j (TW = ∑n

j=1 Wj ) is the total completion time (total wait-
ing time), T ADC (T ADW ) is the total absolute differences in completion times
(total absolute differences in waiting times), and Wj = C j − pA

j is the waiting
time of job J j . They proved that these two problems can be solved in polyno-

mial time. Lu et al. [9] considered the problem 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k∣∣∣∣∑n
j=1(αE j +

βTj + δd j ) + ∑n
j=1 G ju j , where E j = max{0, d j − C j }) is the earliness value

of job J j , Tj = max{0,C j − d j } is the tardiness value of job J j , j = 1, 2, . . . , n.
For two due date assignment methods (include the common (CON) due date (i.e.,
d j = d for all jobs), and the slack (SLK) due date (i.e., d j = pA

j + q)), they
proved that the problem can be solved in polynomial time. Wang and Wang [14] con-

sidered the problems 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1 u j ≤ U

∣∣∣∣∑n
j=1(αE j + βTj + δd j )

and 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd j ) ≤ R

∣∣∣∣∑n
j=1 u j , where U > 0

and R > 0 are given constants. For three due date assignment methods (include
the CON due date, the SLK due date, and unrestricted (DIF) due date assign-
ment method), they proved that these problems can be solved in polynomial
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time. Wang and Wang [14] also proved that some scheduling problems with-

out due dates (i.e., 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1 u j ≤ U

∣∣∣∣ δ1Cmax + δ2TC + δ3T ADC ,

1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1 u j ≤ U

∣∣∣∣ δ1Cmax + δ2TW + δ3T ADW ,

1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
, δ1Cmax + δ2TC + δ3T ADC ≤ R

∣∣∣∣ ∑n
j=1 u j and

1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
, δ1Cmax + δ2TW + δ3T ADW ≤ R

∣∣∣∣∑n
j=1 u j ) can be solved in

polynomial time. Wang and Wang [13] considered single machine common due-

window scheduling problem. They proved that the problem 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k∣∣∣∣∑n
j=1(αE j + βTj + δd1 + γ D) + θ

∑n
j=1 G ju j can be solved in polynomial time,

where α, β, δ and γ be the per time unit penalties for earliness, tardiness, due date and
duewindowsize, respectively.Yanget al. [19] considered singlemachine resource allo-
cation scheduling problems with multiple due windows. For a non-regular objective
cost, they proved that the problem can be solved in polynomial time. Li et al. [5] con-

sidered the slack due window scheduling problem 1

∣∣∣∣p j =
(
p j r

a j

u j

)k∣∣∣∣∑n
j=1(αE j +

βTj + δd1j + γ Dj ) + ηCmax + θ
∑n

j=1 G ju j can be solved in polynomial time,

where [d1j = p j + q1, d2j = p j + q2] is the due-window of job J j , Dj is due-

window size, both q1 and q2 are decision variables. Li et al. [5] also proved that

the problems 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k∣∣∣∣ δ1Cmax + δ2TC + δ3T ADC + ∑n
j=1 G ju j and

1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k∣∣∣∣ δ1Cmax + δ2TW + δ3T ADW + ∑n
j=1 G ju j can be solved in

polynomial time.
The recent paper “Study on due-window scheduling with controllable process-

ing times and learning effect” Wang et al. [12] considered single machine common
due window scheduling with limited resource cost availability constraint, i.e., the

problem 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1 G ju j ≤ V

∣∣∣∣∑n
j=1(αE j +βTj + δd +γ D). They

proved that this problem can be solved in polynomial time. In this paper, we
study the “inverse version” of the problem studied by Wang et al. [12], that
is the case that processing time of a job is described by a convex decreasing
resource consumption function and a decreasing position dependent function, and
the objective is to minimize the total resource consumed cost subject to a con-
straint on

∑n
j=1(αE j + βTj + δd1 + γ D) + ηCmax ≤ C , i.e., the problem

1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D) + ηCmax≤C

∣∣∣∣∑n
j=1 G ju j . For

more details on scheduling with learning effects, controllable processing times and
due windows, the reader may refer to the recent surveys by Biskup [1], Shabtay and
Steiner [11] and Janiak et al. [4].

The remainder of this paper is organized as follows. Section 2 derives the properties
of the optimal schedule and provides solution algorithm for the general case of the
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718 N. Yin

problem. Section 3 considers a special case of the problem, i.e., a j = a for all jobs.We
extend the problem to incorporate with the job-dependent penalty problem, the trun-
cated job-dependent learning effect and the slack due window assignment method in
Sect. 4. The last section contains some conclusions and suggests some future research
topics.

2 The single machine problem

2.1 Optimal resource allocation

For a given feasible resource allocation u, which fixes the job processing times and
the resource consumption cost, our problem reduces to find (i) a job schedule S, (ii)
a due window starting time d1, and (iii) a due window size D such that the objective
function

∑n
j=1(αE j + βTj + δd1 + γ D) + ηCmax is minimized. Similarly to Liman

et al. [6,7], Yin et al. [20], Liu et al. [8], we have

Theorem 1 For problem 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k∣∣∣∣∑n
j=1(αE j+βTj+δd1+γ D)+ηCmax,

an optimal schedule S satisfies the following properties:

(1) All the jobs are processed consecutively without any machine idle from time zero.
(2) The optimal values d1 = C[h] and d2 = C[l] (l ≥ h), where h = �n(γ − δ)/α�,

l = �n(β − γ )/β� and [ j] denotes the j th job in a sequence.

Now, we consider the following cost component:

(1) The earliness cost for job J[ j] ( j = 1, 2, . . . , h) is:

α

n∑
j=1

E j = α

h∑
j=1

(d1 − C[ j]) = α

h∑
j=1

(C[h] − C[ j]) = α

k∑
j=1

( j − 1)pA[ j]

(2) The tardiness cost for job J[ j] ( j = l + 1, l + 2, . . . , n) is:

β

n∑
j=1

Tj = β

n∑
j=l+1

(C[ j] − d2) = β

n∑
j=l+1

(C[ j] − C[l]) = β

n∑
j=l+1

(n − j + 1)pA[ j]

(3) δ
∑n

j=1 d
1 = δnd1 = ∑h

j=1 δnpA[ j]
(4) γ

∑n
j=1 D = nγ D = nγ (C[l] − C[k]) = nγ

∑l
j=h+1 p

A[ j]
(5) ηCmax = η

∑n
j=1 p

A[ j]
Hence, from (1), Theorem 2.1 and (1)–(5), we have

n∑
j=1

(αE j + βTj + δd1 + γ D) + ηCmax =
n∑
j=1

Wj p
A[ j]

=
n∑
j=1

Wj

(
p[ j] ja[ j]

u[ j]

)k

, (3)
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Single machine due window assignment resource allocation… 719

where

Wj =
⎧⎨
⎩

δn + α( j − 1) + η for j = 1, 2, . . . , h;
nγ + η for j = h + 1, h + 2, . . . , l;
β(n − j + 1) + η for j = l + 1, l + 2, . . . , n.

(4)

Theorem 2 For a given schedule S = (J[1], J[2], . . . , J[n]), the optimal resource

allocation of the problem 1
∣∣∣pA

j =
(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D)

+ ηCmax ≤ C
∣∣∣∑n

j=1 G ju j as a function of the job sequence, that is

u∗[ j](π) =
(Wj )

1/(k+1)
(
p[ j] ja[ j]

)k/(k+1)
(∑n

j=1(Wj )
1/(k+1)

(
G[ j]

)k/(k+1) (
p[ j] ja[ j]

)k/(k+1)
)1/k

C1/k(G[ j])1/(k+1)
,

j = 1, 2, . . . , n, (5)

where Wj is calculated by (4).

Proof For any given sequence S = (J[1], J[2], . . . , J[n]), the Lagrange function is

L(d1, D,u, λ) =
n∑
j=1

G ju j + λ

⎛
⎝ n∑

j=1

(αE j + βTj + δd1 + γ D) + ηCmax − C

⎞
⎠

=
n∑
j=1

G[ j]u[ j] + λ

⎛
⎝ n∑

j=1

Wj

(
p[ j] ja[ j]

u[ j]

)k

− C

⎞
⎠ (6)

where λ is the Lagrangian multiplier. Deriving (6) with respect to u[ j] and λ, we have

∂L(d1, D,u, λ)

∂λ
=

n∑
j=1

Wj

(
p[ j] ja[ j]

u[ j]

)k

− C = 0, (7)

∂L(d1, D,u, λ)

∂u[ j]
= G[ j] − kλWj ×

(
p[ j] ja[ j]

)k
(u[ j])k+1 = 0. (8)

Using (7) and (8) we have

u[ j] =
(
kλWj

(
p[ j] ja[ j]

)k)1/(k+1)

(G[ j])1/(k+1)
, (9)

(kλ)k/(k+1) =
∑n

j=1(Wj )
1/(k+1)

(
p[ j]G[ j] ja[ j]

)k/(k+1)

C
(10)

and
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720 N. Yin

u∗[ j](π) =
(Wj )

1/(k+1)
(
p[ j] ja[ j]

)k/(k+1)
(∑n

j=1(Wj )
1/(k+1)

(
G[ j]

)k/(k+1) (
p[ j] ja[ j]

)k/(k+1)
)1/k

C1/k(G[ j])1/(k+1)
.

��

2.2 Optimal sequences

Theorem 3 For the problem 1
∣∣∣pA

j =
(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D)

+ ηCmax ≤ C
∣∣∣ ∑n

j=1 G ju j , the optimal schedule can be determined by solving a

linear assignment problem.

Proof By substituting (5) into
∑n

j=1 G ju j , we have

n∑
j=1

G ju j (d
1, D,u, S) = C−1/k

⎛
⎝ n∑

j=1

(Wj )
1/(k+1) (

G[ j] p[ j] ja[ j])k/(k+1)

⎞
⎠

1+1/k

,

(11)

Wj is calculated by (4). Let X jr ( j = 1, 2, . . . , n; r = 1, 2, . . . , n) be a 0–1 variable
such that

X jr =
{
1 if job J j is processed in the rth position,
0 otherwise,

(12)

and

θ jr = (Wr )
1/(k+1) (

p jG jr
a j

)k/(k+1)
, (13)

where

Wr =
⎧⎨
⎩

δn + α(r − 1) + η for r = 1, 2, . . . , h;
nγ + η for r = h + 1, h + 2, . . . , l;
β(n − r + 1) + η for r = l + 1, l + 2, . . . , n.

(14)

For k and C are given constant numbers, the optimal schedule of the problem

1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D) + ηCmax ≤ C

∣∣∣∣∑n
j=1 G ju j

can be formulated as the following linear assignment problem:

P : MinZ =
n∑
j=1

n∑
r=1

θ jr X jr (15)

s.t.
n∑

r=1

X jr = 1, j = 1, 2, . . . , n, (16)
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Single machine due window assignment resource allocation… 721

n∑
j=1

X jr = 1, r = 1, 2, . . . , n, (17)

X jr = 0 or 1, j, r = 1, 2, . . . , n. (18)

The first set of constraints (Eq. (16)) assures that each job will be assigned only to
one position, the second set of constraints (Eq. (17)) assures that each position in the
sequence will be occupied by exactly one job. ��

2.3 Optimal solution

For 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D) + ηCmax ≤ C

∣∣∣∣∑n
j=1 G ju j

problem, the following optimization algorithm can be proposed.

Algorithm 2.1

Step 1.Calculate the indices h∗ and l∗: h∗ = �n(γ −δ)/α� and l∗ = �n(β−γ )/β�.
Step 2. Compute θ jr = (Wr )

1/(k+1)
(
p jG jra j

)k/(k+1), where

Wr =
⎧⎨
⎩

δn + α(r − 1) + η for r = 1, 2, . . . , h;
nγ + η for r = h + 1, h + 2, . . . , l;
β(n − r + 1) + η for r = l + 1, l + 2, . . . , n.

Step 3. Solve the linear assignment problem P (i.e., Eqs. (15)–(18)) to determine
the optimal schedule S∗.
Step 4. Compute the optimal resources by Eq. (5).
Step 5. Compute the optimal processing times by Eq. (1).
Step 6. Set d1∗ = C[h∗] and D∗ = C[l∗] − C[h∗].

Theorem 4 The problem 1
∣∣∣pA

j =
(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D)

+ ηCmax ≤ C
∣∣∣∑n

j=1 G ju j can be solved in O(n3) time by Algorithm 2.1.

Proof The correctness of the algorithm follows from Theorems 2.1, 2.2 and 2.3. It
is well known that the linear assignment problem can be solved in O(n3) time (i.e.,
Step 3 requires O(n3) time); Step 2 requires O(n2); Steps 1, 4, 5, and 6 can be per-
formed in linear time. Thus the overall computational complexity of Algorithm 2.1 is
O(n3). ��

In order to illustrate Algorithm 2.1 for the problem

1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D) + ηCmax ≤ C

∣∣∣∣∑n
j=1 G ju j ,

we will solve the following instance:

Example 2.1 Data: n = 7, k = 1.5, α = 10, β = 17, δ = 4, γ = 6, η = 1, C = 300,
and the other data are given in Table 1.
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722 N. Yin

Table 1 The data of Example 2.1

J j J1 J2 J3 J4 J5 J6 J7

p j 35 25 28 19 16 18 12

a j −0.05 −0.25 −0.16 −0.20 −0.22 −0.26 −0.15

G j 5 3 6 4 9 2 8

Table 2 The θ jr values of Example 2.1

j\r 1 2 3 4 5 6 7

θ jr = 1 85.2672 94.0195 96.5821 95.7521 95.1133 87.1175 66.4628

2 51.2857 52.0365 50.9162 48.7658 47.1605 42.2611 31.6505

3 83.2041 87.6421 87.6535 85.2659 83.4587 75.5284 57.0381

4 51.6949 53.5538 53.0421 51.2423 49.8883 44.9508 33.8209

5 75.8537 77.9305 76.8113 73.9491 71.8027 64.5548 48.4812

6 33.0172 33.3616 32.5640 31.1349 30.0697 26.9164 20.1398

7 59.4733 62.9066 63.0680 61.4561 60.2342 54.5703 41.2490

Solution:

Step 1. By Theorem 2.1, we have h∗ = �n(γ − δ)/α� = �7(6 − 4)/10� = 2 and
l∗ = �n(β − γ )/β� = �7(17 − 6)/17� = 5.
Step 2. W1 = 29,W2 = 39,W3 = W4 = W5 = 43,W6 = 35,W7 = 18. The
values θ jr = (Wr )

1/(k+1)
(
p jG jra j

)k/(k+1) are given in Table 2.
Step 3. Solve the linear assignment problem P (i.e., Eqs. (15)–(18)), we obtain that
S∗ = (J1 → J7 → J6 → J4 → J2 → J5 → J3) (see bold in Table 2).
Step 4. From Eq. (5), we have

u∗
1 =

(Wj )
1/(k+1)

(
p[ j] ja[ j]

)k/(k+1)
(∑n

j=1(Wj )
1/(k+1)

(
G[ j]

)k/(k+1) (
p[ j] ja[ j]

)k/(k+1)
)1/k

C1/k(G[ j])1/(k+1)

= 13.4661, u∗
7 = 5.4778,

u∗
6 = 5.7616, u∗

4 = 10.7360, u∗
2 = 14.2249, u∗

5 = 4.8422, u∗
3 = 7.1504.

Step 5. From Eq. (1), we have pA
1 = (35 × 1(−0.05)/13.4661)1.5 = 4.1902,

pA
7 = 2.7742, pA

6 = 3.5976, pA
4 = 1.5533, pA

2 = 1.2742, pA
5 = 3.3253,

pA
3 = 4.8576.

Step 6. Set d∗ = C[2∗] = 4.1902 + 2.7742 = 6.9644 and D∗ = C[h∗] − C[l∗] =
3.5976 + 1.5533 + 1.2742 = 6.4251.
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Single machine due window assignment resource allocation… 723

3 A special case

If a j = a for all jobs, stem from (11), we have

n∑
j=1

G ju j = C−1/k

⎛
⎝ n∑

j=1

(Wj )
1/(k+1) (

G[ j] p[ j] ja
)k/(k+1)

⎞
⎠

1+1/k

= C−1/k

⎛
⎝ n∑

j=1

μ jν[ j]

⎞
⎠

1+1/k

, (19)

where

μ j = (Wj )
1/(k+1) ( j)ak/(k+1) , (20)

ν[ j] = (
p[ j]G[ j]

)k/(k+1)
, (21)

where Wj is calculated by Eq. (4).

Theorem 5 Problem 1
∣∣∣pA

j =
(
p j ra

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D)

+ ηCmax ≤ C
∣∣∣∑n

j=1 G ju j can be solved in O(n log n) time.

Proof An optimal solution to the problem

1

∣∣∣∣pA
j =

(
p j ra

u j

)k
,
∑n

j=1(αE j + βTj + δd1 + γ D) + ηCmax ≤ C

∣∣∣∣ ∑n
j=1 G ju j

can be constructed as follows: calculate the indices h∗ and l∗ (according Theo-
rem 2.1), and then calculate μ j = (Wj )

1/(k+1) ( j)ak/(k+1). Assign the smallest μ j

to the job with the largest ν j = (
p jG j

)k/(k+1), the second smallest μ j to the job
with the second largest ν j , and so on. This matching procedure requires O(n log n)

time (Hardy et al. [3]). Denote the optimal sequence determined in this way by
S∗ = (J[1], J[2], . . . , J[n]) and calculate the optimal resources by Eq. (5), the optimal
processing times by Eq. (1), and d1∗ = C[h∗] and D∗ = C[l∗] − C[h∗]. ��

4 Extensions

4.1 Extension 1

Similar to Sect. 3, the proposed model can be extended to the slack due window

scheduling problem (Li et al. [5]) 1
∣∣∣pA

j =
(
p j r

a j

u j

)k
,
∑n

j=1(αE j +βTj +δd1j+γ Dj )

+ ηCmax ≤ C
∣∣∣∑n

j=1 G ju j , where [d1j = p j + q1, d2j = p j + q2] is the due-window
of job J j , Dj = d2j − d1j = q2 − q1 is due-window size, both q1 and q2 are decision
variables.
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Theorem 6 The problem 1
∣∣∣pA

j =
(
p j r

a j

u j

)k
,
∑n

j=1(αE j + βTj + δd1j + γ Dj )

+ ηCmax ≤ C
∣∣∣∑n

j=1 G ju j can be solved in O(n3) time.

Theorem 7 Problem 1
∣∣∣pA

j =
(
p j ra

u j

)k
,
∑n

j=1(αE j + βTj + δd1j + γ Dj )

+ ηCmax ≤ C
∣∣∣∑n

j=1 G ju j can be solved in O(n log n) time.

4.2 Extension 2

Similar to Sect. 3, the proposed model can be extended to a large set of scheduling

problems, i.e., 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1 Wj pA[ j] ≤ C

∣∣∣∣ ∑n
j=1 G ju j , where Wj is a

position, job-dependent penalty for any job schedule in the j th position.

Theorem 8 The problem 1

∣∣∣∣pA
j =

(
p j r

a j

u j

)k
,
∑n

j=1 Wj pA[ j] ≤ C

∣∣∣∣ ∑n
j=1 G ju j can be

solved in O(n3) time.

Theorem 9 Problem 1

∣∣∣∣pA
j =

(
p j ra

u j

)k
,
∑n

j=1 Wj pA[ j]≤C

∣∣∣∣∑n
j=1 G ju j can be solved

in O(n log n) time.

4.3 Extension 3

In the real production process, learning effect may not reduce the jobs’ processing time
without limitation (Wu et al. [17,18]), henceWang et al. [15] considered the truncated
job-dependent learning effect model, i.e., pA

j = p j max{ra j , B}, where 0 < B ≤ 1 is
a truncation parameter for all jobs. Similar to the proof of Sect. 3, the proposed model

can be extended to the following model: pA
j =

(
p j max{ra j ,B}

u j

)k
.

Theorem 10 The problem 1

∣∣∣∣pA
j =

(
p j max{ra j ,B}

u j

)k
,
∑n

j=1 Wj pA[ j] ≤ C

∣∣∣∣ ∑n
j=1 G ju j

can be solved in O(n3) time.

Theorem 11 Problem 1

∣∣∣∣pA
j =

(
p j max{ra ,B}

u j

)k
,
∑n

j=1 Wj pA[ j] ≤ C

∣∣∣∣∑n
j=1 G ju j can

be solved in O(n log n) time.

5 Conclusions

In this paper, we have considered the scheduling problem with learning effect and
resource-dependent processing times on a single machine. It is showed that the due
window assignment minimization problem can be solved in polynomial time. For the
special case of the problem, we also gave a lower order algorithm. The algorithms
can also be easily applied to the problems with the deterioration (aging) effect (e.g.,

123



Single machine due window assignment resource allocation… 725

a j > 0). For future research, it is worthwhile to study other scheduling problems with
due window assignment, effects of deterioration and truncated job-dependent learning
(Niu et al. [10]) and/or resource allocation, for example, the flow shop scheduling
problems and other scheduling performance measures.
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