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Abstract We consider a generalized algebraic Riccati equation arising in stochastic
control with an indefinite quadratic part. Three effective methods for computing a
matrix sequence, which converges to the stabilizing solution of the considered type of
Riccati equations with indefinite quadratic parts are explored. Convergence properties
of these methods are studied. Computer realizations of the presented methods are
numerically compared. Based on the experiments the main conclusion is that the
Lyapunov iteration is faster than the Riccati iteration because these methods carry
the same number of iterations. The iterative methods are numerically compared and
investigated.
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Stabilizing solution
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1 Introduction

The H∞ linear quadratic problems have been introduced by Basar and Bernhard [1]
as a two-player zero sum game. H∞ control theory plays an important role in contem-
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porary control theory. There are engineering applications where the algebraic Riccati
equations with an indefinite quadratic term have to be solved (see [5] and reference
there in). In addition new type of methods and their extensions to solve such type
of equations are studied in [3,5,7–9]. Recently, linear quadratic differential games
and their applications have been widely investigated in many literatures. The Riccati
type equations have significant importance in the investigations of the H2/H∞ opti-
mal control problems. The stochastic H2/H∞ control with state, control and external
disturbance-dependent noise is discussed by Zhu and Zhang in [11]. Necessary and
sufficient conditions for the existence of the Nash strategy are presented by means of
four coupled stochastic algebraicRiccati equations are derived under the assumption of
mean-square stabilizability of stochastic systems in [11]. A linear quadratic stochas-
tic two-person zero-sum differential game with constant coefficients in an infinite
time horizon is considered in [12]. The closed-loop saddle points are characterized
by the solvability of an algebraic Riccati equation with a certain stabilizing condi-
tion. A model-free policy iteration method for learning the H∞ control policy by
using measured system data without system model information is proposed in [13]. A
least-square based model-free policy iteration approach by using real system data is
considered in order to solve the suitable algebraic Riccati equation. The data-driven
H∞ control problem of nonlinear distributed parameter systems is considered in [14].
A data-driven off-policy learningmethod is proposed based on the simultaneous policy
update algorithm and its convergence is proved.

A new type of Riccati equation is introduced in [15] where a generalized class of
continuous-time two person zero-sum stochastic differential games is studied. Here
we consider a more general H∞ Riccati equation:

R(X) := ATX + X A + CTC + Π(X)

−[X (G B) + (ST1 ST2 )] R−1 [X (G B) + (ST1 ST2 )]T = 0 (1)

with R =
(
R1 0
0 R2

)
, R1 < 0 , R2 > 0, and (G B) and (ST1 ST2 ) are block matrices.

Here Π(X) is a positive definite (semidefinite) operator, i.e. Π(X) > 0 if X > 0
(Π(X) ≥ 0 if X ≥ 0).

Riccati equations for the H∞ control of stochastic systems is different from H∞
Riccati equations in deterministic systemsbecauseEq. (1) has an additional termΠ(X)

which appears from state-dependent noises of the system. This termΠ(X) complicates
the process to compute the stabilizing solution of (1). Traditional methods applied to
the H∞ Riccati equations in deterministic systems do not work for the stochastic case.
In this reason many researchers have derived and proposed new iterative methods for
computing the stabilizing solutions to H∞ Riccati equations in stochastic case.

The matrix function R(X) defined for a symmetric matrix X, (X = XT) can be
rewritten in the following form:

R(X) = ATX + X A + CTC − (XG + ST1 )R−1
1 (GTX + S1)

−(XB + ST2 ) R−1
2 (BTX + S2) + Π(X) .
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Different algorithms for solving H∞ control problems have been investigated by
Wu and Luo in [10]. The main idea is to introduce two iterative algorithms, where one
matrix sequence is constructed, for computing the stabilizing solution to the algebraic
Riccati equationwith an indefinite quadratic part (1). However, we have no direct proof
of the convergence properties of these iterativemethods. For this reasonwe consider an
iterative process with two matrix sequences and we derive the convergence properties
of this iterative process.Moreover, we show that the introduced iterative algorithms are
equivalent to the iterative process, where two matrix sequences are studied. Based on
the equivalence relation we conclude, that the iterative algorithms, where one matrix
sequence is constructed are convergent algorithms.

In this paper we use the following notations: Rn×s stands for a set of n × s real
matrices. We write X > Y or X ≥ Y if X − Y is positive definite or X − Y is
positive semidefinite for any two symmetric matrices X and Y . A matrix A is called
asymptotically stable (or Hurwitz), if the eigenvalues to A have a negative real part.
E(.) denotes the mathematical expectation. A feedback gain matrix K is said to be
stabilizing for linear systems dx = (Ax + Bu)dt , if the feedback matrix A − BK is
Hurwitz.

Remark 1 Consider the following example [5] of a two-mass spring systemwith uncer-
tain stiffness. The dynamical stochastic system is

{
dx(t) = A0x(t)dt + Gv(t)dt + Bu(t)dt + A1x(t)dw

z(t) = Cx(t) + Du(t)
, (2)

where x(t) ∈ R
n is the state vector, v(t) ∈ R

m1 denotes the control of the “disturbance
player”, u(t) ∈ R

m2 denotes the control of the “controller player” input, w(t) is an
one-dimensional Wiener process. The interpretation of the “controller player” and the
“disturbance player” can be found in Vrabie [9]. The disturbance player wishes to
maximize, while the controller player seeks to minimize the cost functional:

Jγ (u, v) = E
∫ ∞

0
(xTCTCx + uTDTDu − γ 2vT v) dt . (3)

The corresponding Riccati equation, which stabilizing solution leads us to the equi-
librium point for such defined H∞ control problem is (1) with Π(X) = A1

TX A1 and
A = A0, S1 = S2 = 0, and R1 = −γ 2 I, R2 = DTD.

2 Preliminaries

Some lemmas that are instrumental in the construction of the iterative processes are
presented in this section. We introduce the following perturbed Lyapunov operator

LW ;Π(X) = (W )T X + X W + Π(X) ,

and wewill present the solvability of (1) through properties of the perturbed Lyapunov
operator.
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Lemma 1 [4] The following are equivalent:

(i) The matrix X̃ is the stabilizing solution to (1);
(ii) The perturbed Lyapunov operator L Ã;Π is asymptotically stable where:

{
F1,X̃ = R−1

1 (GT X̃ + S1) , F2,X̃ = −R−1
2 (BT X̃ + S2) ,

Ã = A − G F1,X̃ + B F2,X̃ .

The above lemma gives a deterministic characterization of a stabilizing solution to
the set of Riccati Eqs. (1).

Lemma 2 For the map R(X) the following identities are valid:

(i) R(X + Z) = R(X) + (A(X))TZ + Z A(X) − Z B R−1
2 BTZ

−Z G R−1
1 GT Z + Π(Z) ,

where A(X) = A − GF1(X) + BF2(X) ,

F1(X) = R−1
1 (GT X + S1),

F2(X) = −R−1
2 (BTX + S2) (4)

for any symmetric matrices X, Z;

(ii) R(W, V, X) = (A(W, V ))TX + X A(W, V ) + CTC

− (F2(X) − V )T R2 (F2(X) − V ) + Π(X)

− (F1(X) − W )TR1(F1(X) − W )

+ (W − R−1
1 S1)

TR1(W − R−1
1 S1) − ST1 R

−1
1 S1

+ (V + R−1
2 S2)

TR2(V + R−1
2 S2) − ST2 R

−1
2 S2 , (5)

with A(W, V ) = A − GW + BV, W ∈ R
m1×n, V ∈ R

m2×n .

Proof The statements of Lemma 2 are verified by direct manipulations. ��
Lemma 3 Assume there exist positive definite symmetric matrices X, Z , X̂ with X̂ ≥
X , R(X̂) ≤ 0, and Z is the stabilizing solution to

0 = (A(X))TZ + Z A(X) + Π(Z) + R(X) − Z B R−1
2 BTZ . (6)

Then

(i) if L Ā(X,X̂);Π is asymptotically stable with Ā(X, X̂) = A − GF1(X) + BF2(X̂)

then X̂ − X − Z ≥ 0;
(ii) if X̂ − X − Z ≥ 0 then the Lyapunov operator L Ǎ(X+Z ,X̂);Π is asymptotically

stable with Ǎ(X + Z , X̂) = A − GF1(X + Z) + BF2(X̂).

123



The iterative solution to LQ zero-sum stochastic… 551

Proof There exists a matrix Q̂ ≥ 0 for which R(X̂) + Q̂ = 0. We have

R(X̂) + Q̂ = AT X̂ + X̂ A + Π(X̂) + CTC

−(X̂G + ST1 )R−1
1 (GT X̂ + S1) − (X̂ B + ST2 ) R−1

2 (BT X̂ + S2) = 0 .

Since Z is a solution to (6) then

R(X + Z) = −Z G R−1
1 GT Z .

Thus

R(X + Z) = R(X̂) + Q̂ − Z G R−1
1 GT Z .

According to (5) we rewrite the last equation (W = F1(X) = R−1
1 (GT X +

S1) , V = F2(X̂) = −R−1
2 (BT X̂ + S2) ):

R(F1(X), F2(X̂), X + Z) = R(F1(X), F2(X̂), X̂) + Q̂ − Z G R−1
1 GT Z ,

and then by applying some matrix manipulations we obtain the identity ( Ā(X, X̂) =
A − GF1(X) + BF2(X̂)):

0 = ( Ā(X, X̂))T [X̂ − X − Z ] + [X̂ − X − Z ] Ā(X, X̂)

+Π(X̂ − X − Z) + Q̂ − (X̂ − X)G R−1
1 GT (X̂ − X)

+
(
F2(X + Z) − F2(X̂)

)T
R2

(
F2(X + Z) − F2(X̂)

)
, (7)

or

0 = L Ā(X,X̂);Π
(
X̂ − X − Z

)
+ W ,

and

W = Q̂ − (X̂ − X)G R−1
1 GT (X̂ − X)

+
(
F2(X + Z) − F2(X̂)

)T (
F2(X + Z) − F2(X̂)

)
≥ 0 .

Thus X̂ − X − Z ≥ 0. The statement (i) is proved.
In order to prove the statement (ii) we derive a connection between the matrix

coefficients Ā(X, X̂) and Ǎ(X + Z , X̂):

Ā(X, X̂) ± G F1(X + Z) = Ǎ(X + Z , X̂) − G(F1(X) − F1(X + Z))

= Ǎ(X + Z , X̂) + GR−1
1 GT Z
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and using it to transform identity (7) we yield

0 = ( Ǎ(X + Z , X̂))T (X̂ − X − Z) + (X̂ − X − Z) Ǎ(X + Z , X̂)

+Π(X̂ − X − Z) + Q̂

+[X̂ − X − Z ] B R−1
2 BT[X̂ − X − Z)]

− Z GR−1
1 GT Z − (X̂ − X − Z)Z GR−1

1 GT (X̂ − X − Z) .

Thus

0 = L Ǎ(X+Z ,X̂);Π
(
X̂ − X − Z

)
+ [X̂ − X − Z ] BR−1

2 BT[X̂ − X − Z ]
+ Q̂ − Z GR−1

1 GT Z − (X̂ − X − Z)Z GR−1
1 GT (X̂ − X − Z) . (8)

Since X̂ − X − Z is positive definite and R1 is negative definite, then the Lya-
punov operator L Ǎ(X+Z ,X̂);Π is asymptotically stable because Riccati Eq. (8) has the
stabilizing positive semidefinte solution.

The lemma is proved. ��

3 Some iterative procedures

3.1 An iterative process with two matrix sequences

We present the main theorem with properties for constructing two matrix sequences
of positive semidefinite matrices {X (k)}∞k=0, {Z (k)}∞k=0. We construct the above matrix
sequences as follows. We take

X (k+1) = X (k) + Z (k), with X (0) = 0, (9)

k = 0, 1, 2 . . . .

Each matrix Z (k), k = 0, 1, 2, . . . is computed as the stabilizing solution of the
algebraic Riccati equation with definite quadratic part:

G(Z (k)) := (A(k))T Z (k) + Z (k) A(k) + Π(Z (k)) + R(X (k))

−Z (k) B R−1
2 BT Z (k) = 0 , (10)

where

⎧⎨
⎩

F1(X (k)) = R−1
1 (GT X (k) + S1) ,

F2(X (k)) = −R−1
2 (BT X (k) + S2) ,

A(k) = A − GF1(X (k)) + B F2(X (k)) .

We formulate sufficient conditions for the existence of a stabilizing solution to the
algebraic Riccati Eq. (1). In fact, the next theorem proves the convergence properties
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to the main iterative loop (9), (10) under the sufficient conditions for existence of a
stabilizing solution to (1).

Thematrices {Z (k)}∞k=0 are stabilizing solutions to the sequence of algebraic Riccati
equations (10). We will prove that the sequence {X (k)}∞k=0 is monotonically non-
decreasing and converges to the unique stabilizing solution to set of Eq. (1). We
reformulate the convergence theorem introduced in [5, Theorem 3] and we present it
as sufficient conditions to the existence of the stabilizing solution to (1).

Theorem 1 Assume there exist symmetric matrices X̂ and X (0) such thatR(X (0)) ≥
0 , R(X̂) ≤ 0 and X (0) ≤ X̂ . Assume the Lyapunov operatorLA(0);Π is asymptotically
stable. Then, for the matrix sequences {X (k)}∞k=0, {Z (k)}∞k=0 are satisfied

(i) The Lyapunov operator LA(k);Π is asymptotically stable;

(ii) R(X (k+1)) = − Z (k) G R−1
1 GT Z (k) ≥ 0;

(iii) the Lyapunov operator L Ã(k);Π is asymptotically stable,

where Ã(k) = A − GF1(X (k)) + BF2(X (k+1));
(iv) X̂ ≥ X (k+1) ≥ X (k) ≥ 0 for k = 0, 1, . . .;
(v) limk→∞ X (k) = X̃ is the stabilizing solution to (1) .

Proof The proof follows the proof of Theorem 3 from [5]. ��

Moreover, practical computation of the stabilizing solution Z (k) of (10) follows
the following simple recursive procedure like those in [2,6]. We choose Y0 = 0 and
Ys, s = 1, 2, . . . is the stabilizing solution to the algebraic Riccati equation:

(A(k))T Ys + Ys A
(k) − Ys BR−1

2 BT Ys + QR,s−1 = 0 . (11)

Note that the matrix QR,s−1 = R(X (k)) + Π(Ys−1). We apply the Matlab procedure
care for solving (11).

3.2 An iterative process with one matrix sequence

In this section we consider an alternative iteration process where one matrix sequence
is constructed. This sequence converges to the stabilizing solution of the given set of
Riccati equations. We are proving that this introduced iteration is equivalent to the
iteration loop (9), (10). We substituteR(X (k)) in recurrence Eq. (10):

0 = (A(k))T
(
X (k+1) − X (k)

)
+

(
X (k+1) − X (k)

)
A(k) + Π(Z (k))

+ ATX (k) + X (k)A + CTC − (X (k)G + ST1 )R−1
1

(
GTX (k) + S1

)

−
(
X (k)B + ST2

)
R−1
2

(
BTX (k) + S2

)
+ Π(X (k))

−
(
X (k+1) − X (k)

)
BR−1

2 BT
(
X (k+1) − X (k)

)
.

123



554 I. G. Ivanov, I. G. Ivanov

Transforming the above matrix equation we obtain:

0 = (A(k))T X (k+1) + X (k+1) A(k) + Π(X (k+1))

+CTC − ST1 R
−1
1 S1 − ST2 R

−1
2 S2 + X (k)GR−1

1 GTX (k)

+ X (k)BR−1
2 BTX (k)

−
(
X (k+1) − X (k)

)
BR−1

2 BT
(
X (k+1) − X (k)

)
. (12)

There are two approaches to continue the transformation of the last recurrence
equation. The first one is to extract the term (A−GF1(X (k)))TX (k+1) + X (k+1) (A−
GF1(X (k))) and the second one is to extract the term (A + B F2(X (k)))TX (k+1) +
X (k+1) (A + B F2(X (k))).

We apply the first approach:

0 = (A − GF1(X
(k)))TX (k+1) + X (k+1) (A − GF1(X

(k))) + Π(X (k+1))

+ X (k+1) B F2(X
(k)) + F2(X

(k))TBT X (k+1)

+CTC − ST1 R
−1
1 S1 − ST2 R

−1
2 S2 + X (k)GR−1

1 GTX (k)

+ X (k)BR−1
2 BTX (k)

−
(
X (k+1) − X (k)

)
BR−1

2 BT
(
X (k+1) − X (k)

)
.

After some matrix manipulations we derive

0 =
(
A − GF1(X

(k))
)T

X (k+1) + X (k+1) (A − GF1(X
(k)))

−[X (k+1)B + ST2 ]R−1
2 [BT X (k+1) + S2] + Π(X (k+1))

+CTC − ST1 R
−1
1 S1 + X (k)GR−1

1 GTX (k) . (13)

Based on the executedmatrixmanipulationswe conclude, that the perturbedRiccati
Eq. (13) is equivalent to the main iterative process (9), (10). Thus the matrix sequence
defined by (13) with X (0) = 0 converges to the stabilizing solution to (1). Numerical
solvers for the perturbed Riccati Eq. (13) based on the Riccati recurrence equation are
investigated in [2,6]. Following the experience with iterations considered in [2,6] we
transform the latest recurrence equation in the following form:

0 =
(
A − GF (k)

1

)T
X (k+1) + X (k+1)

(
A − GF (k)

1

)

−[X (k+1)B + ST2 ]R−1
2 [BT X (k+1) + S2] + Q̃(k) . (14)

where

Q̃(k) = Π(X (k)) + CTC − ST1 R
−1
1 S1 + X (k)GR−1

1 GTX (k) .
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Further on, we apply the second approach to transform (12):

0 = (A + B F2(X
(k)))T X (k+1) + X (k+1) (A + B F2(X

(k))) + Π(X (k+1))

− F1(X
(k))TGT X (k+1) − X (k+1) GF1(X

(k))

+CTC − ST1 R
−1
1 S1 − ST2 R

−1
2 S2 + X (k)GR−1

1 GTX (k)

+ X (k)BR−1
2 BTX (k)

−
(
X (k+1) − X (k)

)
BR−1

2 BT
(
X (k+1) − X (k)

)
.

We obtain

0 = (A + B F2(X
(k)))T X (k+1) + X (k+1) (A + B F2(X

(k)))

+CTC + X (k)BR−1
2 BTX (k) − ST2 R

−1
2 S2 + Π(X (k+1))

− (GTX (k+1) + S1)
TR−1

1 (GTX (k+1) + S1)

+ (X (k+1) − X (k))GR−1
1 GT(X (k+1) − X (k))

−
(
X (k+1) − X (k)

)
BR−1

2 BT
(
X (k+1) − X (k)

)
. (15)

Thus, the recurrence Eq. (15) is equivalent to the main iterative process (9), (10).
In order to construct the matrix sequence by using Eq. (15) we apply the following
practical realization to (15):

1.We take X (0) = 0 ;
2.Compute X (1) as the stabilizing solution to
the Lyapunov equation :

0 = AT X (1) + X (1) A + Π(X (0)) + CT C − ST2 R
−1
2 S2 − ST1 R

−1
1 S1

3.Compute X (2), X (3), . . . as the stabilizing solution to
the Lyapunov equation :

0 = (A + B F2(X (k)))T X (k+1) + X (k+1) (A + B F2(X (k))) + Π(X (k))

+CTC + X (k)BR−1
2 BTX (k) − (GTX (k) + S1)TR

−1
1 (GTX (k) + S1)

+ (X (k) − X (k−1))GR−1
1 GT(X (k) − X (k−1)) − ST2 R

−1
2 S2

− (
X (k) − X (k−1)

)
BR−1

2 BT
(
X (k) − X (k−1)

)
,

k = 1, 2, . . .

(16)

In this section we have considered two iterative methods for computing the stabi-
lizing solution to (1):

– Riccati iteration (14);
– New Lyapunov iteration (16).

One matrix sequence is constructed in both methods (14) and (16).
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4 Numerical experiments

In this paperwe have studied three iterativemethods for solving algebraicRiccati equa-
tion, arising in stochastic control with an indefinite quadratic term (1). Herewe provide
some numerical experiments with these iterative methods. The first one is the iterative
process (9), (10). We construct two matrix sequences {X (k)} and {Z (k)} , k = 0, 1, . . .
for each example. The matrix sequence {X (k)} is computed using the external loop
of the iterative process (9), (10). In order to find the stabilizing solution Z (k) to (10)
we apply Riccati iteration (11). Furthermore, the next two methods are described by
the iterative procedures (14) and (16). These methods construct one matrix sequence,
which converges to the stabilizing solution of (1). The results from numerical experi-
ments are compared.

In our experiments we solve Riccati recurrence equations (11) and (14) with the
MATLAB procedure care where the flops are 81 n3 per one iteration. TheMATLAB
procedure lyap is applied for solving (16) and the flops are 27

2 n
3 per one iteration.

We consider a family of examples of Riccati Eq. (1) with Π(X) = A1
TX A1 +

A2
TX A2 in two tests, where the coefficient real matrices are given as follows:

A, A1, A2, B1, B2 were constructed using theMATLAB notations:

Test 1 : A = abs(randn(n, n))/6 − 6.5 ∗ eye(n, n);
n = 14, ..., 17;
R1 = −[0.35 0 0; 0 0.32 0; 0 0 0.375]; S1 = randn(3, n)/4;
R2 = [8.7 2 0; 2 7 0; 0 0 11.5]; S2 = randn(3, n)/4;
G = randn(n, 3)/5; B = randn(n, 3)/5; Q = 0.3 ∗ eye(n, n);
A1 = randn(n, n)/2; A2 = randn(n, n)/5;

Test 2 : A = (randn(n, n))/24 − 9 ∗ eye(n, n);
n = 26, ..., 32;
R1 = −[0.35 0 0; 0 0.32 0; 0 0 0.375]; S1 = randn(3, n)/4;
R2 = [8.7 2 0; 2 7 0; 0 0 11.5]; S2 = randn(3, n)/4;
G = randn(n, 3)/5; B = randn(n, 3)/5; Q = 0.002 ∗ eye(n, n);
A1 = randn(n, n)/2; A2 = randn(n, n)/5;

In our definitions the function randn(p,k) returns a p-by-k matrix of pseudorandom
scalar values and a q-by-m sparse matrix respectively (for more information see the
MATLAB description).

Our experiments are executed in MATLAB on a 2.20GHz Intel(R) Core(TM) i7-
4702MQCPUcomputer.We use two variables tol R and tol for small positive numbers
to control the accuracy of the computations. We use tol R = 1e − 7, tol = 1e − 5 in
our experiments. We denote ErrorR,k = ∥∥R (X(k))

∥∥ and ErrorG,k = ∥∥G (Z(k))
∥∥.

Iteration (9) stops when the inequality ErrorR,k0 ≤ tol R is satisfied for some k0.
Iteration (10) stops when the inequality ErrorG,s0 ≤ tol is satisfied for some s0. The
above inequalities are practical stopping criteria for (9) and (11), (14) and (16).

We have executed one hundred examples of each value of n. Table 1 shows the
values of the variables “I tM” and “I tS”. The variable “I tM”means the biggest number
of the iterations for the main iterative process (9) is finished for all runs, i.e. I tM =
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Table 1 Results for the example

(9), (10) with RI:(11) (14) (16)
n I tM I tS CPU I tM I tS CPU I tM I tS CPU

TEST 1

14 53 7.2 10.7s 39 16.6 2.0s 35 17.7 0.9s

15 56 10.4 11.4s 36 17.3 2.1s 29 18.1 1.3s

16 133 11.2 13.1s 38 18.4 2.3s 56 21.5 1.4s

17 60 10.5 16.7s 82 20.7 3.0s 176 21.3 1.5s

TEST 2

26 58 14.2 23.9s 39 20.6 4.4s 99 21.6 2.5s

27 152 10.4 29.8s 39 21.4 5.2s 36 21.8 2.8s

28 63 9.8 29.7s 49 22.5 5.3s 107 23.6 3.1s

29 318 12.6 44.4s 58 23.7 5.8s 127 26.4 3.7s

30 89 11.8 47.8s 50 24.7 7.1s 51 25.0 3.3s

31 60 12.9 53.5s 54 25.9 8.1s 44 26.3 3.6s

32 200 12.9 68.0s 65 26.9 9.1s 135 32.2 4.3s

Fig. 1 Comparison for CPU time

maxp=1,...,100 k̃ p,where ErrorR,k̃ p
≤ tol R. The variable “I tS” stands for the average

number of iterations executed in the inner loop by iterations (11), (14) and (16) until
the main iteration is finished, i.e. I tS = maxp=1,...,100

sp
k̃ p

, where ErrorG,sp ≤ tol.

Iterations (14) and (16) construct one matrix sequence, which converges to the
stabilizing solution. Results from the experiments with (14) and (16) are presented in
the same table. These iterations stop when the inequality ErrorR,k0 ≤ tol R holds.
We display the biggest number of iterations “I tb” and the average number of iterations

123



558 I. G. Ivanov, I. G. Ivanov

av I t of each size for all one hundred runs. In addition, the column “CPU” presents
the CPU time for execution of the corresponding iterations for all one hundred runs 1.

The results described in the table show that all introduced iterative methods are
effective methods for computing the stabilizing solution of the Riccati equations aris-
ing in the H∞ stochastic problems.

5 Conclusion

The novelty of this paper is the construction and numerical analysis of the new iterative
algorithms provided a converge matrix sequence. We have studied two iterative pro-
cesses for finding the stabilizing solution to generalized Riccati equations (1). In the
proposed algorithms, we transform the given two matrix sequences {X (k)} and {Z (k)}
into one different matrix sequence. We have made numerical experiments for comput-
ing this solution and we have compared the numerical results. We have compared the
results from the experiments with regard to the number of iterations and CPU time for
executing. Our numerical experiments confirm the effectiveness of the proposed new
methods (14) and (16). The proposed algorithms complete the stabilizing solutionwith
less computational time and no loss of accuracy. Moreover, the proposed algorithms
utilize less computer memory and it can be considered as their potential benefit.
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