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Abstract In this paper, we introduce impulsive delayed matrix function and give its
norm estimation. With the help of impulsive delayed Cauchy matrix and the variation
of constants method, we obtain representation of solutions to linear impulsive delay
differential equations. Moreover, we derive some sufficient conditions to guarantee
the trivial solution is locally asymptotically stable. Finally, two examples are given to
illustrate our theoretical results.
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1 Introduction

In recent decades, there are only few development on seeking explicit formula of
solution to delay differential/discrete equations by introducing continuous/discrete
delayed exponential matrix [1,2]. One of the most advantages of continuous/discrete
delayed exponential matrix is to help transferring the classical idea to represent the
solution of linear ODEs into linear delay differential/discrete equations. For more con-
tinued works, one can refer to existence and stability of solutions to several classes of
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delay differential/discrete equations [3–13] and some relative controllability problems
[14–17].

Impulsive delay differential equations are widely used to characterize the situation
subject to abrupt changes in their states depending on the previous time interval. For
more recent development of theory and application, one can refer to [18–21] for the
determined case and reference therein. Next, we also remark that there are interest-
ing work on impulsive stochastic delay differential equations with Markovian jump
[22–28], where the classical approach are used to address the exponential stability
problem. More precisely, Lyapunov–Krasovskii functional, stochastic version Razu-
mikhin technique as well as linear matrix inequalities technique are utilized to derive
the sufficient conditions to ensure the exponential stability of the trivial solution in the
mean square.

In general, it is difficult to derive explicit presentation of solution without knowing
impulsive delayedCauchymatrix even for linear impulsive delay differential equations
by adopting the similar idea to derive a solution involving impulsive Cauchy matrix
[29, p.108, (3.3)] for linear impulsive differential equations.

In this paper, we firstly introduce impulsive delayed Cauchy matrix and seek the
formula of solutions for the following linear impulsive delay differential equations

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Bx(t − τ), t ≥ 0, τ > 0, t �= ti ,

�x(ti ) = Ci x(ti ), i = 1, 2, . . . ,

x(t) = ϕ(t), − τ ≤ t ≤ 0,

(1)

where A, B,Ci be constant n × n matrices, AB = BA, ACi = Ci A and BCi =
Ci B for each i = 1, 2, . . ., ϕ ∈ C1

τ := C1([−τ, 0],Rn), and x(t) ∈ R
n , and time

sequences {tk}∞k=1 satisfy 0 = t0 < t1 < · · · < tk < · · · , impulsive conditions
�x(tk) := x(t+k ) − x(t−k ), x(t+k ) = lim

ε→0+ x(tk + ε) and x(t−k ) = x(tk) represent

respectively the right and left limits of x(t) at t = tk and lim
k→+∞ tk = ∞.

Secondly, we seek the possible presentation of solutions to linear impulsive non-
homogeneous delay differential equations

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Bx(t − τ) + f (t), t ≥ 0, τ > 0, t �= ti , f ∈ C(R+,Rn),

�x(ti ) = Ci x(ti ), i = 1, 2, . . . ,

x(t) = ϕ(t), − τ ≤ t ≤ 0.

(2)

We would like to point that the main innovation is to derive the impulsive delayed
Cauchymatrix for (1) and give its norm estimation. Further, we obtain explicit formula
of solutions to (1) and (2) by virtue of new constructed impulsive delayed Cauchy
matrix.Moreover, we present two sufficient conditions to guarantee the trivial solution
to (1) is locally asymptotically stable. Next, we extend to show that the trivial solution
to impulsive delay differential equations with nonlinear term is locally asymptotically
stable. Finally, we make two numerically examples to illustrate our theoretical result.

The rest of the paper is organized as follows. In Sect. 2, we recall some notations
and definitions, and give the concept on impulsive delayed Cauchy matrix and its
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norm estimation, and show that is the fundamental matrix for linear impulsive delay
differential equations. In Sect. 3, we give the explicit formulas of solutions to linear
impulsive homogeneous/nonhomogeneous delay differential equations via impulsive
delayed Cauchy matrix and the variation of constants method. In Sect. 4, sufficient
conditions ensuring local asymptotical stability of solutions are presented. Examples
are given to illustrate our theoretical results in final section.

2 Preliminaries

For any x ∈ R
n and A ∈ R

n×n , we introduce vector norm ‖x‖ = max1≤i≤n |xi |
and matrix norm ‖A‖ = max1≤i≤n

∑n
j=1 |ai j | respectively, where xi and ai j are

the elements of the vector x and matrix A. Let L(Rn) be the space of bounded linear
operators inRn . Denote byC(R+,Rn) the Banach space of vector-value bounded con-
tinuous functions from R

+ → R
n endowed with the norm ‖x‖C = supt∈R+ ‖x(t)‖.

We introduce a space C1(R+,Rn) = {x ∈ C(R+,Rn) : ẋ ∈ C(R+,Rn)}. Denote
PC(R+,Rn) := {x : R+ → R

n : x ∈ C((ti , ti+1],Rn)} and PC1(R+,Rn) := {x :
R

+ → R
n : ẋ ∈ PC(R+,Rn)}.

Definition 2.1 A function x ∈ C1([−τ, 0],Rn)∪ PC1(R+,Rn) is called the solution
of (1) (or (2)) if x satisfies x(t) = ϕ(t) for −τ ≤ t ≤ 0 and the first and second
equations in (1) (or (2)).

Definition 2.2 (see [1, (11)] or [5, (11)]) eBtτ : R → R
n×n is called delayed matrix

exponential if

eBtτ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�, t < −τ, τ > 0,

I, − τ ≤ t < 0,

I + Bt + B2 (t − τ)2

2
+ · · · + Bk (t − (k − 1)τ )k

k! , (k − 1)τ ≤ t < kτ, k = 1, 2, . . . ,

(3)

where B is a constant n × n matrix, � and I are the zero and identity matrices,
respectively.

Lemma 2.3 (see [1, Lemma 4] or [5, p.2253]) For all t ∈ R, d
dt e

Bt
τ = BeB(t−τ)

τ .

Lemma 2.4 (see [8, Lemma 12]) If ‖B‖ ≤ αeατ , α ∈ R
+, then ‖eB(t−τ)

τ ‖ ≤ eαt , t ∈
R.

Lemma 2.5 (see [30, 2.28, p.44]) Let A ∈ L(Rn). For any ε > 0, there is a norm on
R
n such that ‖A‖ ≤ ρ(A) + ε, where ρ(A) is the spectral radius of A.

Lemma 2.6 (see [29, (3.7), p.109]) Let A ∈ L(Rn) and α(A) = max{
λ | λ ∈
σ(A)}. For any ε > 0, there are K ≥ 1 such that ‖eAt‖ ≤ Ke(α(A)+ε)t for any t ≥ 0.
Here σ(A) is the spectrum of A.

123



256 Z. You, J. Wang

In what follows, we introduce a concept of impulsive delay matrix function, an
extension of delay matrix function for linear delay differential equations, which help
us to seek explicit formula of solutions to impulsive delay differential equations.

By virtue of delayed matrix exponential (3), we define Y (·, ·) : R × R → R
n×n

and

Y (t, s) = eA(t−s)X (t, s + τ), t > s, (4)

where

X (t, s) = eB1(t−s)
τ +

∑

s−τ<t j<t

C j e
B1(t−τ−t j )
τ X (t j , s), B1 = e−Aτ B.

Here, we call Y (·, ·) defined in (4) as impulsive delayed Cauchy matrix associated
with (1).

Remark 2.7 Obviously, Y (t, t) = X (t, t + τ) = eB1(t−t−τ)
τ = I, and Y (t, s) =

eA(t−s)X (t, s + τ) = eA(t−s)eB1(t−s−τ)
τ = �, t < s.

Lemma 2.8 Impulsive delayed Cauchy matrix Y (·, ·) is the fundamental matrix of
(1).

Proof We divide our proof into two steps.
Step 1 We verify that Y (·, ·) satisfies differential equation d

dt Y (t, s) = AY (t, s) +
BY (t − τ, s), t ∈ (ti , ti+1]. In fact, having differentiated Y (t, s) for t ∈ (ti , ti+1] and
t > s, by using Lemma 2.3, we obtain

d

dt
Y (t, s) = AeA(t−s)X (t, s + τ) + eA(t−s)

{

B1e
B1(t−2τ−s)
τ

+ B1

∑

s<t j<t

C j e
B1(t−2τ−t j )
τ X (t j , s + τ)

}

= AY (t, s) + BeA(t−τ−s)
{

eB1(t−2τ−s)
τ +

∑

s<t j<t−τ

C je
B1(t−2τ−t j )
τ X (t j , s + τ)

}

= AY (t, s) + BY (t − τ, s).

Step 2We verify that Y (t+i , s)−Y (t−i , s) = CiY (ti , s). Note that eBt
+

τ = eBt
−

τ for all
t > −τ , then

Y (t+i , s) = eA(t+i −s)
{

e
B1(t

+
i −τ−s)

τ +
∑

s<t j<t+i

C j e
B1(t

+
i −τ−t j )

τ X (t j , s + τ)

}

= eA(t−i −s)
{

e
B1(t

−
i −τ−s)

τ +
∑

s<t j<t−i

C j e
B1(t

−
i −τ−t j )

τ X (t j , s + τ)
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+ Cie
B1(t

+
i −τ−ti )

τ X (ti , s + τ)

}

= eA(t−i −s)X (t−i , s + τ) + Cie
A(t−i −s)X (ti , s + τ) = Y (t−i , s) + CiY (ti , s).

This ends the proof. ��
To give the norm estimation of Y (·, ·), we first consider the norm estimation of

B1 = e−Aτ B.
For a given B1, one can find a α ∈ R

+ such that

‖B1‖ ≤ αeατ . (5)

In fact, by Lemmas 2.5 and 2.6, we have ‖B1‖ = ‖e−Aτ B‖ ≤ K (ρ(B) +
ε)e(α(−A)+ε)τ . Choosing α ≥ max {K (ρ(B) + ε), α(−A) + ε}, ε > 0, then we
obtain (5). In addition, we can calculate the parameter α for a given matrix by using
MATLAB software.

Lemma 2.9 For any ε > 0 there exits K ≥ 1 such that

‖X (t, s)‖ ≤
( ∏

s−τ<t j<t

(ρ(C j ) + 1 + ε)

)

eα(t+τ−s), (6)

and

‖Y (t, s)‖ ≤ K

( ∏

s<t j<t

(ρ(C j ) + 1 + ε)

)

e(α(A)+α+ε)(t−s). (7)

Proof Without loss of generality, we suppose that tm < s−τ ≤ tm+1 and tm+n < t ≤
tm+n+1, m, n = 0, 1, 2, . . .. Next, we apply mathematical introduction to complete
our proof.

(i) For n = 0, by Lemma 2.4 via (5),

‖X (t, s)‖ ≤ ‖eB1(t−s)
τ ‖ ≤ eα(t+τ−s).

(ii) For n = 1, by Lemmas 2.4 and 2.5 via (5), we have

‖X (t, s)‖ ≤
∥
∥
∥
∥e

B1(t−s)
τ + Cm+1e

B1(t−τ−tm+1)
τ X (tm+1, s)

∥
∥
∥
∥

≤ eα(t+τ−s) + (ρ(Cm+1) + ε)eα(t−tm+1)eα(tm+1+τ−s)

≤ (ρ(Cm+1) + 1 + ε)eα(t+τ−s).

(iii) Let i := i(0, t) be the number of the impulsive points which belong to (0, t). For
n = k, suppose that
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‖X (t, s)‖ ≤
( m+k∏

j=m+1

(ρ(C j ) + 1 + ε)

)

eα(t+τ−s) =
( ∏

s−τ<t j<t

(ρ(C j ) + 1 + ε)

)

eα(t+τ−s).

(iv) For n = k + 1, by Lemmas 2.4 and 2.5 via (5) again,

‖X (t, s)‖ ≤
∥
∥
∥
∥
∥
∥
eB1(t−s)
τ +

∑

s−τ<t j<t

C j e
B1(t−τ−t j )
τ X (t j , s)

∥
∥
∥
∥
∥
∥

≤ eα(t+τ−s) +
m+k+1∑

j=m+1

(ρ(C j ) + ε)eα(t−t j )
( j−1∏

r=m+1

(ρ(Cr )

+ 1 + ε)

)

eα(t j+τ−s)

≤
(

1 +
m+k+1∑

j=m+1

(ρ(C j ) + ε)

j−1∏

r=m+1

(ρ(Cr ) + 1 + ε)

)

eα(t+τ−s)

=
( m+k+1∏

j=m+1

(ρ(C j ) + 1 + ε)

)

eα(t+τ−s)

=
( ∏

s−τ<t j<t

(ρ(C j ) + 1 + ε)

)

eα(t+τ−s).

Linking mathematical induction, one can obtain (6).
Finally, using (4) and (6) via Lemma 2.6, one can derive (7) immediately. The
proof is finished. ��

3 Representation of solutions

In this section, we seek explicit formula of solutions to linear impulsive nonhomoge-
neous delay system by adopting the classical ideas to find solution of linear impulsive
ODEs.

We drive explicit formula of solutions to linear impulsive homogeneous delay sys-
tem.

Theorem 3.1 The solution of (1) has the form

x(t) = Y (t,−τ)ϕ(−τ) +
∫ 0

−τ

Y (t, s)[ϕ̇(s) − Aϕ(s)]ds, t ≥ −τ. (8)

Proof Concerning on the solution of (1) and Lemma 2.8, one should search in the
form

x(t) = Y (t,−τ)c +
∫ 0

−τ

Y (t, s)g(s)ds,
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where c is an unknown constants, g(t) is an unknown continuously differentiable
function. Moreover, it satisfies initial condition x(t) = ϕ(t),−τ ≤ t ≤ 0, i.e.,

x(t) = Y (t,−τ)c +
∫ 0

−τ

Y (t, s)g(s)ds := ϕ(t), −τ ≤ t ≤ 0.

Let t = −τ , we have

Y (−τ, s) =
{

�, −τ < s ≤ 0,

I, s = −τ.

Thus c = ϕ(−τ). Since −τ ≤ t ≤ 0, one obtains

Y (t, s) = eA(t−s)eB1(t−τ−s)
τ =

{
�, t < s ≤ 0,

eA(t−s),−τ ≤ s ≤ t.

Thus on interval −τ ≤ t ≤ 0, one can derive that

ϕ(t) = Y (t,−τ)ϕ(−τ) +
∫ 0

−τ

Y (t, s)g(s)ds

= Y (t,−τ)ϕ(−τ) +
∫ t

−τ

Y (t, s)g(s)ds +
∫ 0

t
Y (t, s)g(s)ds

= eA(t+τ)ϕ(−τ) +
∫ t

−τ

eA(t−s)g(s)ds. (9)

Having differentiated (9), we obtain

ϕ̇(t) = AeA(t+τ)ϕ(−τ) + A
∫ t

−τ

eA(t−s)g(s)ds + g(t) = Aϕ(t) + g(t).

Therefore,

g(t) = ϕ̇(t) − Aϕ(t).

The desired result holds. ��
Next, the solution of (2) can be written as a sum x(t) = x0(t) + x(t), where x0(t)

is a solution of (1) and x(t) is a solution of (2) satisfying zero initial condition.
The following result show us how to derive the formula of x(·).

Theorem 3.2 The solution x(t) of (2) satisfying zero initial condition, has a form

x(t) =
i−1∑

j=0

∫ t j+1

t j
Y (t, s) f (s)ds +

∫ t

ti
Y (t, s) f (s)ds, t ≥ 0. (10)
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Proof By using method of variation of constants, one will search x(t) in the following
form

x(t) =
i−1∑

j=0

∫ t j+1

t j
Y (t, s)c j (s)ds +

∫ t

ti
Y (t, s)ci (s)ds, (11)

where c j (t), j = 0, 1, . . . , i(0, t) is an unknown vector function. We divide our
proofs into several steps as follows:

(i) For any 0 < t ≤ t1, we have x(t) = ∫ t
0 Y (t, s)c0(s)ds. Let us differentiate x(t)

to obtain

d

dt
x(t) = Ax(t) + B

∫ t−τ

0
Y (t − τ, s)c0(s)ds

+B
∫ t

t−τ

Y (t − τ, s)c0(s)ds + c0(t)

= Ax(t) + Bx(t − τ) + f (t).

From Remark 2.7, we know, Y (t − τ, s) = �, s > t − τ , then

c0(t) = f (t).

(ii) For any t1 < t ≤ t2, we have

x(t) =
∫ t1

0
Y (t, s) f (s)ds +

∫ t

t1
Y (t, s)c1(s)ds.

Let us differentiate x(t) again to obtain

d

dt
x(t) =

∫ t1

0
[AY (t, s) + BY (t − τ, s)] f (s)ds

+
∫ t

t1
[AY (t, s) + BY (t − τ, s)]c1(s)ds + c1(t)

= Ax(t) + Bx(t − τ) + f (t),

which implies that

c1(t) = f (t).

(iii) Suppose that ci−1(t) = f (t) holds on subintervals (ti−1, ti ], i = 2, 3 . . ..
For any ti < t ≤ ti+1, we have

x(t) =
i−1∑

j=0

∫ t j+1

t j
Y (t, s) f (s)ds +

∫ t

ti
Y (t, s)ci (s)ds.
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Let us differentiate x(t) again to obtain

d

dt
x(t) = Ax(t) + B

⎧
⎨

⎩

i(0,t−τ)−1∑

j=0

∫ t j+1

t j
Y (t − τ, s) f (s)ds

+
∫ t−τ

ti(0,t−τ )

Y (t − τ, s)ci(0,t−τ)(s)ds

⎫
⎬

⎭
+ ci (t)

= Ax(t) + Bx(t − τ) + f (t).

This yields that ci (t) = f (t). According to the mathematical induction, one can
obtain ci (t) = f (t), i = 1, 2 . . . . Linking with (11), (10) is derived. ��

Corollary 3.3 The solution of (2) has the form

x(t) = Y (t,−τ)ϕ(−τ) +
∫ 0

−τ

Y (t, s)[ϕ̇(s) − Aϕ(s)]ds

+
i−1∑

j=0

∫ t j+1

t j
Y (t, s) f (s)ds +

∫ t

ti
Y (t, s) f (s)ds. (12)

4 Asymptotical stability results

In this section, we discuss asymptotical stability of trivial solution of (1).

Definition 4.1 The trivial solution of (1) is called locally asymptotically stable, if
there exists δ > 0 such that ‖ϕ‖1 := max[−τ,0] ‖ϕ(t)‖ + max[−τ,0] ‖ϕ̇(t)‖ < δ, the
following holds:

lim
t→∞ ‖x(t)‖ = 0.

To prove our main results on the stability of trivial solution, we introduce the
following conditions.

(H1) Suppose that the distance between the impulsive points tk and tk+1 satisfies

0 < θ1 ≤ tk+1 − tk ≤ θ2, k = 0, 1, 2 . . . ,

and set

θ =
{

θ1, α(A) + α < 0,

θ2, α(A) + α ≥ 0,

for some α given in (5).
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(H2) Let η1 := α(A) + α + 1
θ
ln(ρ(C) + 1), where ρ(C) := max{ρ(C j ) : j =

1, . . . ,
i(0, t)} and assume that η1 < 0.

(H3) There exists a positive constant p such that

lim
t→∞

i(0, t)

t
= p.

(H4) Suppose that η2 < 0, where

η2 := α(A) + α + p ln(ρ(C) + 1). (13)

Now, we are ready to state our first stability result for trivial solution of (1).

Theorem 4.2 If (H1) and (H2) are satisfied, then the trivial solution of (1) is locally
asymptotically stable.

Proof Using (8), Lemma 2.9 and Theorem 3.1, we have

‖x(t)‖ ≤ ‖Y (t,−τ)‖‖ϕ(−τ)‖ +
∫ 0

−τ

‖Y (t, s)‖‖ϕ̇(s) − Aϕ(s)‖ds

≤ K

( i∏

j=1

(ρ(C j ) + 1 + ε)

)

e(α(A)+α+ε)(t+τ)‖ϕ(−τ)‖

+
∫ 0

−τ

K

( i∏

j=1

(ρ(C j ) + 1 + ε)

)

e(α(A)+α+ε)(t−s)‖ϕ̇(s) − Aϕ(s)‖ds

≤ Me(α(A)+α+ε)t (ρ(C) + 1 + ε)i(0,t)

= Me(α(A)+α+ε)(t−ti(0,t))e(α(A)+α+ε)ti(0,t) (ρ(C) + 1 + ε)i(0,t)

≤ Me(α(A)+α+ε)θe(α(A)+α+ε)i(0,t)θ (ρ(C) + 1 + ε)i(0,t)

= Me(α(A)+α+ε)θ [e(α(A)+α+ε)θ (ρ(C) + 1 + ε)]i(0,t), (14)

where

M := K (e(α(A)+α+ε)τ‖ϕ(−τ)‖ +
∫ 0

−τ

e−(α(A)+α+ε)s‖ϕ̇(s) − Aϕ(s)‖ds) > 0.

It follows from the condition (H2) that one can choose ε > 0 such that

e(α(A)+α+ε)θ (ρ(C) + 1 + ε) ≤ e
θη1
2 < 1.

Then (14) gives

‖x(t)‖ ≤ Me(α(A)+α+ε)θe
θη1
2 i(0,t) → 0 for t → ∞(implies i(0, t) → ∞).

The proof is completed. ��
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Next, we give second stability result for trivial solution of (1).

Theorem 4.3 If (H3) and (H4) are satisfied, then the trivial solution of (1) is locally
asymptotically stable.

Proof The proof is similar to Theorem 4.2, so we only give the details of main differ-
ences. Note that (H3), we have i(0, t) < t (p + ε), ε > 0 arbitrarily small. Linking
the formula (14), one has

‖x(t)‖ ≤ Me(α(A)+α+ε)t (ρ(C) + 1 + ε)i(0,t)

≤ Me[α(A)+α+ε+(p+ε) ln(ρ(C)+1+ε)]t .

By virtue of (H4) we can find ε such that

‖x(t)‖ ≤ Me[α(A)+α+ε+(p+ε) ln(ρ(C)+1+ε)]t ≤ Me
η2
2 t → 0 as t → ∞.

The desired result holds. ��
To end this section, we extend the above results to nonlinear case. Consider the

following linear impulsive delay system with nonlinear term

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Bx(t − τ) + f (x(t)), t ≥ 0, τ > 0, t �= ti ,

x(t) = ϕ(t), − τ ≤ t ≤ 0,

�x(ti ) = Ci x(ti ), i = 1, 2, . . . ,

(15)

where f ∈ C(Rn,Rn).
We impose the following additional assumptions:
(H5) Suppose exists l > 0 such that ‖ f (x)‖ < l‖x‖.
(H6) Suppose that Kl + η2

2 < 0, where η2 is defined in (13).

Theorem 4.4 Assume that (H3), (H5) and (H6) are satisfied. Then the trivial solution
of (15) is locally asymptotically stable.

Proof By Corollary 3.3, any solution of (15) should have the form

x(t) = Y (t,−τ)ϕ(−τ) +
∫ 0

−τ

Y (t, s)[ϕ′(s) − Aϕ(s)]ds

+
i−1∑

j=0

∫ t j+1

t j
Y (t, s) f (x(s))ds +

∫ t

ti
Y (t, s) f (x(s))ds. (16)

By the conditions of (H3), (7) reduces to

‖Y (t, s)‖ ≤ K (ρ(C) + 1 + ε)i(s,t)e(α(A)+α+ε)(t−s)

≤ Ke[α(A)+α+ε+(p+ε) ln(ρ(C)+1+ε)](t−s)

≤ Ke
η2
2 (t−s). (17)
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Taking norm in two sides of (16) via (17) and (H5), one has

‖x(t)‖ ≤ Ke
η2
2 (t+τ)‖ϕ(−τ)‖ +

∫ 0

−τ

Ke
η2
2 (t−s)‖ϕ′(s) − Aϕ(s)‖ds

+
i−1∑

j=0

∫ t j+1

t j
K e

η2
2 (t−s)l‖x(s)‖ds +

∫ t

ti
K e

η2
2 (t−s)l‖x(s)‖ds.

This yields that

e− η2
2 t‖x(t)‖ ≤ Ke

η2
2 τ‖ϕ(−τ)‖ +

∫ 0

−τ

Ke− η2
2 s‖ϕ′(s) − Aϕ(s)‖ds

+Kl
∫ t

0
e− η2

2 s‖x(s)‖ds.

Let

T = Ke
η2
2 τ‖ϕ(−τ)‖ +

∫ 0

−τ

Ke− η2
2 s‖ϕ′(s) − Aϕ(s)‖ds > 0.

By using the well-known classical Gronwall inequality (see [31, Theorem 1]), we
have

e− η2
2 t‖x(t)‖ ≤ T eKlt ,

which yields that

‖x(t)‖ ≤ T e(Kl+ η2
2 )t → 0 as t → ∞

due to (H6). The proof is finished. ��

5 Examples

In this section, we give two examples to illustrate our above theoretical results. Here,
we use MATLAB software to compute some parameters and draw the figures for the
examples.

Example 5.1 Consider (1) with τ = 0.2 and

A =
(−3 0

0 −2.5

)

, B =
(
1 0
0 0.8

)

, C j =
(
2 + 1

j 0
0 2

)

, j = 1, 2, . . . ,

(18)
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and

ϕ(t) =
(
0.3
0.4

)

, i(0, t) =
[
t + 1

2

]

, (19)

where [x] is the biggest integer less than real x .

Obviously, AB = BA, AC j = C j A, BC j = C j B, j = 1, 2, . . . , and α(A) =
−2.5, ρ(C) = 3. Next, ‖eAt‖ = e−2.5t ≤ Ke(α(A)+ε)t , where K = 1 and ε > 0. By

computation, ‖ϕ‖1 = 0.4 = ‖ϕ(−τ)‖ < δ := 0.41, p = lim
t→∞

i(0,t)
t = lim

t→∞
[ t+1

2 ]
t =

1
2 . Next, by using MATLAB software, we obtain

‖B1‖ = ‖e−Aτ B‖ =
∥
∥
∥
∥

(
1.8221 0

0 1.3190

)∥
∥
∥
∥ ≤ αe0.2α, choose α = 1.3821,

M ≥ K (e(α(A)+α)τ‖ϕ(−τ)‖ +
∫ 0

−τ

e−(α(A)+α)s‖ϕ′(s) − Aϕ(s)‖ds) = 0.5440 > 0,

and

η2 = α(A) + α + p ln(ρ(C) + 1) = −0.4248 < 0.

Now all the conditions of Theorem 4.3 are satisfied. Thus,

‖x(t)‖ ≤ Me
η2
2 t = Me−0.2124t → 0 as t → ∞,

that is, the trivial solution of (1); (18); (19) is locally asymptotically stable (see Fig. 1).

Example 5.2 Consider (15) with τ = 0.2 and

A =
(−3.3 0

0 −3.3

)

, f (x(t)) =
(
0.5 sin x1
0.5 sin x2

)

B =
(
0.8 0.2
0 0.6

)

, C j =
(
3 0.5
0 2.5

)

, j = 1, 2, . . . , (20)

and ϕ, i(0, t) are defined in (19).

By the calculation, AB =
(−2.64 −0.66

0 −1.98

)

= BA, AC j =
(−9.9 −1.65

0 −8.25

)

=
C j A,

BC j =
(
2.4 0.9
0 1.5

)

= C j B, j = 1, 2, . . . .

Obviously, α(A) = −3.3. and ‖eAt‖ = e−3.3t ≤ Ke(α(A)+ε)t , where K = 1 and
ε > 0. In addition, ‖ f (x)‖ < l‖x‖, we can choose l = 0.5. Next, by using MATLAB
software, we obtain

‖B1‖ = ‖e−Aτ B‖ =
∥
∥
∥
∥

(
1.5478 03870

0 1.1609

)∥
∥
∥
∥ ≤ αe0.2α, and choose α = 1.4483.
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Fig. 1 The state response x(t) of (1);(18);(19)
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Fig. 2 The state response x(t) of (15); (19); (20)

Moreover, η2 = α(A) + α + p ln(ρ(C) + 1) = −1.1586, thus,

T = Ke
η2
2 τ‖ϕ(−τ)‖ +

∫ 0

−τ

Ke− η2
2 s‖ϕ′(s) − Aϕ(s)‖ds = 0.6228 > 0.

Note that Kl + η2
2 = −0.0793 < 0. Now all the conditions of Theorem 4.4 are

satisfied. Then,
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‖x(t)‖ ≤ T e(Kl+ η2
2 )t = 0.6228e−0.0793t → 0 as t → ∞,

that is, the trivial solution of (15); (19); (20) is locally asymptotically stable (see Fig. 2).
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