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Abstract Let I, be a finite field with ¢ = p™ elements, where p is an odd prime and
m is a positive integer. In this paper, let D = {(x1, x2,...,x,) € IFZ\{(O, 0,..0}:

k141 k241 kn 4.1 . .
Tr(x! + + x§ T xPh = ¢}, where ¢ € F,, Tr is the trace function

from F, to F,, and each m/(m, k;) (1 < i < n)is odd. we define a p-ary linear
code Cp = {c(ay,az,...,ay) : (a1,as,...,a,) € ]FZ}, where c(ay, az, ..., a,) =
(Tr(a1x1 +azxxz + - - 4+ anxy)) (x.x9.....x,)c D- We present the weight distributions of
the classes of linear codes which have at most three weights.

Keywords Linear codes - Weight distribution - Guass sum - Weil sum

1 Introduction

Throughout this paper, let I, be a finite field with ¢ = p™ elements, where p is an
odd prime and m is a positive integer, and let T be the trace function from I, to I ,.
An [n, k, d] p-ary linear code % is a k-dimensional subspace of IF’;, and has minimum
Hamming distance d. Let A; denote the number of codewords with Hamming weight
i in a code ¥ of length n. The weight enumerator is defined by

1+Aiz+---+ A"
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236 X. Zhu, F. Yang

The sequence (1, Aq, ..., Ay,) is called the weight distribution of the code 4. A
code ¥ is said to be a r-weight code if the number of nonzero A; is equal to ¢.
Weight distribution is an interesting topic and was investigated in [1-15]. The weight
distribution of a code can not only give the error correcting ability of the code, but
also allow the computation of the error probability of error detection and correction.
Foraset D = {dy,d>, ..., d,} C Iy, define a linear code of length n over IF), by

Cp ={(Tr(xd), Tr(xda), ..., Tr(xdy)) : x € Fy}.

We call D the defining set of €p. Many known linear codes could be produced by
selecting the defining set. For details of these known codes, the reader is referred to
[3,13,14].

In this paper, we always assume that n, m, ki, ..., k, are positive integers with
each m/ ged(m, k;) odd. Then each f;(x) = xPH s a planar function over F, (see
[16]). Fixing ¢ € ), we define

k kn
D ={(x1,.... %) €F\{(0,0,..)}: Tr (x{’1+1+,..+x5 +1) =cl,

6p ={cay,...,ay) : (a1,an,...,a,) € FZ},

where

clay,...,ap) = (Tr(a1xy + -+ anXp))(x,....xn)eD-

In fact, we have some well-known results as follows. If n = 1 and either k; = 0 or
m/ ged(m, k1) is odd, then it is just the result in [17,18].

In the paper, we will determine the weight distribution of the linear codes %p in
three cases: (1) c =0, (2) c € IF;‘,2, B)ce F’; \IF’;z. In the cases (2) and (3), we use
the cyclotomic numbers of order 2 to get their distributions.

2 Preliminaries

Let F, be a finite fields with g elements, where g is a power of a prime p. We define
the additive character of I, as follows:

x:Fy — Cx— ;‘I,T’(x),

where ¢, is a complex p-th primitive root of unity and 7'r denotes the trace function
from F, to IF,. The orthogonal property of additive characters [19] is given by

D xlax) =

xely,

0, ifa e]F;;
q, ifa=0.

Let X : IF;; —> C* be a multiplicative character of IF;. The trivial character Ag
defined by Ag(x) = 1 for all x € IFZ The orthogonal property of multiplicative
characters is given by
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A class of linear codes with two weights or three weights. .. 237

Z ) = -1, if A = XAg;
* otherwise.

xeF*

Let A be the conjugate character of A defined by A(x) = A(x). It is easy to obtain that
A~! = X. The multiplicative group IE‘* is isomorphic to Fy. For Fj = («), define a
multiplicative character by ¥ («) = g“q 1, where &, denotes the pr1m1t1ve q — 1-th

root of complex unity. Then we have @; = (¢¥). Set n = 1/f o be the quadratic
character of IF,.
Define the Gauss sum over [, by

GV =D Ax)x(x).

"
xqu

Let (<) denote the Legendre symbol. The quadratic Gauss sums are known and
given in the following.

Lemma 1 [19] Suppose that ¢ = p™ and 1 is the quadratic multiplicative character
of ¥y, where p is odd prime. Then

_ met [ (=D /3, ifp=1 (mod4),
Gon = (P = D" N/=D"Jq, ifp=3 (mod4).

where p* = (—1)prl p is the discriminant of a prime p.

Let x be the canonical additive character of F, such that x (x) = x’(Tr(x)) for
x € Fy. Let 0’ be a quadratic character of IF,, then n(x) = 1'(Ng/p(x)) for x € Fy.
Lemma 2 [20] Let x € F; and g = p™, where p is odd prime.

If m is even, then n(x) = 1.

If m is odd, then n(x) = n'(x).

Moreover, G(n) = (=)~ G ()", where G(n) and G (1) are the Gauss sums
over F, and I¥ ,, respectively.

We now give a brief introduction to the theory of quadratic forms over finite fields.
Quadratic forms have been well studied and have applications in sequence design
[11,21] and coding theory [7,22].

Lemma 3 Letd = gcd(k, m). Then

2, ifm/d is odd,

k — =
P +1,p" -1 = [p + 1, ifm/d is even.

In this paper, we assume that k an integer and m/ gcd(k, m) odd. Then it is well-

known that f(x) = P +lisa planar function from I, to . In [23,24], Coulter gave
the valuations of the following Weil sums:

Sk(@.by= > x(@x”*! +bx), a,beF,

xely,
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238 X. Zhu, F. Yang

Lemma 4 [23, Theorem 1] Let m/d be odd. Then

(==t Jgn(a), ifp=1 (mod4),

Sk(@, 0) = n(@G ) = [ (—D)m=Yim Jgn(a), ifp=3 (mod4).

Lemma 5 [24, Theorem 1] Let g be odd and suppose f(X) = a? XP* + aX is
a permutation polynomial over Fy. Let xo be the unique solution of the equation

f(X)= —bP*. The evaluation of S(a, b) partitions into the following two cases:

() If m/d is odd, then

Sea,b) = n@G) 7 (axf ™)

O @i (axf ), e =1 (mod 4,
O tim @i (axf ), ifp =3 (mod 4).

gq-1
(2) Ifm/d is even, then m =2e, ar'+l # (=)™ and
k
Sk, b) = (=" pex (ax ).
In fact, Lemma 4 is made of some revision in [24, Theorem 1].

3 Linear codes

Let I, be the finite field with ¢ = p™ elements, where p is an odd prime and m is an

positive integer. Let T'r denote the trace function from [, to IF),. In this section, we

always assume that n, kq, ..., k, are positive integers with each m/ gcd(m, k;) odd.
k; . . .

Let fi(x) =xP'*! x ¢ Fy,i =1,...,n. Itis known from [16] that f;, 1 <i <n,

are planar functions from I, to IF,.

3.1 The first case

Define
Do = ((x1, .., x) € FIN((0,...,0)) : Tr (xf"'“ L +x5kn+1) =0},
cKDO={c(al,...,a,1):(al,...,an)elﬁ‘ﬂg}, 3.1
where
cay,...,ap) = (Tr(a1xy + -+ anXn))(x,....xn)€Do-
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Lemma 6 Let ng = |Dg|. Suppose that mn is even, then

n
— —1
p p
pmn—l — 14+ (_1)(m—1)"(p — 1)}7%_1» ifp=1 (mod4),

pmn—l — 14+ (_1)(m—1)"+mT"(p — 1)[7%_1, ifp=3 (mod 4).

Suppose that mn is odd, then

Proof By Lemma 3, we have that

1 k kn
=L S S (™)

yelF, (x1,..., x,,)e]Fg

_qn 1 pri+1 prr+1
_?~|—;Z Zx(yxl )...Zx(yxn )

yeIF; x1€lfy xn€ly

q}'l ] ,
= +=> Gm"n"
P ‘
yely,

If m is even or m is odd and n is even, then n(y)" = 1 for each y € F’,. Hence
no =1L + LG (",

If mn is odd, then m is odd. Let " be a quadratic character of IE";,, then n(y) = n'(y)
for each y € IF,. Hence ZyEIF’;, n(y)" = ZyelF’,; n'(y) =0, sony = %.

By Lemma 1, we can get the exact value of ny.

Theorem 1 Let €p, be the linear code defined as (3.1).

If mn is even, then €p, is a two-weight code with the Hamming weight distribution
in Table 1.

Ifmn is odd, then €p, is a three-weight code with the Hamming weight distribution
in Table 2.

Proof Firstly, we determine the weight distribution of the code 4p,. Define the fol-
lowing parameter

k kn
N, = H(xl,...,xn) eIFZ :Tr(x{’1+l+...+xrll’u +1) =0,
Tr(ajx; + -+ -+ apxp) :O” -1,

wherea = (ay, ..., a,) € ]FZ. By definition and the basic facts of additive characters,
foreacha = (ay, ..., ay) € ]Fg \ {0, ...,0)}, we have
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Table 1 mn is even

Weight Multiplicity
p=1 (mod 4)
0 1
(p—Dpm=? Pl g g (m1y =D 1y

p =3 (mod 4)
0
(p—Dpmn-2
(p—D (pm”—Z + (—1)('"_1)"“'%1)%—1)

pmn _ pmn—l _ (_1)(m—1)n(p _ 1)[7%71

1

mn mn
Pl 1 (D 1y T
pmn — pmn—l _ (_1)(m—1)n+%(p _ l)p%

Table 2 mn is odd

Weight Multiplicity
p=1 (mod 4)
0 1
(p—Hp™=2 pn=l 4 (—ym=Dn, _ 1)y 31
(p—1 (Pmn72 + (—1)('”’1)";7%_3) P;‘ pn=l _ (_1)m=n @p%
p— nm—1

(p=1 (pmn72 _ (71)(m71)npm”2_3)

p =3 (mod 4)
0

(p—DHp™n=2

(p -1 (pmn—z _ (71)(”171)"‘%7”1”2*—] pimnz_?’)

_ mn+1  mn—3
(p—l)(p’""—2+(—1)('" Dn+55 3 )

lpmnfl _ (71)(”’171)}1 (P;l)pT

N‘

1

pmn—] 1
_ _ mn+1 _ nm—1
(p2 l)pmnfl _ (71)(m Dn+"% (p2 1)1772
_ _ mn+1 _ nm—1
(P2 l)pmn—l + (_1)(m D+ (p2 l)p %

N, = —
2
P (1,

.,,x,l)e]F; yeF,

q"—p 1
=T 7 +— Z
(X1 ey xn)elFZ ye]F’;

(1,0, ) €FY 2€F,

(X1,....x0) €FY y,2€F

2
¢ —-r
:T+91+92+Q3.
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By Lemmas 2 and 4, we have that

.le z Z (yxlkl—H)... Z (yxnkn—H)

veF* xi€lfy, xRy

= ? > "G

yels

_ | BFGa", if mniseven,
0, if mn is odd.

Bya=(ai,...,an) eIF:;\{(O,...,O)},wehavethat

Z Z x(zaixy) .. Z x (zapx,) = 0.

zeIF* x1efy xn€lfy

To compute N, it is sufficient to determine the value of the exponential sum

k141 kn 41
Z Z (yxf + +za1x1)... Z )((yx,’,7 + +zanxn).

vzl x1€lfy xn€lfy

For each k; and d; = ged(k;, m), m/d; is odd. Hence for y € IF;, the polynomial

filx) = yl’kixPZk" + yx = y(xI’Zk" + x) must be a permutation polynomial over IF,.

In fact, suppose that there is 0 # b € F, such that f;(b) = 0. Then prYi-1 = 1,
Let « be a primitive element of ]F; and b = o', then
m
—1
i —1="L —— (mod p" —1). (3.2)

Let d; = ged(m, ki), then ged(2k;, m) = d; by m/d; odd. Hence ged(p?*i — 1, p™ —
= (p% —1)and (p% — 1)1 pm2_1 , 0 (3.2) is contradictory.

Since fi(x) = y(xP i + x) is a permutation polynomial over F,, for each a; € I,

2%k; ki
there is the unique solution b; € I, of the equation xip + x; + aip = 0. In fact,
there is a one-to-one correspondence between a; € F, and b; € Fy, and a; = 0 is
correspond to b; = 0. Hence there is the unique solution wb; € F; of the equation
2%; ki
y()cl.[7 +x; + waip ) = 0, where w = f eF.
By Lemma 5, we have that

kg kn 41
23 = Z Z (yxf] + +ywa1x1)... Z X (yx,f + +ywanxn)

v, we]F xi1€lfy xn€ly
= Z n»M'Gm" > x (y > (wby)? '“)
yels wel%
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242 X. Zhu, F. Yang

Zn(y) G D x (yszr(Zwi)P""“)).

yeF;, wel%, i=1

Set

= [(bl,...,bn) eIE‘Z\{(0,...,0)}|Tr(zbipki+l)=O],

i=1

n .
= [(bl,...,bn) € F;|Tr(2bf’ “) el \JF’;,Z] ,

i=1

n K
= [(bl,...,bn) ng|Tr(Zb{’ “) eF;Z].
i=1

To compute the value of £23, we divide into two cases.
The first case: mn is even, i.e. either m is even or n is even. Then we have that
n(y)" =1fory e[,

I (b1, ..., by) € I = =D Gy
ls...,by) € Iy, then 23 = 7 G(m",

n 2 2 n 2
— —1 —1 — —1
No=T P P LG L » 2) Gy =L P LGy,
p p p

Hence by Lemma 6, the weight of €p, is

mn—1 mn—2

ng—Ng=p 4

If (by,...,b,) € I U I, then

& phi -1 n_p?
23 ;G(ﬂ) > x (yszr <Zb’p +1>> =_(Pp2 )G(n)”,Nazq pzp '

y,wels, i=1

Hence by Lemma 6, the weight of €, is

q" 1 n
no—Na=(p—1)(?+—G(n))

mn_y

(p—l)(”“”2+( De=brp ) ifp=1 (mod4),
([)—1)( mn— 2_|_( 1)(m 1)n+mnp%—l)’ ipr3 (mod 4).

The second case: mn is odd. Then we have that that n(y)" = n'(y) for y € ]F;
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A class of linear codes with two weights or three weights. .. 243

If (by,...,b,) € Iy, then

n 2

2= SHm=0N =L ng—No=(p—1)pm 2

yeFs

If (b1, ...,by) € Iy, 50 Tr(S lbl” 1y — ¢ € %2, then

2= > o mx' ) = G,
yels,
q"—p>  p—
Na = D2 2
N (p—1 ( mn—2 __ (— 1)(m l)npmn ) ’ ifp=1 (mod4),
nO - = mn mn—
a (p—l)( 2 _(— 1)(m Dn+ +1p 23)’ ifp=3 (mod4).

If (b1, ..., by) € 1,50 Te(X7_ bP'H1) = ¢ € T \ 52, then

23 =

D enx' o) = G,

yelFs

—1
- Gmyrem).

N,

m n

(p—l)( - 2+( D=y ifp=1 (mod4),
(p—l)( mn— 2+( )(m 1)n+mn+1p%73), if p=3 (mod 4).

no— Ny, =

Secondly, we determine the frequency of each nonzero weight of €, . Itis sufficient
to consider the values of |I;],i =0, 1, 2.
By Lemma 6, it is clear that

n— — . .
% + %G(n)", if mn is even,
|F()|—n0— (["*P

, if mn is odd.
P

If mn is even, then by Lemma 1,

" q"p—p + (=D)m=Dnp — 1yp Tt ifp=1 (mod 4),
ol = CoL 4 (D=t (p — HpT !, ifp=3 (mod 4).

Since || < ¢". Without loss of generality, suppose that I 2 # (). For some
cE ]F;z,there are (x1,...,Xp) € ]FZ such thatTr()cl LI f,’ H) =ce¢€ IF;Z.

@ Springer



244 X. Zhu, F. Yang

By the property of the trace function, the values are presented averagely from F;z.
Hence

kn
[P Z > () — )

yEFp (X1,0ees Xn)an

:q"(;;p— 1)Jr Z > x <yx1 ) > x(yx,f “) X' (=cy)

)EF* x1€Fy, xn€Fy
_ (p=Dq"
LS Gy ) 1 (—e)
2p T
ye
(p—Z;)q" _ G(n)" if mn is even,
(p—Dq" 1>q + 2=t n/( DGM)"G(n'), if mn is odd.

If mn is even, then by Lemma 1,

Bt (pm = o), it =1 mod 4),
|F2| — mn  mn
pz_;)l (pmn )(m D+ p2 ) , ifp=3 (mod4).

If mn is odd, then by Lemma 1,

B (o (_1)(,,,_1)”@[]@)’ if p=1 (mod4),
- mn+ mn+1

[I2] =
[12_p1 mn _ (— 1)("1 Dn+ p 2 ), 1pr3 (mod 4).

Since |Ip] + |12] < q", I'T # @. Similarly, the values of the trace function are
presented averagely from [ \ F’;z and

|| = (p_zgy)q: p_l Gm", if mn is even,
e’ by ()G )" G().  if mn is odd.

If mn is even, then

Al 172_;1 ( mn __ (_1)(m71)n %) i ifp=1 (mod 4),
1 = mn
pZ__pl ( — (==t 5 ) , ifp=3 (mod 4).

If mn is odd, then by Lemma 1,

Lot (p = () R i p =1 (mod 4),

p
|F1| = mn mn
1’2—;‘( mn | (—1)om=Det 25 z“), ifp=3 (mod4).
Hence, we get the Tables 1 and 2. O
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A class of linear codes with two weights or three weights. .. 245

Example1 Letm = 3,n = 1, p = 3, the code ¢p, has parameters [8,3,4] and
weight enumerator 1 + 6z + 82° + 12z8. This code is almost optimal linear code,as
the optimal one has parameters [8,3,5] by the Griesmer bound.

Example 2 Letm = 2, n = 2, p = 3, the code ¢p, has parameters [44,4,18] and
weight enumerator 1 4 32z'% 4 36224
3.2 The second case

Fix c € IF";,2 and define

k kn
D, = {(xl,...,xn) G]FZ :Tr()c{y1+1 4+t xf H) =c],
(gDZ = Hc(alﬂ"'aan) : (a17"'7al’l) GFZ], (33)

where

clay,...,ap) = (Tr(ayx; +--- + anxn))(xl,...,xn)eDz-

Since 6, is alinear code over IF ,, it is independent of the choice of c. For convenience,
we take ¢ = 1.
By Lemma 1 and the computation of I> as above, we can get the result.

Lemma 7 Let ny = |D>|. Suppose that mn is even, then

q" 1 [pmnl _ (_1)("1*1)'11)%*17 ifp=1 (mod4),

n=—-—-—G "= mn  mn
2= T O et e 3 (mod 4),

Suppose that mn is odd, then

n

1
¢ 1
p p
[ prn=l g (_1)(m—1)"pmnz_l, ifp=1 (mod 4),

n'(=DGm" G

ny) =

mn—1

pmn—l _ (_1)(m—l)n+%+lp T, ifp=3 (mod4).

Theorem 2 Let 6p, be the linear code defined as (3.3).

If mn is even, then €p, is a two-weight code with the Hamming weight distribution
in Table 3.

If mn is odd, then €p, is a two-weight code with the Hamming weight distribution
in Table 4.

@ Springer



246 X.Zhu, F. Yang

Table 3 mn is even

Weight Multiplicity
p=1 (mod 4)
0 1
(p— l)pmn72 PT‘Hpmnfl 1+ (_1)(m71)in—1p%—l
(p— Dp"™ =2 = 2(=)m=Dnp ! Y SN
p =3 (mod 4)
0 1
(P _ 1)pmn—2 PT‘Hpmn—l — 14+ (_1)(7"_1)”‘?'% PT—IP%—I
_ _ mn mn_ 1 _ _ mn o, | mn_
(p — pmn 2 _2(_1)(m Dn+%5 p'2 1 prmn 1_ (_1)(m Dn+75 pr 7 —1
Table 4 mn is odd
Weight Multiplicity
p=1 (mod 4)
0 1
(p— l)pmn72 PT‘Hpmnfl 1= (_1)(m*])n+m"2+l PT—lpw{l
(P* l)pmn72+2(71)(m71)np%_3 prlpmnfl +(71)(Wl71)n+%+1 prlpm
p =3 (mod 4)
0 1
(P _ l)pmn—z PT‘Hpmnfl —1- (71)("1*1)”4’%“ PT*IP%_I
_ mn+1  mn—=3 _ _ _ mn+1 mn—1
(- l)pmn—Z _ (_1)(m Dn+75 p Z) PTlpmn 1 + (_1)(m Dn+555 pTlpi

Proof Firstly, we determine the weight distribution of the code ép,. Fixc =1 € F;z.
Define the following parameter

’ n phI+1 p,’j”-H
Ny =11, xn) € Fy o Tr(xg 44X, =1, Tr(aix) + - +apx,) =0¢],

where a = (ay, ..., ay) € ]Fg \ {0, ...,0)}. We have

1 k kn
N, == > X' (y(Tr (xf"*' A T 1))x(z(a1x1 o danx)

(X1,...x0) €FY. y.2€F )

— L X (el ) )

P (X],.“,X,,)E]Fj} yE]F’;,

<

+ iz > D xG@@x -+ apxg)

(Xl,-uan)E]FZ z€F},

+L2 Z Z X, (y (Tr(xll)k]+1 +--- +x5kn+l) - 1) X(Z(a]xl +"'+anxn))

" m oy "k
(10,0 ) €F y,2€F},
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A class of linear codes with two weights or three weights. .. 247

qn
= 54+ Q2]+ 25+ 25
P

We have that
1 prI+1 kn 41
91=—2 Dox (yxl +) ~'2x(yxﬁ’ +)Z:><’(—y)
’; e, xn€ly

1

=— D G"nM"x' (=)
P =

_ —ﬁG(n)”, if mn is even,

| La(-DGH"G®), ifmn is odd.

By (ay,...,a,y) € IF;’, \ {(0, ..., 0)}, we have that
25 =0.

Similarly, we have

i " _
23 = 2 5 D n'Gm)" D x ( (szr(Z(bi)”k’“)— 1))
yelFs wel i=l1

where (b1, ..., b,) is one-to-one correspondent to (ay, ..., ay,), and (0,...,0) is
correspondence to (0, ..., 0).

To compute the value of .Qé, we divide into two cases.

The first case: mn is even. Then n(y)" = 1 fory € ]F’I;.

If (by, ..., b,) € Iy, then

24 =

D A=y =-

2 2
p yeF* p

n

qn 1 _
Ny =15 - Gy -F p—‘—G<n>" no = Ny =(p ="

p

S

If (b1, ..., b,) € I, then w? Tr((zl’-’zl(b,-)pki+1) # 1 forany w € IF’;. Hence

4 ’_ qn 1 n o mn—2
25 =-"— Ny =—5—=—Gm)" n2 = Ny = (p—=Dp""~.
4 4 14
If (by,...,b,) € I3, then there are only two +wo € IF;‘, such that w(z)

Tr((Z:;](bi)pkiH) =1,s0

2 = -G’ > x’(y (w2 Tr (Z(bnf""‘“) - 1)) +2(p— 1)
p v, wely w#two i=1
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248 X. Zhu, F. Yang

1
— G (~(p =B +2p — 1) = L
14

q" 1 p+ q" 1
N, =5 —-— " — +-=Gm)",
“ o p? p2 p
(p—Dq" 2
ny— N, = [71072(1 - *G(Tl)"

mn —1

| (p=Dpmn —2(=1)im=bnp ifp=1 (mod4),
T (p = Dpmn2 —2(—1)0m= 1)"+Mpm_l if p=3 (mod 4).

The second case: mn is odd. Then n(y)" = 5'(y) forany y € IF’;
If (by,...,b,) € Iy, then

p—
2=

2
q 1
G, Ny ==+ —n'(=DGm)"G").
p p
ny— N, =(p— 1)pmn—2.
If (by,...,by) € I, then w? Tr(Z?Zl(bi)pki“Ll) # 1 for any w € IF*;, let B be

a primitive root of ), then Cp =< B% > be a subgroup of [, and C; = BCo, so
F; = Co U Cy. Define

(i, )2=1(Ci+1DNCjl, i,j=0,1,
all cyclotomic numbers of order 2. We have the following results [25]: If p = 1

(mod 4), then (1, 0)2 = (0, 1), = (1 1)2 =221 (0,00, = 2Z2.1f p =3 (mod 4),

then (1,0)2 = (0,0)2 = (1, 1), = 3= 2,(0, 1)2 = p“
Hence

2
9§=pzZG(n)"n/(y)< > K-+ D x/(s—l)y)

ye]F; seCi,s—1€Cy seCp,s—1€eC
2 n /
= —Gm "GO0, Dy — (1, 1)2),
p
’ q2 1 n 2 n
N, = ? 7 n(=HGm) G(n)+;G(n) G(n)((0, 1)y — (1, 1)),
v [ @=DpT -2, ifp=1 (mod4),
ny — mn mn—3
27T (p o2 (o)=L BB e 3 (hod 4),
If (by,...,b,) € I35, then there are only two +wg € F;‘, such that w(z)

Tr((Z?:l(bi)pk”rl) = 1. Hence

2
24 = 7 Z n(»MGm" ( Z x'((s — 1)y> + Z X' (s =Dy)+1)

yE]F; seCp,s—1€Cy seCp,s—1eCy
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2
= Gm"G0)((0, 002 — (1,0)),
p

2 ] 2
N, = % + 7n(—1)G(n)"G(n/) + 7G(fl)"G(n/)((0, 0)2 — (1, 0)2),
p p p
o — N — (p-— 1)pmn—2 + 2(_])(m—1)11pm'1273 if p=1 (mod 4),
2 a — mn—2 . _
(p—Dp , if p=3 (mod 4).
By the computations of Iy, I, I3, we get the Tables 3 and 4. O

Example 3 Letm = 1,n =2, p =5, the code €D, is a [4,2,2] almost optimal linear
code, as the optimal one has parameters [4,2,3] by the Griesmer bound.

Example 4 Letm = 2, n = 2, p = 3, the code ép, has parameters [24,4,12] and
weight enumerator 1 4+ 24z'2 4 50z18.

Example 5 Let m = 3, n = 3, p = 3, the code ¥p, has parameters [6642,9,4374]
and weight enumerator 1 + 13202z*374 + 64807401,

3.3 The third case
Fixc € F, \ IF‘*[‘,2 and define
Dy ={(x1,...,x,) € ]FZ : Tr ()cf’k1+1 I +x,fkn+]) =c},
6p, ={c(a1,...,an):(al,...,an)eFZ}, (3.4)
where
c(ai,...,an) = (Tr(ayxy + -+ + anxn))(xy,....x2)eD; -
Since %, is a linear code over I, it is independent of the choice of c.

By Lemma 1 and the computation of I"; as above, we can get the result similarly
with Lemma 7.

Lemma 8 Let ny = |Dy|. Suppose that mn is even, then

L4 g [P DO i p =1 (mod 4),
n = M =1" -1 _ _ym—Dnttmy e g 44
p p p (=D P fp=3 (mod4).
Suppose that mn is odd, then
q" 1
ng=-———n'(=DGM"GH)
p p
et i p =1 (mod 4,
Pl (D) iy =3 (mod 4).
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Table 5 mn is even

Weight Multiplicity
p =1 (mod 4)
0 1
(P—I)Pm'Hz prm'l 1 _1+( 1)(m np—1 lp"%n—l
- - = — _ 1 m,
(p—DHp™ 2_ 2(=1)0m 1)"p 7 1 pr — (=)l n pr 71
p =3 (mod 4)
0 1
(p_l)pmn—2 pT_Hpm N 1)(m 1)n+ pzlp%_l
s R
Table 6 mn is odd
Weight Multiplicity
p=1 (mod 4)
0 1
(p— l)pmn_2 I’Tpmn 1_ — (- 1)(m 1)n+m”Jrl 117%71
mn=3 mn+1 mn—1
(p— Dp™=2 —2(—1)m=Dn =3 Pl =t _ 1)(m Dl poy mil
p =3 (mod 4)
0 1
(p— l)pm"*Z p+] pmn 1_q + (= 1)(m ])n+mn+l p—1 %
mn+1 mn=3 mlH—l _ mn—1
(p — pmn— 2 12— 1)(m Dn+=5— 7 pr — (- 1)(m Dn+ [;Tlpi2

Theorem 3 Let 6p, be the linear code defined as (3.4).

If mn is even, then €p, is a two-weight code with the Hamming weight distribution
in Table 5.

If mn is odd, then €p, is a two-weight code with the Hamming weight distribution
in Table 6.

Proof By the process of proving Theorem 2, we can get the result. O

4 Concluding remarks

There is a recent survey on three-weight codes [3,9,17,18,22,26,27]. We did not find
the the parameters of the binary three-weight codes of this paper in these literatures.
Linear codes can be used to construct secret sharing schemes [28]. Let wpi, and
Wmax denote the minimum and maximum nonzero Hamming weights of a linear code
% . To obtain secret sharing schemes with interesting access structures, we would like
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to construct linear codes which have the property that

p—1
Wnin/Wmax > .

We remark that the linear codes in this paper can be employed in secret sharing schemes
using the framework in [28].
For the code of € the Theorem 3.2, we have

-1 mn—2 1
Wmin/Wmax = (P )P AN P , Wheren>1,m >4
(p—1 (p”’"*2 +p 2 ) p
For the code of €p the Theorem 3.4, we have
(p—1)pm—2 p—1
Winin/ Wmax = — > , wheren>1,m >4
(p—Dpm=2+2p > p
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