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Abstract Based on a modified line search scheme, this paper presents a new
derivative-free projection method for solving nonlinear monotone equations with con-
vex constraints, which can be regarded as an extension of the scaled conjugate gradient
method and the projection method. Under appropriate conditions, the global conver-
gence and linear convergence rate of the proposed method is proven. Preliminary
numerical results are also reported to show that this method is promising.
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1 Introduction

In this paper, we consider the following nonlinear monotone equations:

F(x) = 0, x ∈ X, (1.1)

where X ⊆ Rn is a nonempty closed convex set, and F : X → Rn is continuous and
monotone, i.e.,

(F(x) − F(y))T (x − y) ≥ 0, ∀x, y ∈ X. (1.2)
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Throughout the paper, Rn denotes the n-dimensional Euclidean space of column vec-
tor, ‖ · ‖ denotes the Euclidean norm on Rn , and Fk denotes F(xk).

Nonlinear systems of monotone equations commonly arise in many applications,
for instance, they are used as subproblems of the generalized proximal algorithms
with Bregman distance [1]; Some monotone variational inequality problems can be
converted into systems of nonlinear monotone equations [2]. Moreover, the equations
with convex constraints come from these problems such as the economic equilibrium
problems, the power flow equations and the l1-norm regularized optimization prob-
lems in compressive sensing, see [3–5] for instance. Accordingly, numerical methods
for solving problem (1.1) have been proposed by many researchers in recent years.
Among thesemethods, Newtonmethod, quasi-Newtonmethod, Levenberg-Marquardt
method, projection method, and their variants are very attractive because of their local
superlinear convergence property from any sufficiently good initial guess, see [6–10]
for instance. However, these methods are not suitable for solving large scale nonlinear
monotone system of equations because they need to solve a linear system of equations
at each iteration using the Jacobian matrix or an approximation of it. Therefore, the
derivative-free methods for solving system of nonlinear equations have been attracting
more and more attention from researchers, see [11] for instance.

The spectral gradient method, originally proposed by Barzilai and Borwein [12] for
unconstrained optimization problems, has been successfully extended to solve non-
linear monotone equations by Cruz and Raydan [13,14]. An attractive feature of these
methods is that they do not need the computation of the first order derivative as well
as the solution of some linear equations, and thus they are suitable for solving large
scale nonlinear equations. Recently, Zhang and Zhou [15] combined the spectral gra-
dient method with the projection technique [6] to solve nonlinear monotone equations
with X = Rn . Subsequently, Yu et al. [16] extended the method [15] to nonlinear
monotone equations with convex constraints. Most recently, Yu et al. [17] established
a multivariate spectral projection gradient method for nonlinear monotone equations
with convex constraints.

The conjugate gradient (CG) methods (see [18] for instance ) are particularly effec-
tive for solving large scale unconstrained optimization problems, due to their simplicity
and low storage requirement. Thus, some researchers have tried to extend CG method
to solve large-scale nonlinear monotone system of equations. For example, Cheng
[19] introduced a derivative-free PRP-type method for nonlinear monotone equations
with X = Rn , which can be viewed as an extension of the well-known PRP conjugate
gradient method and the hyperplane projection method [6]. Subsequently, Li and Li
[20] proposed a three-term PRP based derivative-free iterative method for solving the
nonlinear monotone equations with X = Rn , which can be regarded as an extension
of the spectral gradient method and some developed modified CG methods. Recently,
Xiao and Zhu [21] developed a projected CG to themonotone nonlinear equationswith
convex constraints, which based on the projection technique [6] and the well-known
CG-DESCENT method of Hager and Zhang [22]; Liu and Li [23] also established a
multivariate spectral DY-type projectionmethod for solving nonlinearmonotone equa-
tions with convex constraints, which can be viewed as a combination of the famous
DY–CG method [18] and the multivariate spectral projection gradient method [17]. It
should be pointed out that these conjugate gradient-based and spectral gradient-based
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derivative-free methods for nonlinear monotone equations are function value-based
methods and thus can be applied to solve nonsmooth equations.

In [24], Birgin andMartínez proposed a spectral conjugate gradient (SPCG)method
by combining conjugate gradient method and spectral gradient method. The reported
numerical results show that the SPCG method is more efficient than the CG method.
Unfortunately, the SPCG method [24] cannot guarantee to generate descent direc-
tions. So in [25], Andrei proposed a new scaled conjugate gradient (SCG) algorithm
for solving large scale unconstrained optimization problems using a hybridization of
the memoryless BFGS preconditioned CG method suggested by Shanno [26] and the
spectral CG method suggested by Birgin and Martínez [24], based on the standard
secant equation (see [27] for details). Numerical comparisons show that the SCG
algorithm [25] outperforms several well known CG algorithms, such as the SPCG
algorithm [24], the PRP-CG algorithm (see [27] for instance) and the CG-DESCENT
algorithm [22]. To the best of our knowledge, however, there is not any scaled conju-
gate gradient type derivative-free method for solving large-scale nonlinear monotone
equations with convex constraints, based on the idea of SCG in [25].

As we know, the most computational cost of projection-based methods depends
on determining the search direction and finding the stepsize. Thus, given a search
direction, choosing an inexpensive line search can considerably improve the efficiency
of this class of methods. For this purpose, most of practical approaches exploit an
inexact line search strategy to obtain a stepsize guaranteeing the global convergence
property in minimal cost. So far researchers have proposed two main line search
schemes which are used in projection-basedmethods for solving problem (1.1), see [6,
15,20] for instance. More precisely, given an approximation xk and a search direction
dk , the stepsize αk are determined respectively as follows:

LS1 Choose a stepsize αk = max{βρi : i = 0, 1, 2, . . .} such that

− F(xk + αkdk)
T dk ≥ σαk‖dk‖2, (1.3)

where β > 0 is an initial stepsize, ρ ∈ (0, 1) and σ > 0 are two constants.

LS2 Choose a stepsize αk = max{βρi : i = 0, 1, 2, . . .} such that

− F(xk + αkdk)
T dk ≥ σαk‖F(xk + αkdk)‖‖dk‖2. (1.4)

Numerical experiments show that these line search schemes have different perfor-
mance during solving a problem. In fact, it can be easily seen that the right hand
side of LS2 will be too large when xk is far from the solution of problem (1.1) and
‖F(xk + αkdk)‖ is too large. As a result, the computing cost of line search increases.
A similar case may occur for LS1 when xk is near to the solution of problem (1.1)
and ‖dk‖ is too large. Therefore, it is essential for us to introduce a new adaptive line
search scheme which has suitable performance in both situations.

Motivated by the above observations as well as the projection technique [6], in this
paper we propose a new derivative-free projection type method for solving nonlinear
monotone equations with convex constraints, based on a modified line search scheme
and the idea of SCG [25]. The proposed method possess some nice properties. Firstly,
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the proposed method is very suitable for solving large-scale problem (1.1) due to the
simplicity and lower memory requirement as well as the excellent performance of
computation. Secondly, it is function value-based method and thus can be applied to
solve nonsmooth equations. Finally, the global convergence and linear convergence
rate of the proposed method are established without the differentiability assumption
on the equations

The rest of the paper is organized as follows. In Sect. 2, we propose a newderivative-
free projection-based method for solving nonlinear equations with convex constraints,
and then give its some properties. Section 3 is devoted to analyze the convergence
properties of our algorithm under some appropriate conditions. In Sect. 4, numerical
results are reported to show the efficiency of the proposed method for large scale
problem (1.1). Some conclusions are summarized in the final section.

2 New method

This section is devoted to devising a new derivative-free SCG-type projection-based
method for solving problem (1.1), based on a modified line search scheme and the
idea of SCG [25]. Then some properties of the proposed method are given.

We first recall the iterative scheme of SCG method [25] for solving large-scale
unconstrained optimization problem:

min
x∈Rn

f (x), (2.1)

where f : Rn → R is a continuously differentiable function whose gradient at xk is
denoted by gk := ∇ f (xk). Given any starting point x0 ∈ Rn , the algorithm in [25] is
to generate a sequence {xk} of approximations to the minimum x∗ of f , in which

xk+1 = xk + αkdk,

where αk > 0 is a stepsize satisfying the standard Wolfe conditions (see [27] for
details), and dk is a search direction defined by

d0 = −g0,

dk+1 = −Qk+1gk+1, k = 0, 1, 2, . . . , (2.2)

with the matrix Qk+1 ∈ Rn×n defined by

Qk+1 = θk+1 I − θk+1
yksTk + sk yTk

yTk sk
+

[
1 + θk+1

yTk yk

yTk sk

]
sksTk
yTk sk

, (2.3)

where θk+1 is a scaling parameter determined based on a two-point approximation of
the standard secant equation [12], i.e.,

θk+1 = sTk sk

yTk sk
, (2.4)

with yk = gk+1 − gk and sk = xk+1 − xk .
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Note that the BFGS update to the inverse Hessian (see [27] for details) is defined
by

Hk+1 = Hk − Hk yksTk + sk yTk Hk

yTk sk
+

[
1 + yTk Hk yk

yTk sk

]
sksTk
yTk sk

. (2.5)

Therefore, we can immediately see that the matrix Qk+1 defined by (2.3) is precisely
the self-scaling BFGS update in which the approximation of the inverse Hessian Hk

is restarted as θk+1 I . Since the standard Wolfe conditions can ensure that yTk sk > 0,
Qk+1 is a symmetric positive definite matrix (see [27] for details).

Modified by the above discussions, in this paper we define the search direction dk
as follows:

d0 = −F0,

dk+1 = −Q̃k+1Fk+1, k = 0, 1, 2, . . . , (2.6)

where the matrix Q̃k+1 ∈ Rn×n is defined by

Q̃k+1 = θ̃k+1 I − θ̃k+1
wksTk + skwT

k

wT
k sk

+
[
1 + θ̃k+1

wT
k wk

wT
k sk

]
sksTk
wT
k sk

, (2.7)

with

θ̃k+1 = sTk sk

wT
k sk

, (2.8)

and wk = Fk+1 − Fk + tsk (t > 0).

Remark 2.1 From the definition of wk and the monotonicity of F , it follows that

wT
k sk = (Fk+1 − Fk)

T (xk+1 − xk) + t‖sk‖2 ≥ t‖sk‖2 > 0, (2.9)

which is sufficient to ensure that θ̃k+1 and dk+1 in (2.6) are well-defined.
It should be pointed out that in practical computation, the direction dk+1 in (2.6)

does not actually require the matrix Q̃k+1 but four scalar products, i.e., it can be
computed as

dk+1 = −θ̃k+1Fk+1 + θ̃k+1

(
FT
k+1sk

wT
k sk

)
wk

−
[(

1 + θ̃k+1
wT
k wk

wT
k sk

)
FT
k+1sk

wT
k sk

− θ̃k+1
FT
k+1wk

wT
k sk

]
sk . (2.10)

In what follows we review the projection approach, which was originally proposed
by Solodov and Savaiter [6] for solving systems of monotone equations. Given a
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current iterate xk , the projection procedure generates a trial point sequence {zk} such
that zk = xk + αkdk , where the stepsize αk > 0 is obtained using some line search
along the search direction dk such that

F(zk)
T (zk − xk) < 0. (2.11)

On the other hand, the monotonicity of F implies that for any x̄ such that F(x̄) = 0,
we have

F(zk)
T (zk − x̄) ≥ 0. (2.12)

This together with (2.11) implies that the hyperplane

Hk = {x ∈ Rn|F(zk)
T (x − zk) = 0} (2.13)

strictly separates the current iterate xk from the solution set of problem (1.1). Based
on this fact, the next iterate xk+1 is determined by projecting xk onto the intersection
of the feasible set X with the halfspace H−

k = {x ∈ Rn|F(zk)T (x − zk) ≤ 0} in this
way

xk+1 = PX [xk − ξk F(zk)], (2.14)

where ξk = (xk−zk )T F(zk)
‖F(zk)‖2 .

Now, we introduce a modified line search scheme which is used to complete our
projection method in this paper. Based on the above argument in Sect. 1, it seems that
it is better for us to perform the scheme LS1 when the approximation xk is far from
the solution of problem (1.1) and the scheme LS2 when it is near to the solution of
problem (1.1). So we introduce a new line search scheme whose main goal is trying
to overcome the disadvantages of LS1 and LS2.

A modified line search scheme (MLS) Given the current approximation xk and the
direction dk . Compute a stepsize αk = max{βρi : i = 0, 1, 2, . . .} such that

− F(xk + αkdk)
T dk ≥ σαkγk‖dk‖2, (2.15)

where β > 0 is an initial stepsize, ρ ∈ (0, 1), σ > 0, and γk is defined as

γk = λk + (1 − λk)‖F(xk + αkdk)‖, (2.16)

with λk ∈ [λmin, λmax] ⊆ (0, 1].
Remark 2.2 Note that γk is a convex combination of 1 and ‖F(xk+αkdk)‖. Obviously,
the scheme MLS behaves like LS2 as λk → 0 and LS1 as λk → 1. As a result, the
scheme MLS may be viewed as a modified version of LS1 and LS2. In numerical
experiments, we can select λk adaptively in order to increase its value as xk being far
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from the solution and decrease its value as xk being near to the solution. For example,
we may update λk by the following recursive formula

λk =
{

λ0
2 , k = 1,
λk−1+λk−2

2 , k ≥ 2,
(2.17)

with λ0 = 1.

To describe our algorithm, we introduce the definition of projection operator PΩ [·]
which is defined as a mapping from Rn to a nonempty closed convex subset Ω:

PΩ [x] = argmin
y∈Ω

{‖y − x‖}, ∀x ∈ Rn . (2.18)

A well-known property of this operator is that it is nonexpansive (see [6]), namely,

‖PΩ [x] − PΩ [y]‖ ≤ ‖x − y‖, ∀x, y ∈ Rn . (2.19)

Now we are ready to state the steps of our algorithm for solving problem (1.1) as
follows.

Algorithm 2.1

Step 0 Given an initial point x0, ε ≥ 0, σ > 0, ρ ∈ (0, 1), t ∈ (0, 1), and an initial
trial stepsize β > 0. Set k := 0.
Step 1 Compute Fk . If ‖Fk‖ ≤ ε, stop.
Step 2 Construct a search direction dk by using (2.6)–(2.8).
Step 3 Compute the trial point zk = xk +αkdk , where αk is determined by the scheme
MLS (2.15).
Step 4 If ‖F(zk)‖ ≤ ε, stop. Otherwise, compute the new iterate xk+1 by (2.14).
Step 5 Set k := k + 1, and go to Step 1.

Remark 2.3 FromLemma3.2 below, it follows that the line search schemeMLS (2.15)
is well defined, namely, it terminates in a finite number of steps.

Lemma 2.1 The matrix Q̃k+1 defined by (2.7)–(2.8) is symmetric positive definite.

Proof Obviously, Q̃k+1 is a symmetric matrix. Furthermore, it follows from (2.8) and
(2.9) that θ̃k+1 > 0. Since Q̃k+1 is precisely the self-scaling BFGS update where Hk

in (2.5) is restarted as θ̃k+1 I at every step, it is positive definite matrix (see [27] for
details). This completes the proof. ��
Remark 2.4 Since Q̃k+1 is symmetric positive definite, and thus it is nonsingular.
Using the Sherman-Morrison Theorem (see [25] for instance), it can be shown that
the matrix P̃k+1 defined by

P̃k+1 = 1

θ̃k+1
I − 1

θ̃k+1

sksTk
sTk sk

+ wkw
T
k

wT
k sk

(2.20)

is the inverse of Q̃k+1. Hence, P̃k+1 is also a symmetric positive definite matrix.
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Lemma 2.2 The direction dk defined by (2.6)–(2.8) satisfies FT
k dk < 0 for any k.

Furthermore, if the mapping F is Lipschitz continuous, then there exists a constant
c > 0 such that

FT
k dk ≤ −c‖Fk‖2. (2.21)

Proof For d0 = −F0, we have FT
0 d0 = −‖F0‖2 < 0. Furthermore, by multiplying

(2.6) by FT
k+1, we get

FT
k+1dk+1 = 1(

wT
k sk

)2
[

− θ̃k+1‖Fk+1‖2
(
wT
k sk

)2 + 2θ̃k+1
(
FT
k+1wk

)(
FT
k+1sk

)(
wT
k sk

)
−(

FT
k+1sk

)2(
wT
k sk

) − θ̃k+1
(
wT
k wk

)(
FT
k+1sk

)2]
.

Applying the inequality 2aT b ≤ ‖a‖2 + ‖b‖2 to the second term in the right-hand
side of the above equality with a = (wT

k sk)Fk+1 and b = (FT
k+1sk)wk , we get

FT
k+1dk+1 ≤ −

(
FT
k+1sk

)2(
wT
k sk

) ,

which, together with (2.9), implies that FT
k dk < 0 for k ≥ 0. So, we prove the first

part of this lemma.
For the second part of the proof, please see Lemma 3.1 next section. This completes

the proof. ��
Remark 2.5 It should be mentioned that if F is the gradient of some real-valued
function f : Rn → R, the condition (2.21) means that dk is a sufficiently descent
direction of f at xk , which plays an important role in analyzing the global convergence
of CG methods.

3 Convergence analysis

In this section, we analyze the global convergence and linear convergence rate of
Algorithm 2.1 when it is applied to problem (1.1). For this purpose, we first make the
following assumptions.
A1 The solution set X∗ of problem (1.1) is nonempty.
A2 The mapping F : X → Rn is Lipschitz continuous, namely, there exists a positive
constant L > 0 such that

‖F(x) − F(y)‖ ≤ L‖x − y‖, ∀x, y ∈ X. (3.1)

In what follows we assume that Fk = 0 and F(zk) = 0 for all k, namely, Algorithm
2.1 generate two infinite sequences {xk} and {zk}. Otherwise, we obtain a solution of
problem (1.1).
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Lemma 3.1 Suppose that Assumption A2 holds true. Then there exist two positive
constants c1 > 0 and c2 > 0 such that

FT
k dk ≤ −c1‖Fk‖2, ∀k, (3.2)

and

‖dk‖ ≤ c2‖Fk‖, ∀k. (3.3)

Proof By computing the trace of Q̃k+1 and P̃k+1 defined respectively by the update
formulas (2.7)–(2.8) and (2.20), we can easily obtain that

trace(Q̃k+1) = (n − 2)θ̃k+1 +
(
1 + θ̃k+1

‖wk‖2
wT
k sk

)
θ̃k+1, (3.4)

and

trace(P̃k+1) = n − 1

θ̃k+1
+ ‖wk‖2

wT
k sk

. (3.5)

From Assumption A2 and the definition of wk , it follows that

‖wk‖ ≤ (L + t)‖sk‖. (3.6)

This together with (2.9) implies that

θ̃k+1 = ‖sk‖2
wT
k sk

≤ 1

t
, (3.7)

‖wk‖2
wT
k sk

≤ (L + t)2

t
, (3.8)

and

1

θ̃k+1
= wT

k sk
‖sk‖2 ≤ ‖wk‖2

wT
k sk

≤ (L + t)2

t
. (3.9)

Combining the above three inequalities with (3.4) and (3.5) yields

trace(Q̃k+1) ≤ (n − 1)t2 + (L + t)2

t3
, (3.10)
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and

trace(P̃k+1) ≤ n(L + t)2

t
. (3.11)

Now, we can verify the validity of (3.2) and (3.3). For k = 0, d0 = −F0. Then

FT
0 d0 = −‖F0‖2, ‖d0‖ = ‖F0‖. (3.12)

For k ≥ 0, using (3.10) and (3.11), we have

−FT
k+1dk+1 = FT

k+1 Q̃k+1Fk+1

≥ ‖Fk+1‖2
‖P̃k+1‖

≥ ‖Fk+1‖2
trace(P̃k+1)

≥ t
n(L+t)2

‖Fk+1‖2,

(3.13)

and

‖dk+1‖ ≤ ‖Q̃k+1‖‖Fk+1‖
≤ trace(Q̃k+1)‖Fk+1‖
≤ (n−1)t2+(L+t)2

t3
‖Fk+1‖.

(3.14)

By letting c1 = min{1, t
n(L+t)2

} and c2 = max{1, (n−1)t2+(L+t)2

t3
}, then the desired

inequalities (3.2) and (3.3) follow immediately from (3.12), (3.13) and (3.14). This
completes the proof. ��
Remark 3.1 From the Cauchy-Schwarz inequality and (3.2), it follows that

‖dk‖ ≥ c1‖Fk‖, ∀k. (3.15)

So, Fk = 0 for all k implies that dk = 0 for all k > 0. Otherwise, a solution of problem
(1.1) is found.

The following lemma shows that Algorithm 2.1 is well defined.

Lemma 3.2 Suppose that Assumption A2 holds true, then there exists a nonnegative
number ik satisfying the line search scheme MLS (2.15) for all k.

Proof By contradiction, suppose that there exists k0 ≥ 0 such that the scheme MLS
(2.15) fails to hold for any nonnegative number i , namely

− F(xk0 + βρi dk0)
T dk0 < σβρiγk0‖dk0‖2, ∀i ≥ 0, (3.16)

where γk0 is defined by (2.16). It is clear that

λmin ≤ γk0 ≤ max{1, ‖F(xk0 + βρi dk0)‖}. (3.17)
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Taking i → +∞ on both sides of (3.16) and using the continuity of F , we have

−F(xk0)
T dk0 ≤ 0,

which contracts this fact that −FT
k dk ≥ c1‖Fk‖2 > 0 for all k. This completes the

proof. ��
Lemma 3.3 Suppose that Assumptions A1 and A2 hold true. Let the sequences {xk}
and {zk} be generated by Algorithm 2.1. Then, for any x∗ ∈ X∗, there exists a constant
c3 > 0 such that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − c3‖xk − zk‖4
‖F(zk)‖2 , (3.18)

and

lim
k→+∞ ‖xk − zk‖ = lim

k→+∞ αk‖dk‖ = 0, (3.19)

Furthermore, both {xk} and {zk} are bounded.
Proof From the line search scheme MLS (2.15), it follows that

F(zk)
T (xk − zk) = −αk F(zk)

T dk ≥ σα2
kγk‖dk‖2, (3.20)

where γk is defined by (2.16). By (3.20) and γk ≥ λmin > 0 for all k, we get

F(zk)
T (xk − zk) ≥ σλminα

2
k‖dk‖2 = σλmin‖xk − zk‖2. (3.21)

Using the monotonicity of mapping F and F(x∗) = 0, we have

F(zk)
T (zk − x∗) ≥ F(x∗)T (zk − x∗) = 0. (3.22)

This together with (3.20) implies that

F(zk)
T (xk − x∗) ≥ F(zk)

T (xk − zk) ≥ 0. (3.23)

Combining this inequality with (2.19) and (3.21) gives

‖xk+1 − x∗‖2 =
∥∥∥∥PX

[
xk − (xk − zk)T F(zk)

‖F(zk)‖2 F(zk)

]
− PX [x∗]

∥∥∥∥
2

≤
∥∥∥xk − (xk − zk)T F(zk)

‖F(zk)‖2 F(zk) − x∗
∥∥∥2

≤ ‖xk − x∗‖2 − [F(zk)T (xk − zk)]2
‖F(zk)‖2

≤ ‖xk − x∗‖2 − σ 2λ2min‖xk − zk‖4
‖F(zk)‖2 . (3.24)
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Hence, this inequality (3.18) holds true, where c3 = σ 2λ2min.
Similarly to the proof of Lemma 3.2 in Yu et al [16], we can prove the remaining

conclusions of this lemma, and we therefore omit it. This completes the proof. ��
Using these lemmas mentioned above, we can obtain the global convergence prop-

erty of Algorithm 2.1 as follows.

Theorem 3.4 Suppose that Assumptions A1 and A2 hold true. Let the sequence {xk}
be generated by Algorithm 2.1. Then

lim
k→+∞ inf ‖Fk‖ = 0. (3.25)

Furthermore, the sequence {xk} converges to a solution of problem (1.1).

Proof The proof is similar to that of Theorem 3.1 in Yu et al [16], and thus we omit
it here. This completes the proof. ��

Now,wewill analyze the linear convergence rate ofAlgorithm2.1. For this purpose,
we also need the following assumption.
A3 For any x∗ ∈ X∗, there exist two positive constants c4 > 0 and c5 > 0 such that

c4dist(x, X
∗) ≤ ‖F(x)‖, ∀x ∈ N (x∗, c5), (3.26)

where dist(x, X∗) denotes the distance from x to the solution set X∗, and N (x∗, c5) :=
{x ∈ Rn|‖x − x∗‖ ≤ c5}.
Remark 3.2 The condition (3.26) is called as the local error bound assumption which
is weaker than the nonsingularity condition of Jacobi matrix F ′(x) (if it exists), and
is usually used to analyze the convergence rate of some algorithms for solving non-
linear systems of equations, see [7,9] and references therein, for instance. Note that
Assumption A3 here is different from Assumption A2 in [23].

To analyze the convergence rate of Algorithm 2.1, we need to investigate the lower
boundary of the stepsize αk in Step 3 of Algorithm 2.1.

Lemma 3.5 Suppose that Assumptions A1 and A2 hold true. Then there exists a
constant c6 > 0 such that

αk ≥ min

{
β, c6

‖Fk‖2
‖dk‖2

}
, ∀k. (3.27)

Proof If αk = β, then it follows from the acceptance rule of stepsize αk in Step 3 of
Algorithm 2.1 that α′

k = αk
ρ
does not satisfy (2.15), namely

− F(xk + α′
kdk)

T dk < σα′
kγ

′
k‖dk‖2, (3.28)

where

γ′
k = λk + (1 − λk)‖F(xk + α′

kdk)‖ ≤ max{1, ‖F(xk + α′
kdk)‖}. (3.29)
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From (3.19), the boundedness of {xk} and the continuity of F , we conclude that there
exists a constant c7 > 0 such that

‖F(xk + α′
kdk)‖ ≤ c7, ∀k. (3.30)

Combining (3.28) with (3.29) and (3.30) yields

− F(xk + α′
kdk)

T dk < σc8α
′
k‖dk‖2, (3.31)

where c8 = max{1, c7}. So, by A2, (3.2) and (3.31), we get

c1‖Fk‖2 ≤ −FT
k dk

= [F(xk + α′
kdk) − Fk]T dk − F(xk + α′

kdk)
T dk

≤ Lα′
k‖dk‖2 + σc8α

′
k‖dk‖2

= (L + σc8)αkρ
−1‖dk‖2, ∀k.

This inequality together with Remark 3.1 implies that

αk ≥ ρc1
L + σc8

‖Fk‖2
‖dk‖2 , ∀k, (3.32)

which means that the inequality (3.27) holds true, where c6 = ρc1
L+σc8

. This completes
the proof. ��

In the remainder of this paper, we always assume that xk → x∗ as k → ∞ due to
the conclusion of Theorem 3.4, where x∗ ∈ X∗.

Theorem 3.6 Suppose that Assumptions A1, A2 and A3 hold true. Let the sequence
{xk} be generated by Algorithm 2.1. Then the sequence {dist(xk, X∗)} Q-linearly
converges to 0.

Proof Let x̄k := argmin{‖xk − x‖: x ∈ X∗}, which implies that x̄k is the closest
solution to xk , namely,

‖xk − x̄k‖ = dist(xk, X
∗). (3.33)

Denote x∗ by x̄k , then it follows from (3.18) that

‖xk+1 − x̄k‖2 ≤ ‖xk − x̄k‖2 − c3‖xk − zk‖4
‖F(zk)‖2 , (3.34)

By (3.3) and (3.27), we have

αk ≥ min

{
β,

c6
c22

}
:= c9, ∀k. (3.35)
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This together with (3.15) and A3 implies that

‖xk − zk‖ = αk‖dk‖
≥ c9c1‖Fk‖
≥ c9c1c4dist(xk, X

∗)
= c10dist(xk, X

∗),

(3.36)

where c10 = c9c1c4. Furthermore, by (3.33), (3.3), A2 and αk ≤ β for all k, we obtain

‖F(zk)‖ = ‖F(zk) − F(x̄k)‖
≤ L‖zk − x̄k‖
≤ L(‖zk − xk‖ + ‖xk − x̄k‖)
= L(αk‖dk‖ + ‖xk − x̄k‖)
≤ L(βc2‖Fk‖ + ‖xk − x̄k‖)
≤ L(βc2L‖xk − x̄k‖ + ‖xk − x̄k‖)
= L(βc2L + 1)‖xk − x̄k‖
≤ c11dist(xk, X

∗),

(3.37)

where c11 = max{L(βc2L + 1),
√
c3c210}. Combining (3.37) with (3.36) and (3.34)

yields

dist(xk+1, X
∗)2 ≤ ‖xk+1 − x̄k‖2

≤ dist(xk, X
∗)2 − c3c410dist(xk, X

∗)4

c211dist(xk, X
∗)2

=
(
1 − c3c410

c211

)
dist(xk, X

∗)2,

which implies that the sequence {dist(xk, X∗)} Q-linearly converges to 0. This proof
is completed. ��
Remark 3.3 In view of Theorem 3.6, we know that the distance dist(xk, X∗) from the
iterates xk to the solution set X∗ converges to zero with a Q-linear rate. However, this
says little about the sequence {xk} itself. Whether is it also linearly convergent? We
will answer this question as follows.

To investigate the local behaviour of the sequence {xk} generated by Algorithm 2.1,
we need the following definition [27]:

Definition 3.7 The mapping F : X → Rn is called strongly monotone with modulus
μ > 0, if the inequality

(F(x) − F(y))T (x − y) ≥ μ‖x − y‖2

holds true for all x, y ∈ X .
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Theorem 3.8 Suppose that Assumptions A1 and A2 hold true. If the mapping F
is strongly monotone with modulus μ > 0, then the sequence {xk} generated by
Algorithm 2.1 R-linearly converges to x∗.

Proof Clearly, it follows from the Cauchy-Schwarz inequality and the strong
monotonicity assumption of F that

‖Fk‖ = ‖Fk − F(x∗)‖ ≥ μ‖xk − x∗‖. (3.38)

This together with (3.15) and (3.35) implies that

‖xk − zk‖ = αk‖dk‖
≥ c9c1‖Fk‖
≥ μc9c1‖xk − x∗‖
= c12‖xk − x∗‖, (3.39)

where c12 = μc9c1. Moreover, similarly to the proof of (3.37), we can conclude that

‖F(zk)‖ ≤ L(βc2L + 1)‖xk − x∗‖ ≤ c13‖xk − x∗‖, (3.40)

where c13 = max{L(βc2L + 1),
√
c3c212}. Combining (3.40) with (3.39) and (3.18)

gives

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − c3c412‖xk − x∗‖4
c213‖xk − x∗‖2

=
(
1 − c3c412

c213

)
‖xk − x∗‖2,

which implies that the whole sequence {xk} R-linearly converges to x∗. This proof is
completed. ��
Remark 3.4 It should bementioned that the R-linear convergence of the sequence {xk}
generated by Algorithm 2.1 is established under the strong monotonicity assumption
of F . This assumption seems to be a little strong. However, it may be removed if the
solution set X∗ of problem (1.1) is unique.

4 Numerical tests

In this section, we present some numerical experiments to evaluate the performance
of the proposed method on a set of test problems with different initial points. At
the same time, we give some comparisons with the related algorithms, including the
performance profiles of Dolan and More [28].

The test problems are listed as follows:
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Problem 1 The elements of function F are given by Fi (x) = exp(xi ) − 1, i =
1, 2, . . . , n, and X = {x ∈ Rn|xi ≥ 0, i = 1, 2, . . . , n}.
Problem 2 The elements of function F are given by Fi (x) = xi − sin(|xi − 1|), i =
1, 2, . . . , n, and X = {x ∈ Rn| ∑n

i=1 xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n}.
Obviously, this problem is nonsmooth at point (1, 1, . . . , 1)T ∈ Rn .

Problem 3 The elements of function F are given by

F1(x) = x1 − exp

(
cos

(
x1 + x2
n + 1

))
,

Fi (x) = xi − exp

(
cos

(
xi−1 + xi + xi+1

n + 1

))
, i = 2, 3, . . . , n − 1,

Fn(x) = xn − exp

(
cos

(
xn−1 + xn
n + 1

))
,

and X = {x ∈ Rn|xi ≥ 0, i = 1, 2, . . . , n}.
Problem 4 The elements of function F are given by Fi (x) = ln(|xi | + 1) − xi

n , i =
1, 2, . . . , n, and X = {x ∈ Rn|xi ≥ 0, i = 1, 2, . . . , n}.

Obviously, this problem is nonsmooth at point (0, 0, . . . , 0)T ∈ Rn .

Problem 5 The elements of function F are given by

F1(x) = exp(x1) − 1,

Fi (x) = exp(xi ) + xi−1 − 1, i = 2, 3, . . . , n,

and X = {x ∈ Rn|xi ≥ 0, i = 1, 2, . . . , n}.
Problem 6 The elements of function F are given by

F1(x) = 2x1 − x2 + exp(x1) − 1,

Fi (x) = −xi−1 + 2xi − xi+1 + exp(xi ) − 1, i = 2, 3, . . . , n − 1,

Fn(x) = −xn−1 + 2xn + exp(xn) − 1,

and X = {x ∈ Rn|xi ≥ 0, i = 1, 2, . . . , n}.
Problem 7 The elements of function F are given by

F1(x) = 2.5x1 + x2 − 1,

Fi (x) = xi−1 + 2.5xi + xi+1 − 1, i = 2, 3, . . . , n − 1,

Fn(x) = xn−1 + 2.5xn − 1,

and X = {x ∈ Rn|xi ≥ 0, i = 1, 2, . . . , n}.
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Problem 8 The function F is given by

F(x) = Ax + g(x),

where g(x) = (exp(x1) − 1, exp(x2) − 1, . . . , exp(xn) − 1)T , and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

The different initial points are listed as follows:

x1 = (10, 10, . . . , 10)T , x2 = −(10, 10, . . . , 10)T , x3 = (1, 1
2 , . . . , 1

n ),

x4 = (0.1, 0.1, . . . , 0.1)T , x5 = ( 1n , 2
n , . . . , 1)T , x6 = (1 − 1

n , 1 − 2
n , . . . , 0)T ,

We first present some numerical experiments to compare Algorithm 2.1 (i.e., αk

is determined by the new MLS (2.15)) with Algorithm 1 (i.e., αk is determined by
LS1 (1.3)) and Algorithm 3 (i.e., αk is determined by LS2(1.4)). We implemented
all the procedures with the number of variables n = 10,000, 50,000 and 100,000.
The codes were written in Matlab 7.0 and run on a PC computer (CPU 2.60 GHZ,
2.00 GB memory) with Windows operating system. Throughout the computational
experiments, the parameters used in these algorithms are chosen as follows: ρ = 0.5,
σ = 0.001, t = 0.01, and the initial trial stepsize β is computed by [20]

β = FT
k dk

dTk (F(xk + δdk) − Fk)/δ
,

with δ = 10−8. If the above parameter β satisfies β ≤ 10−6, then β = 1. We stop the
iteration if the following condition

‖Fk‖ ≤ 10−5 or ‖F(zk)‖ ≤ 10−5

is satisfied. We also terminate the iteration when it exceeds the preset iteration limit
5000.

We use the performance profile proposed by Dolan and More [28] to display the
performance of each implementation on the set of test problems. The performance
profile has some advantages over other existing benchmarking tools, especially for
large test sets where tables tend to be overwhelming. Let l p,s denote the number of
iterations required to solve problem p by solver s. Define the performance ratio as

rp,s = l p,s
l∗p
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Fig. 1 Performance profile for the number of iterations

where l∗p is the smallest number of iterations required by any solver to solve problem
p. Therefore, rp,s ≥ 1 for all p and s. If a solver does not solve a problem, the ratio
rp,s is assigned a large number M , which satisfies rp,s < M for all p and s, where
solver s succeeds in solving problem p. Then the performance profile for each solver s
is defined as the cumulative distribution function for the performance ratio rp,s , which
is

Ps(τ ) = No. of problems s.t. rp,s ≤ τ

Total no. of problems

Obviously, Ps(1) represents the probability that the solver will win over the rest of
the solvers (has the higher probability of being the optimal solver), in terms of the
number of iterations. For more details about the performance profile, please see [28].
The performance profile will also be used to analyze the CPU time or others required.

Figures 1 and 2 give the performance profiles of the three line search schemes
for the number of iterations and the CPU time, respectively. From Figs. 1 and 2, we
observe the facts: for these test problems mentioned above, Algorithm 2.1 performs
better than Algorithms 1 and 3 in terms of the number of iterations and the CPU time.
Therefore, we could say that the line search schemeMLS (2.15) is more effective than
the line search schemes LS1(1.3) and LS2(1.4) in terms of the computational effort.

To validate Algorithm 2.1 from a computational point of view, in the second set
of numerical experiments, we compare the performance of Algorithm 2.1 with the
algorithm in [16] (abbreviated Algorithm YZS), the algorithm in [21] (abbreviated
Algorithm XYH), and the algorithm in [23] (abbreviated Algorithm LJK) for the
same problems mentioned above, where the latter three algorithms were devised espe-
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cially for problem (1.1). Throughout the computational experiments, the parameters
used in Algorithm 2.1 are chosen to be the same as that mentioned above; the para-
meters used in Algorithm YZS are chosen as follows: β = 0.5, σ = 0.01, r = 0.01;
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the parameters used in Algorithm XYH are chosen as follows: ξ = 1, ρ = 0.5, σ =
0.0001, while the parameters used in Algorithm LJK are the same as that in [23] .
Moreover, the stopping condition for each algorithm is the same as that mentioned
above.

We also use the performance profile proposed by Dolan and More [28] to display
the performance of each implementation on the set of test problemswith the number of
variables n = 10,000, 50,000, 100,000. Figures 3 and 4 give the performance profiles
of the four algorithms for the number of iterations and the CPU time, respectively.

From Figs. 3 and 4, we observe the facts: for these test problems mentioned above,
Algorithm 2.1 is the best one among the four solvers, in terms of the number of
iterations and the CPU time.

While it would be unwise to draw any firm conclusions from the limited numerical
results and comparisons, they indicate some promise for the new approaches pro-
posed in this paper, compared with the related methods mentioned above. Further
improvement is expected from more suitable implementation.

5 Conclusion

In this paper we propose a new derivative-free projection type method for solv-
ing nonlinear monotone equations with convex constraints, The main properties of
the proposed methods are that we establish the global convergence and local lin-
ear convergence rate without using any merit function and making the differentiability
assumption on the equations. Furthermore, thesemethods do not solve any subproblem
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and store any matrix, and thus can be applied to solve large-scale nonlinear equations.
Preliminary numerical results are reported to show that the proposedmethod is promis-
ing, especially for the large-scale problems with convex constraints.

Since the most computational cost of each algorithm for problem (1.1) is to deter-
mine the search direction dk and find the stepsize αk in line search, we will study
some more effective methods for defining an appropriate search direction dk and an
inexpensive line search in our future research. Furthermore, we will continue to inves-
tigate the local behaviour of the sequence {xk} generated by Algorithm 2.1 under some
weaker conditions.
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