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Abstract The planar circular restricted three-body problemwithmodifiedNewtonian
gravity is used in order to determine the Newton–Raphson basins of attraction asso-
ciated with the equilibrium points. The evolution of the position of the five Lagrange
points is monitored when the value of the power p of the gravitational potential of
the second primary varies in predefined intervals. The regions on the configuration
(x, y) plane occupied by the basins of attraction are revealed using the multivariate
version of the Newton–Raphson iterative scheme. The correlations between the basins
of convergence of the equilibrium points and the corresponding number of iterations
needed for obtaining the desired accuracy are also illustrated. We conduct a thorough
and systematic numerical investigation by demonstrating how the dynamical quantity
p influences the shape as well as the geometry of the basins of attractions. Our results
strongly suggest that the power p is indeed a very influential parameter in both cases
of weaker or stronger Newtonian gravity.

Keywords Three-body problem · Non-linear algebraic equations · Basins of
attraction · Fractal basin boundaries

1 Introduction

The field of numerically solutions of algebraic systems of equations has a long his-
tory (e.g., [1–3,8]). At this point, we should emphasize, that all the above-mentioned
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references are exemplary rather than exhaustive taking into account the vast area of
the field of applied mathematics.

In dynamical systems knowing the basins of attraction associated with the equilib-
rium points is very important since this knowledge reveals some of the most inartistic
properties of the system. The sets of initial conditions on the configuration (x, y)
plane which lead to a specific equilibrium point (attractor) define the several attrac-
tion regions (known also as basins of convergence). Over the last years, the basins
of attraction in several types of dynamical systems have been numerically investi-
gated. In [7] the Newton–Raphson iterative method was used in order to explore the
basins of attraction in the Hill’s problem with oblateness and radiation pressure. In
the same vein, the multivariate version of the same iterative scheme has been used to
unveil the basins of convergence in the restricted three-body problem (e.g., [20]), the
electromagnetic Copenhagen problem (e.g., [14]), the photogravitational Copenhagen
problem (e.g., [13]), the four-body problem (e.g., [4,15]), the ring problem of N + 1
bodies (e.g., [5,11]), or even even the restricted 2 + 2 body problem (e.g., [6]) have
been studied.

The Newton–Raphson method, and of course the corresponding multivariate ver-
sion of it, may be a very simple computational tool for numerically solving system of
equations however it is not the most robust algorithm. Being more precisely, its main
inefficiency lies to the fact that the convergence of the algorithm is greatly affected by
the particular initial guess (e.g., [9,10,12,17]).

Undoubtedly, one of most important and intriguing topics in celestial mechanics as
well as in dynamical astronomy is the classical problem of the planar circular restricted
three-body problem (PCRTBP). This problem describes the motion of a test particle
with an infinitesimal mass inside the gravitational field of two primary bodies which
move in circular orbits around their common center of gravity [18]. The applications
of this problem expand in many fields of research from chaos theory and molecular
physics to planetary physics, stellar systems or even to galactic dynamics. This clearly
justifies why this topic still remains very active and extremely stimulating.

In the present article we shall use the mathematical model of the planar circular
restricted three-body problem with modified Newtonian gravity. In particular, the
power p of the gravitational potential of the second primary will vary in predefined
intervals thus allowing us to examine two different scenarios: (i) the case of weaker
Newtonian gravity, when p < 1 and (ii) the case of stronger Newtonian gravity, when
p > 1. In both cases, our aim will be to determine how the shape and geometry in
general of the Newton–Raphson basins of attraction are affected by the change in the
value of the power p of the potential.

The structure of the paper is as follows: In Sect. 2 we describe the basic properties
of the considered mathematical model. In Sect. 3 the evolution of the position of the
equilibrium points is investigated as the value of power of the gravitational potential
varies in predefined intervals. In the following Section, we conduct a thorough and
systematic numerical exploration by revealing the Newton–Raphson basins of attrac-
tion and how they are affected by the value of the power p. Our paper ends with Sect.
5, where the discussion and the conclusions of this work are presented.
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2 Presentation of the mathematical model

Let us briefly recall the basic properties of the PCRTBP [18]. The two main bodies,
called primaries move on circular orbits around their common center of gravity. The
third body (also known as test particle) moves in the same plane under the gravitational
field of the two primaries. It is assumed that the motion of the two primaries is not
perturbed by the third body since the mass of the third body is much smaller with
respect to the masses of the two primaries.

The units of length, mass and time are taken so that the sum of the masses, the
distance between the primaries and the angular velocity is unity, which sets the grav-
itational constant G = 1. A rotating rectangular system whose origin is the center of
mass of the primaries and whose Ox-axis contains the primaries is used. The mass
ratio is μ = m2/(m1 + m2), where m1 = 1 − μ and m2 = μ are the dimensionless
masses of the primaries with m1 > m2, such that m1 + m2 = 1. The centers P1 and
P2 of the two primaries are located at (−μ, 0) and (1 − μ, 0), respectively.

The total time-independent effective potential function in the rotating frame of
reference is

Ω(x, y) = (1 − μ)

r1
+ μ

r p2
+ 1

2

(
x2 + y2

)
, (1)

where

r1 =
√

(x + μ)2 + y2,

r2 =
√

(x + μ − 1)2 + y2, (2)

are the distances to the respective primaries.
Looking at Eq. (1) we see that the gravitational potential of the first primary body

is a classical Newtonian potential of the form 1/r . The same applies for the second
primary only when p = 1. When p < 1 or p > 1 we have the case of a modified
Newtonian gravity. We choose μ = 1/2 (which means that both primaries have equal
masses) so that the only difference between the two primary bodies to be the power
p of the gravitational potential. This choice will help us to unveil the influence of the
gravity on the Newton–Raphson basins of attraction since the power p will be the only
variable parameter. When p is lower than 1, then the interaction is weaker for short
distances and it is stronger for large distances. On the other hand, when p is larger than
1 the interaction is stronger for short distances and it is weaker for larger distances.

The scaled equations of motion describing the motion of the third body in the
corotating frame read

Ωx = ∂Ω

∂x
= ẍ − 2 ẏ,

Ωy = ∂Ω

∂y
= ÿ + 2ẋ . (3)
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The dynamical system (3) admits the well known Jacobi integral of motion

J (x, y, ẋ, ẏ) = 2Ω(x, y) −
(
ẋ2 + ẏ2

)
= C, (4)

where ẋ and ẏ are the velocities, while C is the Jacobi constant which is conserved.

3 Evolution of the equilibrium points

It was found by Lagrange that five distinct three-body formations exist for two bodies
which move in circular orbits around their common center of mass. For an observer in
the rotating frame of reference these formations appear to be invariant.Moreover, these
special five positions of the test particle for which its location appears to be stationary
when viewed from the rotating frame of reference are called Lagrange libration points
Li , i = 1, . . . , 5 [18].

It is well known that in an equilibrium point the following conditions hold

ẍ = ÿ = ẋ = ẏ = 0. (5)

Therefore, the coordinates of the positions of the Lagrange points can be numerically
obtained by solving the system of non-linear algebraic differential equations

Ωx = Ωy = 0. (6)

Three of the equilibriumpoints, L1, L2, and L3, (known as collinear points) are located
on the x-axis, while the other two, L4 and L5, are called triangular points and they are
located on the vertices of equilateral triangles. At this point, it should be emphasized
that the labeling of the collinear points is not consistent throughout the literature. In
this paper, we adopt the most popular case according to which L1 lies between the
two primary bodies, L2 is at the right side of P2, while L3 is at the left side of P1 .
Therefore we have

x(L3) < −μ < x(L1) < 1 − μ < x(L2). (7)

In this paper, we shall explore how the power p of the gravitational potential of
the second primary influences the positions of the libration points. Our results are
illustrated in Fig. 1a–d. In panel (a) we see the space-evolution of the five equilibrium
points when p ∈ [0.001, 10]. One may observe that as the power p increases the
libration point L1 moves towards the center P1, while the equilibrium point L2 moves
away from P2. The space-evolution of the other three equilibrium points on the other
hand is not monotonic. In particular, x(L3) decreases until p = 1.87, while for higher
values of p it increases. For the coordinates of the Lagrange points L4 and L5 the
turning point is at p = 4.32. Our numerical calculations suggest that in the limiting
casewhere p → 0 L1, L2, L4, and L5 tend to collidewith the center P2.Herewewould
like to note that we did not consider cases with negative values of p. Our numerical
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Fig. 1 a, upper left The space-evolution of the equilibrium points in the planar circular restricted three-
body problem with modified Newtonian gravity when p ∈ [0.001, 10]. The arrows indicate the movement
direction of the equilibrium points as the power p of the gravitational potential increases. The space-
evolution of b, upper right the x coordinate of L3, c, lower left the x coordinate of L4 and d, lower right
the y coordinate of L4, as a function of p. The red dots pinpoint the turning points of the space-evolution
of the coordinates of the Lagrange points. (Color figure online)

calculations indicate that all five equilibrium points are dynamically unstable when
p ∈ [0.001, 10].

4 The Newton–Raphson basins of attraction

We decided to use the multivariate version of the Newton–Raphson method in order
to determine to which of the five equilibrium points each initial point on the config-
uration (x, y) plane leads to. The Newton–Raphson method is applicable to systems
of multivariate functions f (x) = 0, through the iterative scheme

xn+1 = xn − J−1 f (xn), (8)
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where J−1 is the inverse Jacobian matrix of f (xn). In our case the system of equations
is

{
Ωx = 0

Ωy = 0
, (9)

and therefore the Jacobian matrix reads

J =
[
Ωxx Ωxy

Ωyx Ωyy

]
. (10)

The inverse Jacobian is

J−1 = 1

det(J )

[
Ωyy −Ωxy

−Ωyx Ωxx

]
, (11)

where det(J ) = ΩyyΩxx − Ω2
xy .

Inserting the expression of the inverse Jacobian into the iterative formula (8) we
get

[
x
y

]

n+1
=

[
x
y

]

n
− 1

ΩyyΩxx − Ω2
xy

[
Ωyy −Ωxy

−Ωyx Ωxx

] [
Ωx

Ωy

]

(xn ,yn)

=
[
x
y

]

n
− 1

ΩyyΩxx − Ω2
xy

[
ΩyyΩx − ΩxyΩy

−ΩyxΩx + ΩxxΩy

]

(xn ,yn)
. (12)

Decomposing formula (12) into x and y we obtain the iterative formulae for each
coordinate

xn+1 = xn −
(

ΩxΩyy − ΩyΩxy

ΩyyΩxx − Ω2
xy

)

(xn ,yn)

,

yn+1 = yn +
(

ΩxΩyx − ΩyΩxx

ΩyyΩxx − Ω2
xy

)

(xn ,yn)

, (13)

where xn, yn are the values of the x and y variables at the n-th step of the iterative
process, while the subscripts of Ω denote the corresponding partial derivatives of the
potential function.

The Newton–Raphson algorithm is activated when an initial condition (x0, y0) on
the configuration plane is given, while it stops when the positions of the equilibrium
points are reached, with some predefined accuracy. A crooked path line (see Fig. 2)
is created by the successive approximations-points. If the iterative method converges
for the particular initial conditions then this path leads to a desired position, which
in our case is one of the five equilibrium points. All the initial conditions that lead
to a specific equilibrium point, compose a basin of attraction or an attracting region.
Here we would like to clarify that the Newton–Raphson basins of attraction should not
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Fig. 2 A characteristic example of the consecutive steps that are followed by the Newton–Raphson iterator
and the corresponding crooked path-line that leads to an equilibrium point (L5). The red dot indicates
the starting point P0, (x0, y0) = (0.7, 0.4), while the blue dot indicates the Lagrange point to which the
method converged to. For this particular set of initial conditions the Newton–Raphson method converges
after 11 iterations to L5 with accuracy of eight decimal digits, while only three more iterations are required

for obtaining the desired accuracy of 10−15 . (Color figure online)

be mistaken with the classical basins of attraction in dissipative systems. We observe
that the iterative formulae (13) include both the first and the second derivatives of
the effective potential function Ω(x, y) and therefore we may claim that the obtained
numerical results directly reflect some of the basic qualitative characteristics of the
dynamical system. The major advantage of knowing the Newton–Raphson basins of
attraction in a dynamical system is the fact that we can select the most favorable
initial conditions, with respect to required computation time, when searching for an
equilibrium point.

For obtaining the basins of convergence we worked as follows: First we defined
a dense uniform grid of 1024 × 1024 initial conditions regularly distributed on the
configuration (x, y) space. The iterative process was terminated when an accuracy of
10−15 has been reached, while we classified all the (x, y) initial conditions that lead
to a particular solution (equilibrium point). At the same time, for each initial point, we
recorded the number (N ) of iterations required to obtain the aforementioned accuracy.
Logically, the required number of iterations for locating an equilibrium point strongly
depends on the value of the predefined accuracy. In this study we set the maximum
number of iterations Nmax to be qual to 500.

In Fig. 3a we present the Newton–Raphson basins of attraction for the case of
the classical Newtonian gravity with p = 1. In panel (b) of the same figure the
distribution of the corresponding number (N ) of iterations required for obtaining
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Fig. 3 a, left The Newton–Raphson basins of attraction on the configuration (x, y) plane for the case of
the classical Newtonian gravity (p = 1). The positions of the five equilibrium points are indicated by
black dots. The color code denoting the five attractors (Lagrange points) is as follows: L1 (green); L2
(red); L3 (blue); L4 (magenta); L5 (orange); non-converging points (white). b, right The distribution of
the corresponding number (N ) of required iterations for obtaining the Newton–Raphson basins of attraction
shown in panel a. (Color figure online)

Fig. 4 Color scale of the
Newton–Raphson basins of
attraction as a function of the
number N of required iterations.
The color code is as follows: 0–5
iterations (green); 6–8 iterations
(yellow); 9–11 iterations (pink);
12–15 iterations (cyan); N > 15
(red). The positions of the five
equilibrium points are indicated
by black dots. (Color figure
online)
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the desired accuracy is given using tones of blue. Figure 4 shows another type of
representation of the distribution of the required iterations. It is seen that around the
equilibrium points and also far away from them the iterator converges very quickly
(after no more than 5 iterations) to one of the attractors. On the other hand, the highest
numbers of required iterations (more than 15) have been identified in the vicinity of
the fractal basin boundaries.

All the computations reported in this paper regarding the basins of attraction were
performed using a double precision algorithmwritten in standard FORTRAN 77 (e.g.,
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[16]). Furthermore, all graphical illustrations have been created using the version 10.3
of Mathematica� [19].

In the following we shall try to determine how the power p of the gravitational
potential influences the Newton–Raphson basins of attraction, considering two cases
regarding the type of the Newtonian gravity.

4.1 Weaker Newtonian gravity ( p < 1)

Our investigation begins with the case where the Newtonian gravity is weaker and p
varies in the interval [0.01, 1). In Fig. 5a–f we present the Newton–Raphson basins
of attraction for six values of the power p of the gravitational potential of the second
primary. Looking the color-coded plots we may say that the shape of the basins of
attraction corresponding to equilibrium points L2 and L3 have the shape of bugs
with many legs and many antennas. Furthermore, the shape of the basins of attraction
corresponding to the triangular equilibrium points L4 and L5 looks like multiple
butterfly wings. It is interesting to note that the basins of attraction corresponding
to the central L1 extend to infinity, while on the other hand the area of all the other
basins of convergence is finite. It is evident that a large portion of the configuration
(x, y) plane is covered by well-formed basins of attraction. The boundaries between
the several basins of convergence however are highly fractal1 and they look like a
“chaotic sea”. This means that if we choose a starting point (x0, y0) of the Newton–
Raphson method inside these fractal domains we will observe that our choice is very
sensitive. In particular, a slight change in the initial conditions leads to completely
different final destination (different attractor) and therefore the beforehand prediction
becomes extremely difficult.

In Fig. 6a–f we provide the distribution of the corresponding number (N ) of iter-
ations required for obtaining the desired accuracy, using tones of blue. In the same
vein, in Fig. 7a–f the corresponding probability distribution of iterations is shown. The
probability P is defined as follows: let us assume that N0 initial conditions (x0, y0)
converge to one of the five attractors after N iterations. Then P = N0/Nt , where Nt is
the total number of initial conditions in every grid. Table 1 contains the percentages of
the Newton–Raphson basins of attraction for the case of weaker Newtonian gravity. It
should be noted that the percentage of the basins of attraction corresponding to L1 is
not included because these basins extend to infinity and therefore the percentage has
no meaning (it depends on the particular size of the rectangular grid).

Correlating all the numerical results given in Figs. 5, 6, and 7, as well as in Table 1
one may reasonably deduce that the most important phenomena which take place as
the the Newtonian gravity becomes weaker are the following:

– The area on the configuration (x, y) plane covered by basins of attraction corre-
sponding to the equilibrium point L4 displays minor fluctuations around 24 %.
On the contrary, the area corresponding to the Lagrange point L2 is reduced in
the interval [0.30, 0.90]. Moreover, the area covered by initial conditions which

1 Whenwe state that an area is fractal we simplymean that it has a fractal-like geometry without conducting
any specific calculations for computing the fractal dimensions.

123



62 E. E. Zotos

Fig. 5 The Newton–Raphson basins of attraction on the configuration (x, y) plane for the case of weaker
Newtonian gravity when p varies in the interval [0.01, 1). a p = 0.01; b p = 0.1; c p = 0.3; d p = 0.5;
e p = 0.7; f p = 0.9. The positions of the five equilibrium points are indicated by black dots. The color
code denoting the five attractors is as in Fig. 3a. (Color figure online)
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Fig. 6 The distribution of the corresponding number (N ) of required iterations for obtaining the Newton–
Raphson basins of attraction shown in Fig. 5a–f

converge to the equilibrium point L3 exhibits a constant decrease throughout the
interval [0.01, 0.50]. It is interesting to note that in the case of weaker Newtonian
gravity the shape of the basins of attraction of the equilibrium points L4 and L5 is
highly affected by the power p of the gravitational potential.

– The average value of required number (N ) of iterations for obtaining the desired
accuracy increases when p → 0.01. Consequently, the the most probable number
(N∗) of iterations is increased from 6 when p = 0.90 to 9 when p = 0.01. In
all examined cases, for more than 95 % of the initial conditions on the configu-
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Fig. 7 The corresponding probability distribution of required iterations for obtaining the Newton–Raphson
basins of attraction shown in Fig. 5a–f. The vertical, dashed, red line indicates, in each case, the most
probable number (N∗) of iterations. (Color figure online)
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Table 1 The percentages of the
Newton–Raphson basins of
attraction for the case of weaker
Newtonian gravity

Note that the percentages of the
basins of convergence
corresponding to Lagrange
points L4 and L5 are equal

p L2 (%) L3 (%) L4 (%)

0.01 3.15 0.11 34.13

0.10 2.89 2.12 25.08

0.30 2.21 3.63 20.94

0.50 3.25 4.67 23.07

0.70 3.86 4.61 21.43

0.90 4.40 4.64 20.65

ration (x, y) plane the iterative formulae (13) need no more than 35 iterations for
obtaining the desired accuracy.

4.2 Stronger Newtonian gravity ( p > 1)

We continue with the case where the power p varies in the interval (1, 10], which is
of course the case of the stronger Newtonian gravity. The Newton–Raphson basins of
attraction for six values of the power p are presented in Fig. 8a–f, while Fig. 9a–f shows
the distribution of the corresponding number (N ) of iterations required for obtaining
the desired accuracy. The corresponding probability distribution of iterations is given
in Fig. 10a–f. In Table 2 we provide the percentages of the Newton–Raphson basins
of attraction for the case of stronger Newtonian gravity.

Taking into consideration all the numerical outcomes presented in Figs. 8, 9, and 10
as well as in Table 2 we could argue that the most important phenomena which take
place as the Newtonian gravity becomes stronger are the following:

– The area on the configuration (x, y) plane corresponding to the equilibrium point
L4 (the same applies also for equilibrium point L5) exhibits small fluctuations
around 18 %. For p > 2 the area corresponding to equilibrium point L2 seems
to decrease. On the other hand, the area occupied by basins of attraction corre-
sponding to Lagrange point L3 is constantly increases throughout the interval [1.5,
10.0]. It should be emphasized that in the case of stronger Newtonian gravity the
shape of the basins of attraction of the equilibrium points L2, L4 and L5 is strongly
affected by the power p of the gravitational potential. In particular, we see that the
number of legs and antennas of the basins of attraction corresponding to Lagrange
point L2 are increased, as we proceed to higher values of p. The same behaviour
also applies for the butterfly wings of the basins of attraction of the equilibrium
points L4 and L5.

– The average value of required number (N ) of iterations for obtaining the desired
accuracy increases when p → 10. Consequently, the the most probable number
(N∗) of iterations grows from 7 when p = 1.5 to 13 when p = 10.0. In all exam-
ined cases, for more than 95 % of the initial conditions on the configuration (x, y)
plane the iterative formulae (13) need no more than 50 iterations for obtaining the
desired accuracy.
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Fig. 8 The Newton–Raphson basins of attraction on the configuration (x, y) plane for the case of stronger
Newtonian gravity when p varies in the interval (1, 10]. a p = 1.5; b p = 2.0; c p = 4.0; d p = 6.0;
e p = 8.0; f p = 10.0. The positions of the five equilibrium points are indicated by black dots. The color
code denoting the five attractors is as in Fig. 3a. (Color figure online)
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Fig. 9 The distribution of the corresponding number (N ) of required iterations for obtaining the Newton–
Raphson basins of attraction shown in Fig. 8a–f

5 Discussion and conclusions

The aim of this paper was to numerically obtain the Newton–Raphson basins of attrac-
tion in the planar circular restricted three-body problem with modified Newtonian
gravity. The basins of convergence of the five equilibrium points of the dynamical
system have been determined with the help of the multivariate version of the Newton–
Raphson method. These basins describe how each point on the configuration (x, y)
plane is attracted by one of the five attractors. Our thorough and systematic numerical
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Fig. 10 The corresponding probability distribution of required iterations for obtaining the Newton–
Raphson basins of attraction shown in Fig. 8a–f. The vertical, dashed, red line indicates, in each case,
the most probable number (N∗) of iterations. (Color figure online)
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Table 2 The percentages of the
Newton–Raphson basins of
attraction for the case of stronger
Newtonian gravity. Note that the
percentages of the basins of
convergence corresponding to
Lagrange points L4 and L5 are
equal.

p L2 (%) L3 (%) L4 (%)

1.5 5.89 5.17 20.39

2.0 6.19 5.32 19.76

4.0 5.50 6.23 17.48

6.0 4.53 6.33 17.85

8.0 3.57 6.54 18.20

10.0 2.89 6.69 18.68

investigation revealed how the position of the equilibrium points and the structure of
the basins of attraction are influenced by the power p of the gravitational potential
describing the gravity around the second primary body. We also found correlations
between the basins of attraction and the distribution of the corresponding required
number of iterations.

For the numerical calculations of the sets of the initial conditions on the configu-
ration (x, y) plane, we needed about 3 minutes of CPU time on a Quad-Core i7 2.4
GHz PC, depending of course on the required number of iterations. When an initial
condition had converged to one of the five attractors with the predefined accuracy the
iterative procedure was effectively ended and proceeded to the next available initial
condition.

We obtained quantitative information regarding the Newton–Raphson basins of
attraction in the restricted three-body problem with modified Newtonian gravity. The
main results of our numerical research can be summarized as follows:

1. In all examined cases, the configuration (x, y) plane is a complicated mixture of
basins of attraction and highly fractal regions. These regions are the exact opposite
of the basins of attraction and they are completely intertwined with respect to
each other (fractal structure). This sensitivity towards slight changes in the initial
conditions in the fractal regions implies that it is impossible to predict the final
state (attractor).

2. The several basins of attraction are very intricately interwoven and they appear
either as well-defined broad regions, as thin elongated bands, or even as spiraling
structures. The fractal domains are mainly located in the vicinity of the basin
boundaries.

3. The area of the basins of attraction corresponding to collinear equilibrium points
L2, L3 as well as to triangular points L4 and L5 is finite. Additional numerical
computations reveal that the area of the basins of convergence corresponding to
the central equilibrium point L1 extends to infinity.

4. Our calculations strongly suggest that all initial conditions on the configuration
plane converge, sooner or later, to one of the five attractors of the dynamical system.
In otherwords,wedid not encounter any initial conditionon the configurationplane
which did not converge to one of the attractors.

5. The iterative method was found to converge relatively fast with initial conditions
inside the basins of attraction. On the other hand, the highest numbers of required
iterations correspond to initial conditions in the fractal domains.
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6. We found that the change on the value of the power p of the potential describing the
gravity of the second primary body mostly influences the shape and the geometry
of the basins of attraction corresponding to Lagrange points L4 and L5.

7. The required number of iterations for obtaining the desired accuracy increases
when the Newtonian gravity becomes weaker (p → 0.01) or stronger (p → 10).
Our computations indicate that themultivariate Newton–Raphson iterative scheme
converges relatively fast in both cases (weaker and stronger Newtonian gravity).

Taking into account the detailed and novel outcomes of our numerical exploration
we may suggest that our computational task has been successfully completed. We
hope that the present numerical analysis and the corresponding results to be useful in
the field of Newton–Raphson basins of attraction in the restricted three-body problem
with modified Newtonian gravity. It is in our future plans to expand our investigation
in three dimensions thus revealing the basins of attraction inside the three-dimensional
(3D) configuration (x, y, z) space. Furthermore, it would be very interesting to use
other iterative schemes of higher order than that of the Newton–Raphson and compare
the similarities and differences regarding the structure of the basins of convergence.
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