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Abstract In this paper, a recent analytic iterative technique, named as residual power
series method is implemented to find the approximate solution of the nonlinear time-
space-fractional Benney-Lin equation. The convergence analysis of the proposed
scheme is also discussed. To test the validity, potentiality, and practical usefulness
of the proposed method in solving such a complicated equation, several numerical
examples with various initial conditions are considered. The analysis of the obtained
approximate solution results reveal that the proposed method is a significant addition
for exploring nonlinear fractional models in fractional theory and its computations.

Keywords Fractional Benney-Lin equation · Caputo derivative · Residual power
series method
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1 Introduction

Recent decades have witnessed a fast growing applications of fractional calculus in
diverse andwidespread fields of science and engineering such asmechanics, medicine,
electrical engineering, ecology, biology and many others. The list of applications of
fractional calculus is still growing; perhaps “the fractional calculus is the calculus of
twenty-first century”. Many mathematicians provide the brief history and a compre-
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hensive treatment of fractional calculus and references are summarized inmonographs
[1–3]. In recent times, the Mittag-Leffler function becomes an important function due
to its widespread use in the world of fractional calculus. The properties of Mittag-
Leffler function, its numerous generalization and their applications are discussed in
monograph [4]. A fractional derivative gives a perfect aid to characterize the memory
and hereditary properties of various processes and materials. In this context, consider-
able attention has been given to the physical and engineering problems that conducted
with the description ofmemory and hereditary characteristics of differentmaterials and
processes due to their non-locality characteristics [5–7] and developing tools which
allow analyzing and controlling the dynamical behaviors of multi-soliton solutions for
equations with fractal derivatives [8,9].

Nonlinear fractional differential equations have gained much interest due to the
exact description of nonlinear phenomena. For the sake of better understanding of
these phenomena in practical scientific research, there is a need to find their solutions.

The residual power series method (RPSM) was proposed by the Jordan mathe-
matician Abu Arqub [10] as an efficient method for determining the values of the
coefficients of the power series solution of the differential equations. The RPSM has
been successfully applied in constructing the numerical solution of the generalized
Lane-Emden equation, which is a highly nonlinear singular differential equation [11],
in predicting the solitary pattern solutions for nonlinear time-fractional dispersive par-
tial differential equations [12], in obtaining the approximate solution of the nonlinear
fractional KdV-Burgers equation [13], and in the numerical solution of fractional foam
drainage equation [14]. This technique is also applied in the numerical solution of dif-
ferent kinds of problems [15,16]. Moreover, the RPSM has been successfully applied
in the numerical solutions of strongly linear and nonlinear fractional differential equa-
tions without implementing linearization, perturbation or discretization techniques,
showing the simplicity and effectiveness of the method [17–19]. In fact, the appli-
cation of RPSM in the numerical analysis field is not new and on the other side it
possesses some of the well known advantages such as:

• It is accurate, needless effort to achieve the results.
• In the proposedmethod, it is possible to pick any point in the interval of integration
and as well the approximate solutions and their derivatives will be applicable.

• Themethod does not require discretization of the variables, and it is not affected by
computation round off errors and one is not faced with necessity of large computer
memory and time.

• It is of global nature in terms of the solutions obtained as well as its ability to solve
other mathematical, physical, and engineering problems.

In 1966, Benney [20] considered the long waves on the liquid films and found some
attractive results and introduced the Benney-Lin equation, afterward modified by Lin
[21]. This general equation arises in falling film problems. In many research articles
the analytical or the numericalmethods of Benney-Lin equation are discussed [22–24].
The little consideration has been given to the nonlinear fractional Benney-Lin equation
with time-fractional derivatives [25]. Also, the application of nonlinear time-space-
fractionalBenney-Lin equations ismissing in the literature. Tofill this gap,we consider
the initial value problem (IVP) of time-space-fractional Benney-Lin equation as
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{
Dα

t u + u Dβ
x u + D3β

x u + η(D2β
x u + D4β

x u) + μD5β
x u + Dβ

x u = 0, 0<α, β <1, η>0, μ ∈ R,

u(x, 0) = φ(x).

(1)
In purely dispersive form, for α = 1, β = 1 and η = 0, Eq. (1) is reduces to

the standard Kawahara equation (or the fifth-order Kortewegde Vries equation) that
describes the water waves with surface tension [26]. In the purely dissipative form,
Eq. (1) reduces to the long wave simplification of the Navier-Stokes equation and has
been used to describe different phenomena such as spatial patterns of the Belousov-
Zhabotinsky reaction, surface-tension-driven convection in a liquid film, and unstable
flame fronts. Also, for α = 1, β = 1 and μ = 0, i.e., the dissipative-dispersive
equation, Eq. (1) is reduced to the generalized Kuramoto-Sivashinsky equation that
explains the waves in the inclined and vertical falling film, in liquid films that are
subjected to interfacial stress from adjacent gas flow, unstable drift waves in plasma,
interfacial instability between two concurrent viscous fluids and phase evolution for
the complex Ginzburg-Landau equation.

The paper is organized as follows: Sect. 2, presents some preliminaries of fractional
calculus and the residual power series method. In Sect. 3, a power series solution for
time-space-fractional Benney-Lin equation by its power series expansion among its
truncated residual function is constructed.Convergence analysis of proposedmethod is
discussed inSect. 4. InSect. 5, somenumerical results are presentedwhichdemonstrate
the effectiveness of the numerical scheme.

2 Preliminaries

This section provides the operational properties for elucidating sufficient fractional
calculus theory, to enable us to follow the solutions of time-space-fractional Benney-
Lin equation. In recent times, the fractional differential equations have gained much
attention due to the fact that they can generate fractional Brownian motion, which is
generalization of Brownian motion. There are several definitions for fractional deriva-
tives and integrals, like Riemann-Liouville, Caputo, Riesz,Weyl, Grunwald-Letnikov,
Hadamard, etc. TheRiemann-Liouville andCaputo’s are themost commondefinitions.
But Caputo’s approach is suitable for real world physical problems because it defines
integer order initial conditions for fractional differential equations.

Throughout this paper, N is the set of integer numbers, R is the set of real numbers,
and � is the Gamma function.

Definition 2.1 The Riemann-Liouville time-fractional integral of order α of u(x, t)
is defined as

I α
t u(x, t) =

⎧⎨
⎩

1
�(α)

∫ t
s (t − ξ)α−1u(x, ξ)dξ, α > 0, x ∈ I, t > ξ > s ≥ 0,

u(x, t), α = 0.

Definition 2.2 The Caputo’s time fractional derivative of order α of u(x, t) is defined
as
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Dα
t u(x, t)

=
{

1
�(m−α)

∫ t
s (t − ξ)m−α−1 ∂m u(x,ξ)

∂ξm dξ, 0 ≤ m − 1 < α < m, t > ξ > s ≥ 0, x ∈ I,
∂m u(x,t)

∂tm , α = m ∈ N .

Theorem 2.1 If m − 1 < α ≤ m, m ∈ N, then

(a) Dα
t I α

t u(x, t) = u(x, t),

(b) I α
t Dα

t u(x, t) = u(x, t) − ∑n−1
i=0

∂ i u(x,s+)

∂t i
t i

i ! .

The other properties of fractional derivatives can be seen in [1–4]. It may be noted
that in the further discussion, the fractional derivative is taken in Caputo’s sense.
From [19], some results which are essential for the RPSM are stated as follows:

Definition 2.3 A power series expansion of the form

∞∑
k=0

ck(t − t0)
kα = c0+c1(t − t0)

α +c2(t − t0)
2α + . . . , 0 ≤ m −1 < α ≤ m, t ≥ t0,

(2)
is called fractional power series about t = t0.

Theorem 2.2 Suppose that f has a fractional power series representation at t = t0
of the form

f (t) =
∞∑

k=0

ck(t − t0)
kα, 0 ≤ m − 1 < α ≤ m, t0 ≤ t < t0 + R. (3)

If Dkα f (t) are continuous on (t0, t0 + R), k = 0, 1, 2, . . . , then the coefficients
“ck” appearing in the Eq. (3) can be determined as follows:

ck = Dkα f (t0)

�(kα + 1)
,

where R is the radius of convergence of the fractional power series.

Definition 2.4 For 0 ≤ m − 1 < α ≤ m, a power series expansion of the form

∞∑
k=0

wk(x)(t − t0)
kα = w0(x)+w1(x)(t − t0)

α +w2(x)(t − t0)
2α + . . . , t ≥ t0, (4)

is called multiple fractional power series about t = t0, where wk’s are functions of x
called the coefficients of the series.
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3 Residual power series for space-time fractional Benney-Lin equation

Consider time-space-fractional Benney-Lin equation as

Dα
t u + u Dβ

x u + D3β
x u + η(D2β

x u + D4β
x u) + μD5β

x u + Dβ
x u = 0,

0 < α, β < 1, η > 0, μ ∈ R, (5)

subject to the initial condition
u(x, 0) = φ(x). (6)

The purpose of this study is to construct a power series solution for Eqs. (5) and
(6) by its power series expansion among its truncated residual function.

3.1 General procedure of the residual power series solution

The main steps of this procedure are described as follows:
Step 1Suppose that the solution of Eqs. (5) and (6) is expressed in the formof fractional
power series expansion about the initial point t = 0 as follows:

u(x, t) =
∞∑

k=0

wk(x)
tkα

�(kα + 1)
, 0 < α ≤ 1, x ∈ I, 0 ≤ t < R. (7)

The RPSM guarantees that the analytical approximate solution for Eqs. (5) and (6)
are in the form of an infinite fractional power series. To get the numerical values from
this series, let um(x, t) denotes the m-th truncated series of u(x, t). That is,

um(x, t) =
m∑

k=0

wk(x)
tkα

�(kα + 1)
, 0 < α ≤ 1, x ∈ I, 0 ≤ t < R. (8)

Take m = 0 and by the initial condition, the 0th residual power series approximate
solution of u(x, t) can be written in the following form:

u0(x, t) = w0(x) = u(x, 0) = φ(x). (9)

The Eq. (8) can be rewritten as

um(x, t) = φ(x)+
m∑

k=1

wk(x)
tkα

�(kα + 1)
, 0 < α ≤ 1, x ∈ I, 0 ≤ t, m =1, 2, 3, . . . .

(10)
By viewing the representations of um(x, t), the mth residual power series approxi-

mate solution will be obtained after wk(x), k = 1, 2, 3, . . . , m, are available.
Step 2 Define the residual function for Eqs. (5) and (6) as follows:

Res(x, t) = Dα
t u + u Dβ

x u + D3β
x u + η(D2β

x u + D4β
x u) + μD5β

x u + Dβ
x u, (11)
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and the mth residual function can be expressed as

Resm(x, t) = ∂αum(x, t)

∂tα
+ um(x, t)

∂βum(x, t)

∂xβ
+ ∂3βum(x, t)

∂x3β

+ η

(
∂2βum(x, t)

∂x2β
+ ∂4βum(x, t)

∂x4β

)
+ μ

∂5βum(x, t)

∂x5β
+ ∂βum(x, t)

∂xβ
,

m = 1, 2, 3, . . . . (12)

From [1–6], some useful results of Resm(x, t) which are essential in the residual
power series solution are stated as follows:

(i) Res(x, t) = 0,

(ii) lim
m→∞ Resm(x, t) = Res(x, t) f or each x ∈ I and t ≥ 0,

(iii) Diα
t Res(x, 0) = Diα

t Resm(x, 0) = 0, i = 0, 1, 2, . . . , m. (13)

Step 3 Substitute the mth truncated series of u(x, t) into Eq. (12) and calculate the
fractional derivative D(m−1)α

t of Resm(x, t), m = 1, 2, 3, . . . at t = 0, together with
Eq. (13), the following algebraic system is obtained:

D(m−1)α
t Resm(x, 0) = 0, 0 < α ≤ 1, m = 1, 2, 3, . . . . (14)

Step 4 After solving the system (14), the values of the coefficients wk(x), k =
1, 2, 3, . . . , m are obtained. Thus, the mth residual power series approximate solu-
tion is derived.

In the next discussion, the 1st, 2nd, 3rd and 4th residual power series approximate
solutions are determined in detail by following the above steps.

For m = 1, the 1st residual power series solution can be written in the form of

u1(x, t) = φ(x) + w1(x)
tα

�(α + 1)
. (15)

The 1st residual function can be written as follows:

Res1(x, t) = ∂αu1(x, t)

∂tα
+ u1(x, t)

∂βu1(x, t)

∂xβ
+ ∂3βu1(x, t)

∂x3β

+ η

(
∂2βu1(x, t)

∂x2β
+ ∂4βu1(x, t)

∂x4β

)
+ μ

∂5βu1(x, t)

∂x5β
+ ∂βu1(x, t)

∂xβ
.

(16)

Substitute the 1st truncated series, u1(x, t), of Eqs. (5) and (6) into the 1-st residual
function as follows:

Res1(x, t) = w1(x) +
(

φ(x) + w1(x)
tα

�(α + 1)

)(
Dβ

x φ(x) + tα

�(α + 1)
Dβ

x w1(x)

)
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+ D3β
x φ(x) + tα

�(α + 1)
D3β

x w1(x) + Dβ
x φ(x) + tα

�(α + 1)
Dβ

x w1(x)

+ η

(
D2β

x φ(x) + tα

�(α + 1)
D2β

x w1(x) + D4β
x φ(x) + tα

�(α + 1)
D4β

x w1(x)

)

+ μ

(
D5β

x φ(x) + tα

�(α + 1)
D5β

x w1(x)

)
. (17)

From Eqs. (14) and (17),

w1(x) = −
(
φ(x)Dβ

x φ(x) + D3β
x φ(x) + η

(
D2β

x φ(x) + D4β
x φ(x)

)

+μD5β
x φ(x) + Dβ

x φ(x)
)

. (18)

The 1st RPS approximate solution can be written in the following form:

u1(x, t) = φ(x) − tα

�(α + 1)

(
φ(x)Dβ

x φ(x) + D3β
x φ(x) + η

(
D2β

x φ(x) + D4β
x φ(x)

)

+μD5β
x φ(x) + Dβ

x φ(x)
)
. (19)

For m = 2, the 2nd residual power series solution can be written as follows:

u2(x, t) = φ(x) + w1(x)
tα

�(α + 1)
+ w2(x)

t2α

�(2α + 1)
. (20)

Substitute the 2nd truncated series u2(x, t) into the 2-nd residual function
Res2(x, t). That is,

Res2(x, t) = w1(x) + w2(x)
tα

�(α + 1)

+
(

φ(x) + w1(x)
tα

�(α + 1)
+ t2α

�(2α + 1)
w2(x)

)(
Dβ

x φ(x)

+ tα

�(α + 1)
Dβ

x w1(x) + t2α

�(2α + 1)
Dβ

x w2(x)

)
+ D3β

x φ(x)

+ tα

�(α + 1)
D3β

x w1(x) + t2α

�(2α + 1)
D3β

x w2(x)

+ Dβ
x φ(x) + tα

�(α + 1)
Dβ

x w1(x) + t2α

�(2α + 1)
Dβ

x w2(x)

+ η

(
D2β

x φ(x) + tα

�(α + 1)
D2β

x w1(x) + t2α

�(2α + 1)
D2β

x w2(x)
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+ D4β
x φ(x) + tα

�(α + 1)
D4β

x w1(x) + t2α

�(2α + 1)
D4β

x w2(x)

)

+μ

(
D5β

x φ(x) + tα

�(α + 1)
D5β

x w1(x) + t2α

�(2α + 1)
D5β

x w2(x)

)
.

(21)

The operator Dα
t is applied on both sides of Eq. (21) as follows:

Dα
t Res2(x, t) = w2(x) + φ(x)Dβ

x w1(x) + w1(x)Dβ
x φ(x) + D3β

x w1(x)

+μD5β
x w1(x) + η

(
D2β

x w1(x) + D5β
x w1(x)

)
+ Dβ

x w1(x)

+ tα

�(α + 1)

(
φ(x)Dβ

x w2(x) + �(2α + 1)

[�(α + 1)]2w1(x)Dβ
x w1(x)

+w2(x)Dβ
x φ(x) + D3β

x w2(x) + Dβ
x w2(x)

+ η
(

D2β
x w2(x) + D4β

x w2(x)
)

+ μD5β
x w2(x)

)

+ �(3α + 1)

�(α + 1)[�(2α + 1)]2
(

w1(x)Dβ
x w2(x) + w2(x)Dβ

x w1(x)

)
t2α

+ �(4α + 1)

�(3α + 1)[�(2α + 1)]2
(

w2(x)Dβ
x w2(x)

)
t3α. (22)

From Eqs. (14) and (22),

w2(x) = −
(

φ(x)Dβ
x w1(x) + w1(x)Dβ

x φ(x) + D3β
x w1(x) + μD5β

x w1(x)

+ η
(

D2β
x w1(x) + D5β

x w1(x)
)

+ Dβ
x w1(x)

)
. (23)

The 2nd residual power series approximate solution can be written in the following
form:

u2(x, t) = φ(x) − tα

�(α + 1)

(
φ(x)Dβ

x φ(x) + D3β
x φ(x) + η

(
D2β

x φ(x)

+ D4β
x φ(x)

) + μD5β
x φ(x) + Dβ

x φ(x)
)

− t2α

�(2α + 1)

(
φ(x)Dβ

x w1(x)

+w1(x)Dβ
x φ(x) + D3β

x w1(x) + μD5β
x w1(x)

+ η
(

D2β
x w1(x) + D5β

x w1(x)
)

+ Dβ
x w1(x)

)
. (24)

For m = 3, substitute the 3rd truncated series,

u3(x, t) = φ(x) + w1(x)
tα

�(α + 1)
+ w2(x)

t2α

�(2α + 1)
+ w3(x)

t3α

�(3α + 1)
,
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of Eqs. (5) and (6) into the 3rd residual function, Res3(x, t), of Eq. (12) as

Res3(x, t) = w1(x) + w2(x)
tα

�(α + 1)
+ w3(x)

t2α

�(2α + 1)

+
(

φ(x) + w1(x)
tα

�(α + 1)
+ t2α

�(2α + 1)
w2(x)

+ t3α

�(3α + 1)
w3(x)

)(
Dβ

x φ(x) + tα

�(α + 1)
Dβ

x w1(x)

+ t2α

�(2α + 1)
Dβ

x w2(x) + t3α

�(3α + 1)
Dβ

x w3(x)

)

+ D3β
x φ(x) + tα

�(α + 1)
D3β

x w1(x)

+ t3α

�(3α + 1)
D3β

x w3(x) + t2α

�(2α + 1)
D3β

x w2(x)

+ Dβ
x φ(x) + tα

�(α + 1)
Dβ

x w1(x)

+ t2α

�(2α + 1)
Dβ

x w2(x) + t3α

�(3α + 1)
Dβ

x w3(x)

+ η

(
D2β

x φ(x) + tα

�(α + 1)
D2β

x w1(x)

+ t2α

�(2α + 1)
D2β

x w2(x) + t3α

�(3α + 1)
D2β

x w3(x)

+ D4β
x φ(x) + tα

�(α + 1)
D4β

x w1(x)

+ t2α

�(2α + 1)
D4β

x w2(x) + t3α

�(3α + 1)
D4β

x w3(x)

)

+μ

(
D5β

x φ(x) + tα

�(α + 1)
D5β

x w1(x)

+ t2α

�(2α + 1)
D5β

x w2(x) + t3α

�(3α + 1)
D5β

x w3(x)

)
. (25)

Now, solving the equation Dm−1
t Resm(x, 0) = 0, for m = 3 gives the required

value of w3(x) as follows:

w3(x) = −
(

φ(x)Dβ
x w2(x) + w2(x)Dβ

x φ(x) + D3β
x w2(x)

+μD5β
x w2(x) + η

(
D2β

x w2(x) + D5β
x w2(x)

)
+ Dβ

x w2(x)

+ �(2α + 1)

[�(α + 1)]2w1(x)Dβ
x w1(x)

)
. (26)
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Based on the previous results for w0(x), w1(x) and w2(x), the 3rd residual power
series approximate solution of Eqs. (5) and (6) may be expressed in the form of

u3(x, t) = φ(x) − tα

�(α + 1)

(
φ(x)Dβ

x φ(x) + D3β
x φ(x)

+ η
(
D2β

x φ(x) + D4β
x φ(x)

) + μD5β
x φ(x) + Dβ

x φ(x)
)

− t2α

�(2α + 1)

(
φ(x)Dβ

x w1(x) + w1(x)Dβ
x φ(x) + D3β

x w1(x)

+μD5β
x w1(x) + η

(
D2β

x w1(x) + D5β
x w1(x)

)
+ Dβ

x w1(x)

)

− t3α

�(3α + 1)

(
φ(x)Dβ

x w2(x) + w2(x)Dβ
x φ(x) + D3β

x w2(x)

+μD5β
x w2(x) + η

(
D2β

x w2(x) + D5β
x w2(x)

)
+ Dβ

x w2(x)

+ �(2α + 1)

[�(α + 1)]2w1(x)Dβ
x w1(x)

)
. (27)

For m = 4, substitute the 4th truncated series, u4(x, t) = φ(x) + w1(x) tα
�(α+1) +

w2(x) t2α
�(2α+1) +w3(x) t3α

�(3α+1) +w4(x) t4α
�(4α+1) , of Eqs. (5) and (6) into the 4th residual

function, Res4(x, t), of Eq. (12) as follows:

Res4(x, t) =
(

φ(x) + w1(x)
tα

�(α + 1)
+ t2α

�(2α + 1)
w2(x)

+ t3α

�(3α + 1)
w3(x) + t4α

�(4α + 1)
w4(x)

)

×
(

Dβ
x φ(x) + tα

�(α + 1)
Dβ

x w1(x) + t2α

�(2α + 1)
Dβ

x w2(x)

+ t3α

�(3α + 1)
Dβ

x w3(x) + t4α

�(4α + 1)
Dβ

x w4(x)

)
+ D3β

x φ(x)

+ tα

�(α + 1)
D3β

x w1(x) + t3α

�(3α + 1)
D3β

x w3(x) + t4α

�(4α + 1)
D3β

x w4(x)

+ t2α

�(2α + 1)
D3β

x w2(x) + Dβ
x φ(x) + tα

�(α + 1)
Dβ

x w1(x)

+ t2α

�(2α + 1)
Dβ

x w2(x) + t3α

�(3α + 1)
Dβ

x w3(x) + t4α

�(4α + 1)
Dβ

x w4(x)

+ η

(
D2β

x φ(x) + tα

�(α + 1)
D2β

x w1(x) + t2α

�(2α + 1)
D2β

x w2(x)

+ t3α

�(3α + 1)
D2β

x w3(x) + t4α

�(4α + 1)
D2β

x w4(x) + D4β
x φ(x)

+ tα

�(α + 1)
D4β

x w1(x) + t2α

�(2α + 1)
D4β

x w2(x)
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+ t3α

�(3α + 1)
D4β

x w3(x) + t4α

�(4α + 1)
D4β

x w4(x)

)

+ μ

(
D5β

x φ(x) + tα

�(α + 1)
D5β

x w1(x) + t2α

�(2α + 1)
D5β

x w2(x)

+ t3α

�(3α + 1)
D5β

x w3(x) + t4α

�(4α + 1)
D5β

x w4(x)

)

+ w1(x) + w2(x)
tα

�(α + 1)
+ w3(x)

t2α

�(2α + 1)
+ w4(x)

t3α

�(3α + 1)
.

(28)

The operator D3α
t is applied on both sides of Eq. (28) as follows:

D3α
t Res4(x, t) = w4(x) + φ(x)Dβ

x w3(x) +
[

�(3α + 1)

�(2α + 1)�(α + 1)

] (
w1(x)Dβ

x w2(x)

+w2(x)Dβ
x w1(x)

) + w3(x)Dβ
x φ(x) + D3β

x w3(x) + Dβ
x w3(x)

+ η(D2β
x w3(x) + D4β

x w3(x)) + μD5β
x w3(x)

+ tα

�(α + 1)

(
φ(x)Dβ

x w4(x) + �(4α + 1)

�(α + 1)�(3α + 1)
w1(x)Dβ

x w3(x)

+ �(4α + 1)

[�(2α + 1)]2 w2(x)Dβ
x w2(x)

+ �(4α + 1)

�(α + 1)�(3α + 1)
w3(x)Dβ

x w1(x) + w4(x)Dβ
x φ(x) + D3β

x w4(x)

+ Dβ
x w4(x) + η(D2β

x w4(x) + D4β
x w4(x)) + μD5β

x w4(x)
)

+ t2α�(5α + 1)

�(2α + 1)

(
w1(x)Dβ

x w4(x)

�(α + 1)�(4α + 1)
+ w2(x)Dβ

x w3(x)

�(2α + 1)�(3α + 1)

+ w3(x)Dβ
x w2(x)

�(2α + 1)�(3α + 1)
+ w4(x)Dβ

x w1(x)

�(4α + 1)�(α + 1)

)

+ t3α�(6α + 1)

�(3α + 1)

(
w2(x)Dβ

x w4(x))

�(2α + 1)�(4α + 1)
+ w3(x)Dβ

x w3(x))

�(3α + 1)

+ w4(x)Dβ
x w2(x)

�(4α + 1)�(2α + 1)

)
+ t4α�(7α + 1)

�(4α + 1)

(
w3(x)Dβ

x w4(x))

�(3α + 1)�(4α + 1)

+ w4(x)Dβ
x w3(x)

�(4α + 1)�(3α + 1)

)
+ t5α�(8α + 1)

�(5α + 1)

(
w4(x)Dβ

x w4(x))

[�(4α + 1)]2
)

. (29)

From Eqs. (14) and (29),

w4(x) = −
(

φ(x)Dβ
x w3(x) +

[
�(3α + 1)

�(2α + 1)�(α + 1)

] (
w1(x)Dβ

x w2(x)

+w2(x)Dβ
x w1(x)

) + w3(x)Dβ
x φ(x) + D3β

x w3(x) + Dβ
x w3(x)

+ η(D2β
x w3(x) + D4β

x w3(x)) + μD5β
x w3(x)

)
. (30)
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Based on the previous results for w0(x), w1(x), w2(x) and w3(x), the 4th residual
power series approximate solution of Eq. (5) and (6) may be expressed in the form of

u4(x, t) = φ(x) − tα

�(α + 1)

(
φ(x)Dβ

x φ(x) + D3β
x φ(x) + η

(
D2β

x φ(x) + D4β
x φ(x)

)

+ μD5β
x φ(x) + Dβ

x φ(x)
)

− t2α

�(2α + 1)

(
φ(x)Dβ

x w1(x) + w1(x)Dβ
x φ(x)

+ D3β
x w1(x) + μD5β

x w1(x) + η
(

D2β
x w1(x) + D5β

x w1(x)
)

+ Dβ
x w1(x)

)

− t3α

�(3α + 1)

(
φ(x)Dβ

x w2(x) + w2(x)Dβ
x φ(x) + D3β

x w2(x) + μD5β
x w2(x)

+ η
(

D2β
x w2(x) + D5β

x w2(x)
)

+ Dβ
x w2(x) + �(2α + 1)

[�(α + 1)]2 w1(x)Dβ
x w1(x)

)

− t4α

�(4α + 1)

(
φ(x)Dβ

x w3(x) +
[

�(3α + 1)

�(2α + 1)�(α + 1)

] (
w1(x)Dβ

x w2(x)

+ w2(x)Dβ
x w1(x)

) + w3(x)Dβ
x φ(x) + D3β

x w3(x) + Dβ
x w3(x)

+ η(D2β
x w3(x) + D4β

x w3(x)) + μD5β
x w3(x)

)
. (31)

4 Convergence analysis

Lemma 4.1 [1] If f (x) is continuous function and α, β > 0, then the following result
hold:

I α
a I β

a f (x) = I β
a I α

a f (x) = I α+β
a f (x). (32)

Theorem 4.1 [18] For any fractional power series (FPS) of the form
∑∞

k=0 ck xkα,

x ≥ 0,

(a) If FPS converges for x = x1, then FPS converges absolutely for all real x satis-
fying |x | < |x1|,

(b) If FPS diverges for x = x1, then FPS diverges for all real x satisfying |x | > |x1|.
Theorem 4.2 For 0 ≤ m−1 < α ≤ m, suppose that Dr+kα

t , Dr+α(k+1)
t ∈ C[R, t0]×

[R, t0 + R]), then

(
I r+kα
t Dr+kα

t u
)

(x, t) −
(

I r+(k+1)α
t Dr+(k+1)α

t u
)

(x, t)

= (t − t0)r+kα

�(r + kα + 1)
Dr+kα

t u(x, t0),

where Dr+kα
t =(Dt · Dt · Dt · · · Dt︸ ︷︷ ︸

r−times

)(Dα
t · Dα

t · Dα
t · · · Dα

t︸ ︷︷ ︸
k−times

).

Proof From Eq. (32),

(I r+kα
t Dr+kα

t u)(x, t) − (I r+(k+1)α
t Dr+(k+1)α

t u)(x, t)

123



Residual power series method for solving time-space-fractional... 695

= I r+kα
t ((Dr+kα

t u)(x, t) − (I α
t Dr+(k+1)α

t u)(x, t))

= I r+kα
t ((Dr+kα

t u)(x, t) − (I α
t Dα

t )(Dr+kα
t u)(x, t))

= I r+kα
t ((Dr+kα

t u)(x, t0)) (using T heorem 2.1. (b))

= (t − t0)r+kα

�(r + kα + 1)
Dr+kα

t u(x, t0). (33)

Theorem 4.3 Suppose that u(x, t) ∈ C[R, t0] × [R, t0 + R]), Dkα
t u(x, t) ∈

C[R, t0] × [R, t0 + R]) where k = 0, 1, . . . , N + 1 and j = 0, 1, . . . , m − 1. Also,
Dkα

t u(x, t) can be differentiated m − 1 times w.r.t “t ′′ on (t0, t0 + R). Then

u(x, t) ∼=
m−1∑
j=0

N∑
i=0

W j+iα(x)(t − t0)
j+iα, (34)

where W j+iα(x) = D j+iα
t u(x,t0)

�( j+iα+1) . Moreover, ∃ a value ε, 0 ≤ ε ≤ t , the error term has
the following form,

‖RN (x, t)‖ = sup
t∈[0,T ]

∣∣∣∣∣∣
m−1∑
j=0

[
D j+(N+1)αu(x, ε)

�((N + 1)α + j + 1)
t ( j+(N+1)α)

]∣∣∣∣∣∣ . (35)

Proof From Eq. (33),

m−1∑
j=0

N∑
i=0

((
I j+iα
t D j+iα

t u
)

(x, t) −
(

I j+(i+1)α
t D j+(i+1)α

t u
)

(x, t)
)

=
m−1∑
j=0

N∑
i=0

(t − t0) j+iα

�( j + iα + 1)
D j+iα

t u(x, t0)

=
m−1∑
j=0

N∑
i=0

W j+iα(x)(t − t0)
j+iα. (36)

That is,

u(x, t) −
m−1∑
j=0

[
I j+(N+1)α
t D j+(N+1)α

t u)(x, t)
]

=
m−1∑
j=0

N∑
i=0

W j+iα(x)(t − t0)
j+iα.

(37)

Consider the second term of the above equation as follows:

123



696 H. Tariq, G. Akram

m−1∑
j=0

[
I j+(N+1)α
t D j+(N+1)α

t u)(x, t)
]

=
m−1∑
j=0

[
1

�((N + 1)α + j)

∫ t

0

D j+(N+1)αu(x, ε)

(t − τ)1−( j+(N+1)α)
dτ

]

=
m−1∑
j=0

[
D j+(N+1)αu(x, ε)

�((N + 1)α + j)

∫ t

0

dτ

(t − τ)1−( j+(N+1)α)

]

=
m−1∑
j=0

[
D j+(N+1)αu(x, ε)

�((N + 1)α + j + 1)
t ( j+(N+1)α)

]
.

(By applying the Integral Mean Value Theorem) (38)

From Eqs. (37) and (38),

u(x, t)−
m−1∑
j=0

N∑
i=0

W j+iα(x)(t − t0)
j+iα =

m−1∑
j=0

[
D j+(N+1)αu(x, ε)

�((N + 1)α + j + 1)
t ( j+(N+1)α)

]
.

The error term can be calculated as follows

‖RN (x, t)‖ =
∥∥∥∥∥∥u(x, t) −

m−1∑
j=0

N∑
i=0

W j+iα(x)(t − t0)
j+iα

∥∥∥∥∥∥

=
∥∥∥∥∥∥

m−1∑
j=0

[
D j+(N+1)αu(x, ε)

�((N + 1)α + j + 1)
t ( j+(N+1)α)

]∥∥∥∥∥∥ . (39)

This implies

‖RN (x, t)‖ = sup
t∈[0,T ]

∣∣∣∣∣∣
m−1∑
j=0

[
D j+(N+1)αu(x, ε)

�((N + 1)α + j + 1)
t ( j+(N+1)α)

]∣∣∣∣∣∣ .

As N → ∞, ‖RN (x, t)‖ → 0. Hence u(x, t) can be approximated as

u(x, t) ∼=
m−1∑
j=0

N∑
i=0

W j+iα(x)(t − t0)
j+iα,

with error term appear in Eq. (35). ��
Remark For fixed m = 1, the Eq. (34) can be reduced to generalized Taylor’s series
formula [27]. Consequently the error term “R′′

n also satisfy the generalized Taylor’s
series.
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5 Numerical results

To show the the potentiality and the superiority of RPSM to solve the nonlinear frac-
tional Benney-Lin equation, three applications are considered. It should be noted that
for the development of the solutions, all calculations have been carried out using the
software Maple 16.

Application 4.1 Consider the following nonlinear time fractional Benney-Lin equa-
tion:

Dα
t u+uux +uxxx +η(uxx +uxxxx )+μuxxxxx +ux = 0, 0 < α < 1, η > 0, μ ∈ R.

(40)
Using RPSM, the numerical values of the probability density function u(x, t) are

determined for various time fractional Brownian motions α = 0.25, α = 0.5, α =
0.75 and also for the standard motion α = 1 and their graphical results are shown
in Figs. 1, 3, 5, 7, 9, 11, 13 and 15 for the three-dimensional study and Figs. 2, 4, 6,
8, 10, 12, 14 and 16 for the two-dimensional study, for eight different case studies,
respectively.

Case study1: φ = α − 2κ2tan(κx) (41)

Case study2: φ = α − 2κ2tan2(κx) (42)

Case study3: φ = α − 2κ2tanh(κx) (43)

Case study4: φ = α − 2κ2tanh2(κx) (44)

Case study5: φ = α − 2κ2sec(κx) (45)

Fig. 1 Plot of the results byRPSMfor the time-fractionalBenney-Lin equationwith thefirst initial condition
Eq. (41) for a α = 0.25, b α = 0.50, c α = 0.75 and d α = 1 at η = μ = κ = 1
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Fig. 2 Plot of approximate solutions versus time t for different value of α at x = 1 with the first initial
condition Eq. (41)

Fig. 3 Plot of the results by RPSM for the time-fractional Benney-Lin equation with the second initial
condition Eq. (42) for a α = 0.25, b α = 0.50, c α = 0.75 and d α = 1 at η = μ = κ = 1

Case study6: φ = α − 2κ2sec2(κx) (46)

Case study7: φ = α − 2κ2sech(κx) (47)

Case study8: φ = α − 2κ2sech2(κx) (48)
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Fig. 4 Plot of approximate solutions versus time t for different value of α at x = 1 with the second initial
condition Eq. (42)

Fig. 5 Plot of the results by RPSM for the time-fractional Benney-Lin equation with the third initial
condition Eq. (43) for a α = 0.25, b α = 0.5, c α = 0.75 and d α = 1 at η = μ = κ = 1

The new iterative approach gives the solution in the form of a rapidly convergent
serieswith computable components. It can be observed fromFigs. 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16 that each of the subfigures demonstrated the nearly similar and
coinciding behavior of the RPS approximate solution and for the standard case α = 1,
nearly matching and excellent agreement of the subfigures (c) and (d). Figures 2, 4, 6,
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Fig. 6 Plot of approximate solutions versus time t for different value of α at x = 1 with the third initial
condition Eq. (43)

Fig. 7 Plot of the results by RPSM for the time-fractional Benney-Lin equation with the fourth initial
condition Eq. (44) for a α = 0.25, b α = 0.5, c α = 0.75 and d α = 1 at η = μ = κ = 1

8, 10, 12, 14 and 16 show the behavior of the approximate analytical solutions obtained
by RPSM for different fractional Brownian motion α = 0.7, α = 0.8, α = 0.9, and
standard Benney-Lin’s equation, i.e., α = 1. Thus RPSM gives a good approximated
solution using few terms only and now it is clear that the adding new terms of the
residual power series approximations can make the overall error smaller.
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Fig. 8 Plot of approximate solutions versus time t for different value of α at x = 1 with the fourth initial
condition Eq. (44)

Fig. 9 Plot of the results by RPSM for the time-fractional Benney-Lin equation with the fifth initial
condition Eq. (45) for a α = 0.25, b α = 0.5, c α = 0.75 and d α = 1 at η = μ = κ = 1
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Fig. 10 Plot of approximate solutions versus time t for different value of α at x = 1 with the fifth initial
condition Eq. (45)

Fig. 11 Plot of the results by RPSM for the time-fractional Benney-Lin equation with the sixth initial
condition Eq. (46) for a α = 0.25, b α = 0.5, c α = 0.75 and d α = 1 at η = μ = κ = 1
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Fig. 12 Plot of approximate solutions versus time t for different value of α at x = 1 with the sixth initial
condition Eq. (46)

Fig. 13 Plot of the results by RPSM for the time-fractional Benney-Lin equation with the seventh initial
condition Eq. (47) for a α = 0.25, b α = 0.5, c α = 0.75 and d α = 1 at η = μ = κ = 1

Application 4.2 Consider the following nonlinear space fractional Benney-Lin equa-
tion:

ut + u Dβ
x u + D3β

x u +η(D2β
x u + D4β

x u)+μD5β
x u + Dβ

x u = 0, 0 < β < 1, η > 0, μ ∈ R,

(49)
subject to the initial condition

u(x, 0) = x12. (50)
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Fig. 14 Plot of approximate solutions versus time t for different value of α at x = 1 with the seventh initial
condition Eq. (47)

Fig. 15 Plot of the results by RPSM for the time-fractional Benney-Lin equation with the eighth initial
condition Eq. (48) for a α = 0.25, b α = 0.5, c α = 0.75 and d α = 1 at η = μ = κ = 1

By drawing the 3-dimensional space figure of the 3rd RPS approximate solution
of Eq. (49), the geometric behavior of the approximate solution u3(x, t) with various
values ofβ can be studied. It can be noted from the subfigures of Fig. 17 that the surface
graph solutions decreases gradually when the values of x and t increase gradually on
the specific domain. Also each surface nearly agrees well in its behavior. Also the
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Fig. 16 Plot of approximate solutions versus time t for different value of α at x = 1 with the eighth initial
condition Eq. (48)

Fig. 17 Plot of the results by RPSM for the space-fractional Benney-Lin equation for a β = 0.25, b
β = 0.5, c β = 0.75 and d β = 1 at η = μ = κ = 1
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Fig. 18 Plot of the results by RPSM for the time-space-fractional Benney-Lin equation for a α = 0.5, β =
0.25, b α = 0.5, β = 0.5 c α = 0.25, β = 0.5 and d α = 0.75, β = 0.25 at η = μ = κ = 1

approximate solutions are continuously depend on the space fractional derivative by
viewing the comparison results of the subfigures (a) up to (d).

Application 5.3 Consider the following nonlinear time space-fractional Benney-Lin
equation:

Dα
t u + u Dβ

x u + D3β
x u + η(D2β

x u + D4β
x u) + μD5β

x u + Dβ
x u = 0,

0 < α, β < 1, η > 0, μ ∈ R, (51)

subject to the initial condition
u(x, 0) = x10. (52)

The main advantage of RPSM is that it provides continuous approximate solution
which is continuously depending on time space-fractional derivative. The mathemati-
cal behavior of the approximate solutions ofEqs. (51) and (52) are showngeometrically
in Fig. 18. It can be noted that the efficiency of this method is dramatically enhanced
using further terms of u(x, t) from its mth truncated series of Eq. (8). Figure 19
shows the behavior of the solutions obtained for different values of α = 0.7, α = 0.8,
α = 0.9, and standardBenney-Lin’s equation, i.e.,α = 1withβ = 0.75. The solutions
obtained by RPSM increase very rapidly with the increases in t .
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Fig. 19 Plot of approximate solutions versus time t for different value of α with β = 0.75 at x = 1

6 Conclusions

The explicit and approximate solutions of time-space-fractional Benney-Lin equation
subject to the given initial conditions are constructed with high accuracy using the
RPSM, which is the modern analytical iterative technique. The convergence analysis
is also presented to show the effectiveness and leverage of the suggested method. The
graphical results demonstrated that the nearly similar and coinciding behavior of the
RPS approximate solution for α = 0.25, α = 0.5, α = 0.75 and for the standard case
α = 1, in terms of the accuracy. Consequently, the presented method is a reliable iter-
ative technique to handle linear and nonlinear fractional time-space-fractional partial
differential equations and the RPSM provides remarkable advantages in terms of its
straightforward applicability, its accuracy and its computational effectiveness.
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