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Abstract Boolean functions play an important role inmany symmetric cryptosystems
and are crucial for their security. It is important to design boolean functions with
reliable cryptographic properties such as balancedness and nonlinearity. Most of these
properties are based on specific structures such as Möbius transform and Algebraic
Normal Form. In this paper, we introduce the notion of Dirichlet product and use it to
study the arithmetical properties of boolean functions.We show that, with theDirichlet
product, the set of boolean functions is an Abelian monoid with interesting algebraic
structure. In addition, we apply the Dirichlet product to the sub-family of coincident
functions and exhibit many properties satisfied by such functions.
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1 Introduction

Boolean functions are used in logic and in many cryptographic applications such as
blocks of symmetric key cryptosystems, stream cipher systems, coding theory and
hash functions. Boolean functions are important for the security of such systems.
So, for security reason, one seeks boolean functions having good properties such as
nonlinearity, balancedness and algebraic immunity [4,7] (see [3] for more properties).
A boolean function is a mapping {0, 1}n → {0, 1}, often characterized by its truth
table. The number of boolean functions with n variables is 22

n
and it is impracticable

to exhaustively exhibit a boolean function with optimal properties. One way to tackle
this problem is to study the arithmetical structure of boolean functions and test their
cryptographic reliability by the mean of algebraic tools such as Möbius transform and
Algebraic Normal Form. For this reason, a lot of effort has been given to find ways to
construct boolean functions with strong cryptographic properties.

For n ≥ 1, we set GF(2) = {0, 1} and GF(2)n = {0, 1}n . Any vector x ∈ GF(2)n

is represented by its coordinates as x = (x1, . . . , xn) or simply x = x1 . . . xn . The
Hamming weight wH (x) of x ∈ GF(2)n is the number of non zero coordinates of x .
An n-boolean function f is a mapping from GF(2)n into GF(2). A boolean function
is completely determined by its truth table

f (0, 0, 0 . . . , 0), f (0, 1, 0, . . . , 0), f (0, 1, 0, . . . , 0), . . . , f (1, 1, 1, . . . , 1),

and can be represented uniquely by the algebraic normal form (ANF)

f (x1, . . . , xn) =
∑

(ε1,...,εn)∈GF(2)n

f̂ (ε1, . . . , εn)xε1
1 . . . xεn

n ,

where f̂ is also a boolean function, called the Möbius transform of f . The transfor-
mation of f to its ANF can be performed using the truth table of f (see [2] and [6]).

Boolean functions have been intensively studied and various arithmetical prop-
erties are known such as Möbius transforms [6], Fourier transforms [2] and some
cryptographic applications [7]. In this paper, we improve much further such arith-
metic properties by introducing the concept of Dirichlet product. Usually, Dirichlet
product is well defined for arithmetical functions. An arithmetical function is a real-
valued function defined on the positive integers [1]. The classical Dirichlet product
F ∗ G for two arithmetical functions F, G : N → R is defined by

(F ∗ G)(n) =
∑

d|n
F(d)G

(n

d

)
=

∑

xy=n

F(x)G(y).

Dirichlet product is commutative F∗G = G∗F , associative F∗(G∗H) = (F∗G)∗H ,
and it has an identity

I (n) =
{
1 if n = 1
0 if n > 1

(1)
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where F ∗ I = I ∗ F = F . So the set of all arithmetical functions N → R together
with the Dirichlet product form an Abelian monoid. What more is that if F(1) �= 0
then F has an inverse. So the subset of all arithmetical functions such that F(1) �= 0 is
an Abelian group with respect to the Dirichlet multiplication. The classical Dirichlet
product provides great inside into some of the classical theorems in number theory.
Many identities involving the Möbius function μ and the Euler totient function φ can
be seen more intuitively in the language of Dirichlet product. For example, we have
this identity ∑

d|n
μ(d) =

{
1 if n = 1
0 if n > 1

(2)

where μ is the the Möbius function

μ(n) =

⎧
⎪⎨

⎪⎩

1 if n = 1

(−1)k if n = p1 · p2 · · · pk

0 otherwise.

In the language of Dirichlet product, the identity (2) is μ ∗ 1 = I , it means that the
Möbius function μ is the Dirichlet inverse of the constant function 1 where 1(n) = 1.
Similarly, Euler’s totient function satisfies the following result.

φ(n) =
∑

d|n
μ(d)

n

d
, (3)

In the language of Dirichlet product, the identity (3) is μ ∗ N = φ where N is the
function N (n) = n. In the language of group theory, it implies that N = φ ∗ μ−1 =
φ ∗ 1, that is ∑

d|n
φ(d) = n. (4)

So under the notion of Dirichlet product, two isolated results, (3) and (4) are ultimately
related: (3) means φ = μ ∗ N , whereas (4) means N = φ ∗ 1 = φ ∗ μ−1.

For two boolean functions f and g, we define the concept of Dirichlet product by
setting for all x ∈ GF(2)n

( f ∗ g)(x) =
∑

u�x

f (u)g(x − u)

where, for u = (u1, . . . , un) ∈ GF(2)n and x = (x1, . . . , xn) ∈ GF(2)n , u � x if
and only if for each i ∈ {1, . . . , n}, ui ≤ xi . We show that the Dirichlet product for
boolean functions is commutative, associative and that the set of all boolean functions
is an Abelian monoid and has the identity function I satisfying

I (x) =
{
1 if x = 0
0 if x �= 0

Moreover, we link a boolean function f to its Möbius transform f̂ using the Dirichlet
products f = f̂ ∗1 and f̂ = f ∗1 where 1 is the constant function 1(x) = 1.We show
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that the set of all boolean functions f such that f (0, 0, . . . , 0) = 1 under the Dirichlet
product form an Abelian group and the inverse of any such function f is f itself.

Finally, we will study the set of coincident functions and its algebraic structure.
A coincident function is a boolean function f such that f̂ = f . Under the Dirichlet
product, we show that the set of all coincident functions is a 2n−1 subspace with
cardinality 22

n−1
.

The rest of this paper is organized as follows. In Sect. 2, we review the basic
properties of boolean functions. In Sect. 3, we introduce the new notion of Dirichlet
product for boolean functions and study its arithmetic properties. In Sect. 4, we study
the arithmetical and algebraic structure of the set of all coincident boolean functions.
We conclude the paper in Sect. 5.

2 Boolean functions

Let n ≥ 1. A boolean function f on n variables is a mapping from {0, 1}n into {0, 1}.
It can be defined by its truth table, that is by f (x1, . . . , xn) for each (x1, . . . , xn) ∈
{0, 1}n . For xi , εi ∈ GF(2), we define xεi

i

xεi
i =

{
xi if εi = 1,

1 if εi = 0

with the convention that 00 = 1.
The set of all boolean functions on n variables is denoted Bn and any boolean

function f ∈ Bn can be uniquely represented by an n-multivariate polynomial over
GF(2), called algebraic normal form (ANF),

f (x) =
∑

ε∈GF(2)n

fε xε,

where fε ∈ GF(2) is the coefficient of the term xε = xε1
1 xε2

2 . . . xεn
n . In GF(2), the

addition operation is simply the XOR.
The summand xε = xε1

1 . . . xεn
n is called a monomial (term) in the ANF of f .

The summand xε is said to appear in f if fε �= 0. The degree of this summand
xε is the Hamming weight wH (ε) of ε, that is the number of non-zero elements in
it. The (algebraic) degree of f , denoted by deg( f ), is the maximum degree of all
summands that appear in f , that is maximum of all Hamming weights. For a constant
zero function, we assume its degree is 0. The coefficient fε of the summand xε is
related the Möbius transformation.

Definition 1 Let f ∈ Bn with a polynomial

f (x) =
∑

ε∈GF(2)n

fε xε .

TheMöbius transformation of f is the boolean function f̂ : GF(2)n → GF(2) defined
as
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f̂ (ε) = fε .

Using this definition, the polynomial f (x) becomes

f (x) =
∑

ε∈GF(2)n

f̂ (ε) xε .

We now define a partial ordering � in GF(2)n in the following definition.

Definition 2 Let u = (u1, u2, . . . , un) ∈ GF(2)n and x = (x1, x2, . . . , xn) ∈
GF(2)n . We define the ordering

u � x ⇔ ui ≤ xi for all i with 1 ≤ i ≤ n.

The following simple result gives an expression of a boolean function f in terms of
its Möbius transform f̂ .

Theorem 1 For x = (x1, . . . , xn) ∈ GF(2)n and u = (u1, . . . , un) ∈ GF(2)n,

f (x) =
∑

u�x

f̂ (u), (5)

Take an example, let n = 3,

f (x1, x2, x3) = f̂ (0, 0, 0) + f̂ (1, 0, 0)x1 + f̂ (0, 1, 0)x2 + f̂ (0, 0, 1)x3

+ f̂ (1, 1, 0)x1x2 + f̂ (0, 1, 1)x2x3 + f̂ (1, 0, 1)x1x3

+ f̂ (1, 1, 1)x1x2x3.

So

f (0, 0, 0) = f̂ (0, 0, 0)

f (1, 0, 0) = f̂ (0, 0, 0) + f̂ (1, 0, 0)

f (0, 1, 0) = f̂ (0, 0, 0) + f̂ (0, 1, 0)

f (0, 0, 1) = f̂ (0, 0, 0) + f̂ (0, 0, 1)

f (1, 1, 0) = f̂ (0, 0, 0) + f̂ (1, 0, 0) + f̂ (0, 1, 0) + f̂ (1, 1, 0)

. . .

Solving these equations, we have the dual equations

f̂ (0, 0, 0) = f (0, 0, 0)

f̂ (1, 0, 0) = f (0, 0, 0) + f (1, 0, 0)

f̂ (0, 1, 0) = f (0, 0, 0) + f (0, 1, 0)

f̂ (0, 0, 1) = f (0, 0, 0) + f (0, 0, 1)

f̂ (1, 1, 0) = f (0, 0, 0) + f (1, 0, 0) + f (0, 1, 0) + f (1, 1, 0)

. . .
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In matrix form, these equations become

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (0, 0, 0)
f (1, 0, 0)
f (0, 1, 0)
f (0, 0, 1)
f (1, 1, 0)
f (1, 0, 1)
f (0, 1, 1)
f (1, 1, 1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̂ (0, 0, 0)
f̂ (1, 0, 0)
f̂ (0, 1, 0)
f̂ (0, 0, 1)
f̂ (1, 1, 0)
f̂ (1, 0, 1)
f̂ (0, 1, 1)
f̂ (1, 1, 1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

and ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̂ (0, 0, 0)
f̂ (1, 0, 0)
f̂ (0, 1, 0)
f̂ (0, 0, 1)
f̂ (1, 1, 0)
f̂ (1, 0, 1)
f̂ (0, 1, 1)
f̂ (1, 1, 1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (0, 0, 0)
f (1, 0, 0)
f (0, 1, 0)
f (0, 0, 1)
f (1, 1, 0)
f (1, 0, 1)
f (0, 1, 1)
f (1, 1, 1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

In the above example, we can see the duality between f and f̂

f̂ (x) =
∑

u�x

f (u). (8)

This is not accidental. The duality between (5) and (8) is explained by the fact that
f̂ = f ∗ 1 and f = f̂ ∗ 1 as in Theorem 3.

3 Dirichlet product for boolean functions

In this section, we define the Dirichlet product f ∗ g for two boolean functions f and
g and study several properties of the monoid (Bn, ∗). In the rest of this paper, the term
(0, 0, . . . , 0) ∈ GF(2)n is often denoted as 0.

Lemma 1 Let x = (x1, x2, . . . , xn) ∈ GF(2)n. Then there are 2wH (x) terms u =
(u1, u2, . . . , un) ∈ GF(2)n such that u � x where wH (x) is the Hamming weight of
x.

Proof Let x = (x1, x2, . . . , xn). For each i with 1 ≤ i ≤ n, we have

ui ≤ xi for

{
ui = 0 if xi = 0
ui ∈ {0, 1} if xi = 1
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It follows that the number of terms u ∈ GF(2)n satisfying u � x is

n∏

i=1

2xi = 2wH (x),

wH (x) is the Hamming weight of x . 
�
Example 1 Let n = 3 and x = (1, 0, 1) ∈ GF(2)3. Then the set of all u ∈ GF(2)3

such that u � x is

{(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)} .

Now, we define the notion of Dirichlet product of two boolean functions.

Definition 3 The Dirichlet product of two boolean functions f, g ∈ Bn is defined as

( f ∗ g)(x) =
∑

u�x

f (u)g(x − u)

Example 2 Let n = 3 and x = (0, 1, 1) ∈ GF(2)3. Let f, g ∈ B3. Then the Dirichlet
product of f and g is

( f ∗ g)(0, 1, 1) = f (0, 0, 0)g(0, 1, 1) + f (0, 1, 0)g(0, 0, 1)

+ f (0, 0, 1)g(0, 1, 0) + f (0, 1, 1)g(0, 0, 0).

The following result shows that the set Bn is an abelian monoid with respect to the
Dirichlet product.

Theorem 2 (Bn, ∗) is an Abelian monoid with the identity

I (x) =
{
1 if x = 0
0 if x �= 0

(9)

Proof We have

( f ∗ g)(x) =
∑

u�x

f (u)g(x − u)

=
∑

u,v�x,u+v=x

f (u)g(v)

=
∑

v�x

g(v) f (x − v) = (g ∗ f )(x),

so the Dirichlet product is commutative: f ∗ g = g ∗ f .
We also have

(( f ∗ g) ∗ h)(x) =
∑

u,v,w�x,u+v+w=x

f (u)g(v)h(w) = ( f ∗ (g ∗ h))(x)

123



300 A. Nitaj et al.

so the Dirichlet product is associative.
Finally,

( f ∗ I )(x) =
∑

u,v�x,u+v=x

f (u)I (v) = f (x)I (0) = f (x),

and I is the identity. 
�
The following result shows that theDirichlet product is distributive over the addition

operation in Bn .

Lemma 2 For f, g ∈ Bn, define addition operation f + g ∈ Bn as

( f + g)(x) = f (x) + g(x).

Then the Dirichlet product is distributive over this addition operation.

Proof We have

( f ∗ (g + h))(x) =
∑

u�x

f (u)(g + h)(x − u) =
∑

u�x

f (u)(g(x − u) + h(x − u))

=
∑

u�x

f (u)g(x − u) +
∑

u�x

f (u)h(x − u)

= ( f ∗ g)(x) + ( f ∗ h)(x)

so f ∗ (g + h) = f ∗ g + f ∗ h. 
�
The next result gives one of the basic properties of the Dirichlet product.

Lemma 3 For any functions f, g ∈ Bn,

( f ∗ g)(0) = f (0)g(0)

Proof Since u � 0 happens only for u = 0, we have

( f ∗ g)(0) =
∑

u�0

f (u)g(0 − u) = f (0)g(0).


�
The next result defines the constant boolean function 1 and links it to the identity
function I .

Lemma 4 Let 1 ∈ Bn denote the constant function

1(x) = 1, ∀x ∈ GF(2)n (10)
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then

1 ∗ 1 = I.

It means that 1 is its own inverse under Dirichlet multiplication.

Proof By Theorem 3, we have (1 ∗ 1)(0) = 1(0)1(0) = 1. For x �= 0, we have

(1 ∗ 1)(x) =
∑

u�x

1(u)1(x − u) =
∑

u�x

1.

Since, by Lemma 1, there are 2wH (x) terms u with u � x , we have (1 ∗ 1)(x) = 0 for
x �= 0. In conclusion, 1 ∗ 1 = I . 
�

The following result shows that the ANF of a boolean function is related to the
Dirichlet product.

Theorem 3 For any function f ∈ Bn, we have

f = f̂ ∗ 1, f̂ = f ∗ 1, ˆ̂f = f.

Proof First, we have

( f̂ ∗ 1)(x) =
∑

u�x

f̂ (u)1(x − u) =
∑

u�x

f̂ (u).

Therefore, by Theorem 1, f = f̂ ∗ 1.
Combining this with Lemma 4, we get

f ∗ 1 = ( f̂ ∗ 1) ∗ 1 = f̂ ∗ (1 ∗ 1) = f̂ ∗ I = f̂ .

Applying the former results, we get

ˆ̂f = f̂ ∗ 1 = ( f ∗ 1) ∗ 1 = f ∗ (1 ∗ 1) = f ∗ I = f.

This terminates the proof. 
�
The mysterious duality between a boolean function and its Möbius transformation is
actually a manifestation of a simple fact in Dirichlet product, that is 1 ∗ 1 = I . The
relationship between the results of Theorem 3 is liken to that of (3) and (4).

Theorem 4 For any function f ∈ Bn,

f̂ (0) = f (0).

Proof The proof follows from Lemma 3 and Theorem 3. 
�

123



302 A. Nitaj et al.

The following result shows that f ∗ f is either the identity I or the constant function
0.

Theorem 5 For any function f ∈ Bn,

f ∗ f = f (0)I =
{

I if f (0) = 1
0 if f (0) = 0

(11)

Proof Applying Lemma 3, we get ( f ∗ f )(0) = f (0) f (0) = f (0). When x �= 0,

( f ∗ f )(x) =
∑

u�x

f (u) f (x − u).

Since u � x and x−u � x , everything in the sumappear twice.Hence, ( f ∗ f )(x) = 0.
So f ∗ f = f (0)I . 
�
Theorem 6 For any function f ∈ Bn,

f ∗ f̂ = f̂ ∗ f = f (0), (12)

where f (0) is the constant function defined by f (0)(x) = f (0).

Proof By Theorem 3 and Theorem 5, we have

f ∗ f̂ = f ∗ ( f ∗ 1) = ( f ∗ f ) ∗ 1 = f (0)I ∗ 1 = f (0)1 = f (0),


�
In the following result, we give a characterization of a reversible boolean function
with respect to the Dirichlet product.

Theorem 7 For any function f ∈ Bn, f has a Dirichlet inverse if and only if f (0) = 1,
and in this case, f is the Dirichlet inverse of itself.

Proof Suppose that f is invertible with an inverse g. Then f ∗ g = I and ( f ∗
g)(0) = f (0)g(0) = 1. Then f (0) = 1. Conversely, suppose that f (0) = 1, then
f ∗ f = f (0)I = I . Hence f is invertible and f is the Dirichlet inverse of itself. 
�
Next, we show that the set of Dirichlet invertible boolean functions is an Abelian
group.

Theorem 8 Let B+
n denote the set

B+
n = { f ∈ Bn : f (0) = 1}.

Then (B+
n , ∗) is an Abelian group.
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Proof Let f ∈ B+
n and g ∈ B+

n be two invertible boolean functions. By Theorem 7,
we know that f (0) = g(0) = 1. Then ( f ∗ g)(0) = f (0)g(0) = 1, which implies that
f ∗ g ∈ B+

n . Moreover, the inverse of f ∈ B+
n is itself and B+

n contains the identity
function I . These properties show that (B+

n , ∗) is an Abelian subgroup of (Bn, ∗). 
�
The following result is related to the degree of boolean functions. Recall the degree
of a boolean function f is defined as the maximum number of variables of the terms
xε = xε1

1 xε2
2 . . . xεn

n in the ANF of f .

Theorem 9 For any f, g ∈ Bn, we have

deg( f ) + deg(g) ≥ deg( f ∗ g ∗ 1) and deg( f ) + deg( f̂ ) ≥ n.

Proof To prove the first assertion, first, if deg( f ) + deg(g) ≥ n then this assertion
is obviously true. We only need to prove it for the case deg( f ) + deg(g) < n. If
wH (x) > deg( f ) + deg(g), then for any u � x , wH (u) + wH (x − u) = w(x) >

deg( f ) + deg(g), so wH (u) > deg( f ) or wH (x − u) > deg(g). If wH (u) > deg( f )

then f̂ (u) = 0, and if wH (x − u) > deg(g) then ĝ(x − u) = 0, so in either case, we
have f̂ (u)ĝ(x − u) = 0. It follows that

( f̂ ∗ ĝ)(x) =
∑

u�x

f̂ (u)ĝ(x − u) = 0

holds for any x ∈ GF(2)n such that wH (x) > deg( f ) + deg(g). Therefore,

deg(( f̂ ∗ ĝ) ∗ 1) ≤ deg( f ) + deg(g).

Finally, ( f̂ ∗ ĝ) ∗ 1 = f ∗ 1 ∗ g ∗ 1 ∗ 1 = f ∗ g ∗ 1. This gives deg( f ) + deg(g) ≥
deg( f ∗ g ∗ 1).
Next, we have

deg( f ) + deg( f̂ ) ≥ deg( f ∗ f̂ ∗ 1).

But f ∗ f̂ ∗1 = f ∗ f ∗1∗1 = f (0)I ∗ I = f (0)I = I , so deg( f ∗ f̂ ∗1) = deg(I ) = n
and we obtain the inequality deg( f ) + deg( f̂ ) ≥ n. 
�

3.1 Basis for (Bn,+)

For f, g ∈ Bn , the function f + g ∈ Bn is defined as ( f + g)(x) = f (x) + g(x).
With this addition operation, Bn is a free Abelian group. There are two natural ways
to choose a basis for Bn . We will describe them in Theorems 10 and 11.

Theorem 10 For each a ∈ GF(2)n, define the function δa ∈ Bn as follows

δa(x) = (x1 + a1 + 1)(x2 + a2 + 1) . . . (xn + an + 1) =
{
1 if x = a
0 if x �= a

(13)
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Then {δa}a∈GF(2)n forms a basis for the vector space (Bn,+). Each function f ∈ Bn

can be written as a linear combination of basis functions δa as

f =
∑

a∈GF(2)n

f (a) δa . (14)

Proof If x = a, then for each i = 1, 2, . . . , n, xi + ai + 1 = 1 and δa(x) = 1. If
x �= a, then xi �= ai for some i . Hence xi + ai + 1 = 0 and δa(x) = 0.

We have

∑

a∈GF(2)n

f (a) δa(x) = f (x) δx (x) +
∑

a �=x

f (a) δa(x) = f (x),

so f = ∑
a∈GF(2)n f (a) δa . 
�

Note that, δ0 is the Dirichlet identity function I :

I (x) = δ0(x) = (x1 + 1)(x2 + 1) . . . (xn + 1) =
{
1 if x = 0
0 if x �= 0

(15)

Theorem 11 For each a ∈ GF(2)n, define the function ρa ∈ Bn as follows

ρa(x) = xa = xa1
1 xa2

2 . . . xan
n =

{
1 if a � x

0 if a � x
(16)

Then {ρa}a∈GF(2)n forms a basis for the vector space (Bn,+). Each function f ∈ Bn

can be written as a linear combination of basis functions ρa as

f =
∑

a∈GF(2)n

f̂ (a) ρa . (17)

Proof If a � x then ai ≤ xi for each i = 1, 2, . . . , n. If xi = 0, then ai = 0 and
xai

i = 00 = 1. If xi = 1, then xai
i = 1. In all cases, xai

i = 1 and ρa(x) = 1.
Next, suppose that a � x . Then there exists i with 1 ≤ i ≤ n such that ai > xi . This
implies that xi = 0 and ai = 1. Hence xai

i = xi = 0 and ρa(x) = 0.
Now, we have for x ∈ GF(2)n ,

∑

a∈GF(2)n

f̂ (a) ρa(x) =
∑

a�x

f̂ (a) ρa(x) +
∑

a�x

f̂ (a) ρa(x) =
∑

a�x

f̂ (a) = f (x),

by Theorem 1. 
�
Theorem 12 For any a ∈ GF(2)n, the basis functions δa and ρa satisfy the following
relations:
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– δa ∗ 1 = ρa and ρa ∗ 1 = δa,
– δa ∗ δb = ρa ∗ ρb = ρa ρb δa+b.

Proof First, observe that since ρa(x) = xa , the function ρa in ANF has only one
monomial term xa , so its ANF coefficient function is δa . That is ρa ∗ 1 = δa , and so
δa ∗ 1 = ρa ∗ 1 ∗ 1 = δa ∗ I = δa .
Next, for any a and b, we have

(δa ∗ δb)(x) =
∑

u,v�x,u+v=x

δa(u)δb(v)

=
{
1 if a � x, b � x, a + b = x .

0 otherwise

= ρa(x)ρb(x)δa+b(x)

Therefore,

δa ∗ δb = ρa ρb δa+b.

Finally,

ρa ∗ ρb = δa ∗ 1 ∗ δb ∗ 1 = δa ∗ δb.


�

4 Coincident functions

In this section, we study a special family of boolean functions, called coincident
functions which was first introduced in [5].

Definition 4 A coincident function is a function f : GF(2)n → GF(2) such that
f̂ = f .

Example 3 For n = 3, let f be the function

f (x1, x2, x3) = f̂ (0, 0, 0) + f̂ (1, 0, 0)x1 + f̂ (0, 1, 0)x2 + f̂ (0, 0, 1)x3
+ f̂ (1, 1, 0)x1x2 + f̂ (0, 1, 1)x2x3 + f̂ (1, 0, 1)x1x3
+ f̂ (1, 1, 1)x1x2x3

= 0 + x1 + x2 + x3 + x1x2 + x2x3 + x1x3 + x1x2x3.

Then

f (0, 0, 0) = f̂ (0, 0, 0) = 0,

f (1, 0, 0) = f̂ (1, 0, 0) = 1, . . . , f (1, 1, 1) = f̂ (1, 1, 1) = 1,

that is f = f̂ and f is coincident.
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Theorem 13 For any coincident function f ,

f (0) = 0.

Proof Suppose that f is a coincident function, that is f = f̂ . Then, using Theorem 1,
we get

f (0, 0, . . . , 0, 1) = f̂ (0) + f̂ (0, 0, . . . , 0, 1).

Since f (0, 0, . . . , 0, 1) = f̂ (0, 0, . . . , 0, 1), then f̂ (0) = f (0) = 0. 
�
Let Cn denote the set of all such coincident functions.

Theorem 14 A function f ∈ Bn is a coincident function if and only if

(1 + I ) ∗ f = 0.

Thus, Cn is the annihilator of 1 + I in Bn.

Proof Suppose that f is a coincident function, that is f = f̂ . Then

0 = f̂ + f = f ∗ 1 + f ∗ I = f ∗ (1 + I ).

Conversely, suppose that f ∗(1+ I ) = 0. Then, usingTheorem3,we get f ∗1+ f ∗ I =
f̂ + f = 0. This implies that f̂ = f and then f is coincident. 
�
Observe that for any x ∈ GF(2)n , we have

(1 + I )(x) = (x1 + 1)(x2 + 1) . . . (xn + 1) + 1,

δ1...1(x) = x1x2 . . . xn,

ρ1...1(x) = x1x2 . . . xn .

Theorem 15 The boolean functions 1 + I , δ1...1 and ρ1...1 are coincident functions.

Proof Combining Theorems 14 and 4, we get

(1 + I ) ∗ (1 + I ) = 1 ∗ 1 + I ∗ I = I + I = 0.

Hence 1 + I is coincident. Next, combining Theorem 14 and Lemma 12, we get for
any x ∈ GF(2)n ,

(1 + I ) ∗ δ1...1(x) = (1 ∗ δ1...1)(x) + (I ∗ δ1...1)(x) = ρ1...1(x) + δ1...1(x).

Then, using Theorems 10 and 11, we get

ρ1...1(x) + δ1...1(x) =
{
1 + 1 = 0 if x = 1 . . . 1,

0 + 0 = 0 if x �= 1 . . . 1.
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It follows that (1 + I ) ∗ δ1...1 = 0 and δ1...1 is coincident. 
�
Theorem 16 For any u ∈ GF(2)n, δu + ρu is a coincident function.

Proof Combining Theorems 14 and 12, we get

(1 + I ) ∗ (δu + ρu) = 1 ∗ δu + 1 ∗ ρu + δu + ρu = 2δu + 2ρu = 0

Hence δu + ρu is a coincident function. 
�
Theorem 17 A function f ∈ Bn is a coincident function if and only if for any (x2, . . . ,
xn) ∈ GF(2)n−1,

f (0, x2, . . . , xn) =
∑

(u2,...,un)≺(x2,...,xn)

f (1, u2, . . . , un), (18)

where u ≺ x means u � x and u �= x.

Proof Since

(1 + I )(x) =
{
0 if x = 0
1 if x �= 0

(19)

we have

((1 + I ) ∗ f )(x) =
∑

u�x

f (u)(1 + I )(x − u) =
∑

u≺x

f (u).

Therefore, (1 + I ) ∗ f = 0 if and only if for any x ∈ GF(2)n ,

∑

u≺x

f (u) = 0.

Consider two cases, x1 = 0 and x1 = 1.
When x1 = 0, the condition becomes

∑

(u2,...,un)≺(x2,...,xn)

f (0, u2, . . . , un) = 0.

When x1 = 1, the condition becomes

f (0, x2, . . . , xn) +
∑

(u2,...,un)≺(x2,...,xn)

f (0, u2, . . . , un)

+
∑

(u2,...,un)≺(x2,...,xn)

f (1, u2, . . . , un) = 0.

Therefore, if f is a coincident function then for any (x2, . . . , xn) ∈ GF(2)n−1, we
must have

f (0, x2, . . . , xn) =
∑

(u2,...,un)≺(x2,...,xn)

f (1, u2, . . . , un).
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Conversely, suppose that for any (x2, . . . , xn) ∈ GF(2)n−1,

f (0, x2, . . . , xn) =
∑

(u2,...,un)≺(x2,...,xn)

f (1, u2, . . . , un).

Then
∑

(u2,...,un)≺(x2,...,xn)

f (0, u2, . . . , un)

=
∑

(u2,...,un)≺(x2,...,xn)

∑

(v2,...,vn)≺(u2,...,un)

f (1, v2, . . . , vn).

The above sum is equal to 0 because for any term f (1, v2, . . . , vn), the number of its
occurrences in the sum is equal to the number of (u2, . . . , un) such that (v2, . . . , vn) ≺
(u2, . . . , un) ≺ (x2, . . . , xn), and this is always an even number for any (v2, . . . , vn) ≺
(x2, . . . , xn). Hence for any (x2, . . . , xn) ∈ GF(2)n−1, we have

∑

(u2,...,un)≺(x2,...,xn)

f (0, u2, . . . , un) = 0. (20)

Therefore,

f (0, x2, . . . , xn) +
∑

(u2,...,un)≺(x2,...,xn)

f (0, u2, . . . , un)

+
∑

(u2,...,un)≺(x2,...,xn)

f (1, u2, . . . , un) = 0.
(21)

Combining (20) and (21), we see that

∑

u≺x

f (u) = 0,

that is (1 + I ) ∗ f = 0 and f is a coincident function. 
�
The following theorem reveals a relationship between the set of coincident functions

Cn and the set of all boolean functions Bn .

Theorem 18 It holds that

1. A coincident function f ∈ Cn is specified freely and uniquely by its values on 2n−1

points (1, u2, . . . , un) ∈ GF(2)n.
2. There are exactly 22

n−1
coincident functions in total.

3. (Cn,+) is a 2n−1-dimensional linear subspace of (Bn,+).

Proof To prove the first assertion, observe that by Theorem 17, a coincident function
f ∈ Cn is specified freely by its values on 2n−1 points (1, u2, . . . , un) ∈ GF(2)n , and
its values on 2n−1 other points (0, u2, . . . , un) ∈ GF(2)n are uniquely determined
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by (18). The second assertion follows since there are exactly 2 choices for choosing
f (1, u2, . . . , un) ∈ {0, 1}, then there are exactly 22

n−1
coincident functions in total.

To prove the third assertion, observe that if f ∈ Cn and g ∈ Cn , then f + g ∈ Cn . On
the other hand, the relation (18) defines any coincident function f ∈ Cn . It follows
that (Cn,+) is a 2n−1-dimensional linear subspace of (Bn,+). 
�

4.1 Basis for (Cn,+)

By Theorem 18, we know that (Cn,+) is a 2n−1-dimensional linear subspace of
(Bn,+). The following result gives an explicit basis for (Cn,+).

Theorem 19 For each (u2, . . . , un) ∈ GF(2)n−1, define the function γ(u2,...,un) ∈ Bn

as follows

γ(u2,...,un) = δ(0,u2,...,un) + δ(1,u2,...,un) + ρ(0,u2,...,un) + ρ(1,u2,...,un)

Then {γ(u2,...,un)}(u2,...,un)∈GF(2)n−1 forms a basis for the subspace (Cn,+), and each
coincident function f ∈ Cn can be written as a linear combination of basis functions
as

f =
∑

(u2,...,un)∈GF(2)n−1

f (1, u2, . . . , un) γ(u2,...,un).

Proof A coincident function f ∈ Bn is specified freely and uniquely by its values on
2n−1 points (1, u2, . . . , un) ∈ GF(2)n . For each (u2, . . . , un) ∈ GF(2)n−1, define the
coincident function c(u2,...,un) : GF(2)n → GF(2) as follows

c(u2,...,un)(x) =
{
1 if (x2, . . . , xn) = (u2, . . . , un)

0 otherwise

then the collection of these functions c(u2,...,un) will form a basis for the vector space
Cn and

f =
∑

(u2,...,un)∈GF(2)n−1

f (1, u2, . . . , un) c(u2,...,un).

We need to show that

c(u2,...,un) = γ(u2,...,un).
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Indeed, by Theorem 16, γ(u2,...,un) is a coincident function, so it suffices to show that
γ(u2,...,un) and c(u2,...,un) agree on 2n−1 points (1, x2, . . . , xn). We have

δ(0,u2,...,un)(1, x2, . . . , xn) = 0

δ(1,u2,...,un)(1, x2, . . . , xn) =
{
1 if (x2, . . . , xn) = (u2, . . . , un)

0 otherwise

ρ(0,u2,...,un)(1, x2, . . . , xn) = ρ(1,u2,...,un)(1, x2, . . . , xn)

Therefore,

γ(u2,...,un)(1, x2, . . . , xn) =
{
1 if (x2, . . . , xn) = (u2, . . . , un)

0 otherwise

and thus, γ(u2,...,un) = c(u2,...,un). 
�
Example 4 When n = 3, the following 4 coincident functions form a basis for the
subspace of all coincident functions:

γ(0,0) = δ(0,0,0) + δ(1,0,0) + ρ(0,0,0) + ρ(1,0,0)

= (x1 + 1)(x2 + 1)(x3 + 1) + x1(x2 + 1)(x3 + 1) + 1 + x1
= x1 + x2 + x3 + x2x3

γ(1,0) = δ(0,1,0) + δ(1,1,0) + ρ(0,1,0) + ρ(1,1,0)

= (x1 + 1)x2(x3 + 1) + x1x2(x3 + 1) + x2 + x1x2
= x1x2 + x2x3

γ(0,1) = δ(0,0,1) + δ(1,0,1) + ρ(0,0,1) + ρ(1,0,1)

= (x1 + 1)(x2 + 1)x3 + x1(x2 + 1)x3 + x3 + x1x3
= x1x3 + x2x3

γ(1,1) = δ(0,1,1) + δ(1,1,1) + ρ(0,1,1) + ρ(1,1,1)

= (x1 + 1)x2x3 + x1x2x3 + x2x3 + x1x2x3
= x1x2x3.

These 4 functions can be seen to be coincident in the following table

γ(0,0) γ(1,0) γ(0,1) γ(1,1)

(0,0,0) 0 0 0 0
(0,1,0) 1 0 0 0
(0,0,1) 1 0 0 0
(0,1,1) 1 1 1 0
(1,0,0) 1 0 0 0
(1,1,0) 0 1 0 0
(1,0,1) 0 0 1 0
(1,1,1) 0 0 0 1
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Theorem 20 For each f ∈ Cn define

fδ =
∑

(u2,...,un)∈GF(2)n−1

f (1, u2, . . . , un) (δ(0,u2,...,un) + δ(1,u2,...,un)).

and

fρ =
∑

(u2,...,un)∈GF(2)n−1

f (1, u2, . . . , un) (ρ(0,u2,...,un) + ρ(1,u2,...,un)).

then

f = fδ + fρ = (1 + I ) ∗ fδ = (1 + I ) ∗ fρ.

Proof By Theorem 19,

f = fδ + fρ

and by Theorem 12,

fδ ∗ 1 = fρ, fρ ∗ 1 = fδ,

therefore,

f = (1 + I ) ∗ fδ = (1 + I ) ∗ fρ.


�
Theorem 21 A function f ∈ Bn is a coincident function if and only if f = (1+ I )∗g
for some function g ∈ Bn.

Proof Suppose that f = (1 + I ) ∗ g. Then, using Theorem 15, we get

(1 + I ) ∗ f = (1 + I ) ∗ (1 + I ) ∗ g = 0 ∗ g = 0,

so f is a coincident function.
Conversely, suppose that f is a a coincident function. Then by Theorem 20, we have
f = (1 + I ) ∗ g with g = fδ . 
�

5 Conclusion and future work

In this paper, we have introduced a new notion, called Dirichlet product for boolean
functions. We have intensively studied the arithmetical and the algebraic structures of
the set of all boolean functions under this Dirichlet product. We have presented the
affects of the Dirichlet product on a boolean function and its Möbius transform. We
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have applied the Dirichlet product to coincident boolean functions and exhibited new
properties and characterizations of such functions.

The results presented in this paper on the newnotion ofDirichlet product for boolean
functions are not exhaustive. They are only the first steps toward further applications of
the Dirichlet product, especially in cryptography. We leave it as future work to investi-
gate possible applications of the Dirichlet product to find useful results to compute the
algebraic degree of a boolean function and to characterize cryptographic properties
such as nonlinearity, balancedness, correlation immunity and algebraic immunity.
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