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Abstract In this paper, we consider a discrete fractional boundary value problemwith
p-Laplacian operator of the form

⎧
⎪⎨

⎪⎩

�β [φp(�
α y)](t) + f (α + β + t − 1, y(α + β + t − 1)) = 0, t ∈ [0, b]N0 ,

�α y(β − 2) = �α y(β + b) = 0,

y(α + β − 4) = y(α + β + b) = 0,

where f : [α+β−4, α+β+b]Nα+β−4 ×R → R is a continuous function, and p > 1,
1 < α, β ≤ 2. We study the existence and uniqueness of solution to this problem by
using a variety of tools from nonlinear functional analysis including the contraction
mapping theorem and Brouwer fixed point theorem.
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1 Introduction

In recent years, fractional differential equations have seen tremendous growth. For
some recent results and applications, we can see Wu et al. [1], which shows that a
discrete fractional difference equation with Caputo derivative sense has an explicit
solution in form of the discrete Mittag–Leffler function. Tarasov [2] formulated dis-
crete models for dislocations in fractional nonlocal continua.

The non-locality of fractional differential equations can describe mathematical
model better. However, it is difficult for us to calculate and analyze mathematical
problems. With the development of computer, it is well known that discrete analogues
of differential equations can be very useful, especially for using computer to simulate
the behavior of solutions for certain dynamic equations.

A recent paper by Goodrich [3] explored a discrete fractional boundary value prob-
lem of the form

⎧
⎪⎨

⎪⎩

−�ν y(t) = f (t + ν − 1, y(t + ν − 1)), t ∈ [0, b]N0 ,

y(ν − 2) = g(y),

y(ν + b) = 0,

where f ∈ [ν − 2, ν + b − 1]Nν−2 × R → R is a continuous function, g : C([ν −
2, ν + b]Nν−2 ,R) is given function, and 1 < ν ≤ 2. This problem was solved by the
contraction mapping theorem, Brouwer fixed point theorem, and Guo–Krasnosel’skii
fixed point theorem.

Pan and Han [4] studied the existence and nonexistence of positive solutions to a
discrete fractional boundary value problem with a parameter

{
−�ν y(t) = λ f (t + ν − 1, y(t + ν − 1)), t ∈ [0, b + 1]N0 ,

y(ν − 2) = y(ν + b + 1) = 0,

where 1 < ν ≤ 2 is a real number, f : [ν − 1, ν + b]Nν−1 × R → (0,+∞) is a
continuous function, b ≥ 2 is an integer, λ is a parameter. The eigenvalue intervals of
the nonlinear fractional differential equation boundary value problem are considered
by the properties of the Green function and Guo–Krasnosel’skii fixed point theorem
in cones, some sufficient conditions of the nonexistence of positive solutions for the
boundary value problem are established.

Differential equations with p-Laplacian operator are increasingly applied in real
life, especially in physics and engineering [5]. Some theories of fractional differential
equations with p-Laplacian operator are just beginning to be investigated. Lu and
Han [6] investigated the existence of positive solutions for the eigenvalue problem of
nonlinear fractional differential equation with generalized p-Laplacian operator

{
Dβ

0+(φp(Dα
0+u(t))) = λ f (u(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0, φp(Dα
0+u(0)) = (φp(Dα

0+u(1)))′ = 0,
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where 2 < α ≤ 3, 1 < β ≤ 2, Dα
0+ and Dβ

0+ are the standard Riemann–Liouville
fractional differential, φ is the generalized p-Laplacian operator, λ > 0 is a parameter,
and f : (0,+∞) → (0,+∞) is a continuous function. By using the Green function’s
properties andGuo–Krasnosel’skii fixed point theorem in cones, several new existence
results of at least one or two positive solutions in terms of different eigenvalue interval
are obtained.

Motivated by all the works above, we consider a discrete fractional boundary value
problem with p-Laplacian operator

�β [φp(�
α y)](t) + f (α + β + t − 1, y(α + β + t − 1)) = 0, t ∈ [0, b]N0 , (1.1)

�α y(β − 2) = �α y(β + b) = 0, (1.2)

y(α + β − 4) = y(α + β + b) = 0, (1.3)

where p > 1, 1 < α, β ≤ 2, �α and �β denote the Riemann–Liouville fractional
differences of order α and β respectively, f : [α +β −4, α +β +b]Nα+β−4 ×R → R

is a continuous function. φp is the p-Laplacian operator, that is, φp(u) = |u|p−2u,
p > 1. Obviously, φp is invertible and its inverse operator is φq , where q > 1 is a
constant with 1

p + 1
q = 1.

Ourwork presented in this article has the following featureswhich areworth empha-
sizing.

(i) As far as we know, there is less literature available concerned with four-point
boundary value problems of fractional difference equation which �α and �β are
the standard Riemann–Liouville fractional differences.

(ii) We consider the boundary value problem with p-Laplacian which arises in the
modeling of different physical and natural phenomena.

(iii) When p = 2, the fractional difference equation (1.1) reduce to �β(�α y)(t) +
f (α+β+ t−1, y(α+β+ t−1)) = 0 which involves mixed fractional difference
equations.

(iv) When p = 2 and β = 0, the fractional difference equation (1.1) reduce to
�α y(t) + f (α + t − 1, y(α + t − 1)) = 0 which is the form studied in [3] and
[7].

The plan of the paper is as follows. In Sect. 2, we give some definitions and lemmas
which are needed in this paper. In Sect. 3, we study the existence and uniqueness of
solution to problem (1.1)–(1.3) by using Banach contraction mapping theorem and
Brouwer fixed point theorem. In Sect. 4, we give examples to illustrate the theorems.

2 Preliminaries

For the convenience of the reader,wegive somenecessary basic definitions and lemmas
in discrete fractional calculus theory.

Definition 2.1 ([3]) We define tν := �(t+1)
�(t+1−ν)

for any t and ν, for which the right-
hand side is defined. We also appeal to the convention that if t + 1− ν is a pole of the
Gamma function and t + 1 is not a pole, then tν = 0.
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Definition 2.2 ([3]) The νth fractional sum of a function f , for ν > 0, is defined by

�−ν f (t; a) := 1

�(ν)

t−ν∑

s=a

(t − s − 1)ν−1 f (s),

for t ∈ {a + ν, a + ν + 1, · · ·} := Na+ν . We also define the νth fractional difference
for ν > 0 by �ν f (t) := �N�ν−N f (t), where t ∈ Na+ν and ν ∈ N is chosen so that
0 ≤ N − 1 < ν ≤ N .

Lemma 2.1 ([3]) Let 0 ≤ N − 1 < ν ≤ N, where N ∈ N and N − 1 ≥ 0. Then

�−ν�ν y(t) = y(t) + C1t
ν−1 + C2t

ν−2 + · · · + CN t
ν−N ,

for some Ci ∈ R, with 1 ≤ i ≤ N.

Lemma 2.2 ([3]) Let t and ν be any numbers for which tν and tν−1 are defined. Then

�tν = νtν−1.

Lemma 2.3 ([3]) For t and s, for which both (t − s−1)ν and (t − s−2)ν are defined,
we find that

�s[(t − s − 1)ν] = −ν(t − s − 2)ν−1.

Lemma 2.4 ([7]) et 0 ≤ N − 1 < ν ≤ N, where positive integer N greater than or
equal to ν and ν > 0. Defined

�ν tν = �N−(N−ν)tν = �N�−(N−ν)tν.

Replace ν by ν − m to obtain

�ν tν−m = �(ν − m + 1)

�(N − m + 1)
�N t N−m,

when �N t N−m = 0,m = 1 . . . N, we have �ν tν−m = 0,m = 1 . . . N.

We now state and prove an important lemma. This lemma will give a representation
for the solution to (1.1)–(1.3), provided that the solution exists. This representation
will be crucial in Sect. 3 of this paper when we prove our existence and uniqueness
theorems.

Lemma 2.5 Let f : [α + β − 4, α + β + b]Nα+β−4 × R → R be given. A function y
is a solution of the (1.1)–(1.3), if and only if it has the form

y(t) =
β+b∑

s=β−2

H(t, s)h(s), t ∈ [α + β − 4, α + β + b]Nα+β−4 , (2.1)
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where H(t, s), h(s) and G(s, l) are given by

H(t, s)= 1

�(α)

⎧
⎪⎨

⎪⎩

(t−β+2)α−1(α+β+b−s−1)α−1

(α+b+2)α−1 − (t − s − 1)α−1, s < t − α + 1 ≤ β + b,

(t−β+2)α−1(α+β+b−s−1)α−1

(α+b+2)α−1 , t−α+1≤s≤β+b,
(2.2)

h(s) = −φq

[ b∑

l=0

G(s, l) f (l + α + β − 1, y(l + α + β − 1))

]

, s ∈ [β − 2, β + b]Nβ−2
,

(2.3)

G(s, l) = 1

�(β)

⎧
⎨

⎩

sβ−1
(β+b−l−1)β−1

(β+b)β−1 − (s − l − 1)β−1, 0 ≤ l < s − β + 1 ≤ b,

sβ−1
(β+b−l−1)β−1

(β+b)β−1 , 0 ≤ s − β + 1 ≤ l ≤ b.

Proof If y(t) is a solution to (1.1)–(1.3), by using Lemma 2.1, we find that

[φp(�
α y)](t) = −�−β f (t + α + β − 1, y(t + α + β − 1)) + C1t

β−1 + C2t
β−2

= − 1

�(β)

t−β∑

l=0

(t − l − 1)β−1 f (l + α + β − 1, y(l + α + β − 1))

+C1t
β−1 + C2t

β−2,

where t ∈ [β − 2, β + b]Nβ−2 . Consequently, boundary condition (1.2) implies that
C2 = 0 and

C1 = 1

(β + b)β−1�(β)

b∑

l=0

(β + b − l − 1)β−1 f (l + α + β − 1, y(l + α + β − 1)),

then we deduce that

[φp(�
α y)](t) = − 1

�(β)

t−β∑

l=0

(t − l − 1)β−1 f (l + α + β − 1, y(l + α + β − 1))

+ 1

(β + b)β−1�(β)

b∑

l=0

(β + b − l − 1)β−1 f (l + α + β − 1,

y(l + α + β − 1))tβ−1,

for t ∈ [β − 2, β + b]Nβ−2 . Hence, we have

[φp(�
α y)](t) =

b∑

l=0

G(t, l) f (l+α+β−1, y(l+α+β−1)), t ∈ [β−2, β+b]Nβ−2 .

(2.4)
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Then taking p-Laplacian inverse of operators on both sides of (2.4), we find that

(�α y)(t) = φq

[ b∑

l=0

G(t, l) f (l + α + β − 1, y(l + α + β − 1))

]

,

t ∈ [β − 2, β + b]Nβ−2 .

Next let

−h(t) = φq

[ b∑

l=0

G(t, l) f (l + α + β − 1, y(l + α + β − 1))

]

,

t ∈ [β − 2, β + b]Nβ−2 .

By using Lemma 2.1, we deduce that

y(t) = −�−αh(t) + D1(t − β + 2)α−1 + D2(t − β + 2)α−2,

t ∈ [α + β − 4, α + β + b]Nα+β−4 .

Consequently, boundary condition (1.3) implies that D2 = 0 and

D1 = 1

(α + b + 2)α−1�(α)

β+b∑

s=β−2

(α + β + b − s − 1)α−1h(s),

thus we get function (2.1) that

y(t) =
β+b∑

s=β−2

H(t, s)h(s), t ∈ [α + β − 4, α + β + b]Nα+β−4 .

On the other hand, the function y(t) is satisfied to (2.1), then y(α + β − 4) = 0, if
t = α + β − 4; and y(α + β + b) = 0, if t = α + β + b. It is to say function (2.1)
meet the boundary condition (1.3).

What’s more, function y(t) defined by (2.1) can transform to

y(t) = −�−αh(t) + D1(t − β + 2)α−1, t ∈ [α + β − 4, α + β + b]Nα+β−4 .

Then we find that

�α y(t) = −�α�−αh(t) + D1�
α(t − β + 2)α−1, t ∈ [β − 2, β + b]Nβ−2 .

By using Lemma 2.1, we know that

�α(t − β + 2)α−1 = �(α)

�(2)
�2(t − β + 2) = 0. (2.5)
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By Eq. (2.5), function �α y(t) has the form

�α y(t) = −h(t) = φq

[ b∑

s=0

G(t, s) f (s + α + β − 1, y(s + α + β − 1))

]

,

t ∈ [β − 2, β + b]Nβ−2 . (2.6)

Then �α y(β − 2) = 0, if t = β − 2; and then �α y(β + b) = 0, if t = β + b. It is
to say function (2.1) meet the boundary condition (1.2). Taking p-Laplacian operators
on both sides of (2.6), we find that

[φp(�
α y)](t) =

b∑

s=0

G(t, s) f (s + α + β − 1, y(s + α + β − 1)),

t ∈ [β − 2, β + b]Nβ−2 ,

or the form

[φp(�
α y)](t) = −�−β f (t + α + β − 1, y(t + α + β − 1))

+ 1

(β + 2)β−1�(β)

b∑

s=0

(β + b − s − 1)β−1 f (s)tβ−1,

t ∈ [β − 2, β + b]Nβ−2 . (2.7)

By Eq. (2.7), function �β [φp(�
α y)](t) has the form

�β [φp(�
α y)](t) = −�β�−β f (t + α + β − 1, y(t + α + β − 1))

+ 1

(β + 2)β−1�(β)

b∑

s=0

(β + b − s − 1)β−1 f (s)�β tβ−1,

t ∈ [0, b]N0 .

By using Lemma 2.4, we know that

�β tβ−1 = �(β)

�(2)
�2t = 0. (2.8)

By Eq. (2.8), we find that

�β [φp(�
α y)](t) = − f (t + α + β − 1, y(t + α + β − 1)), t ∈ [0, b]N0 ,

which shows that if (1.1)–(1.3) has a solution, then it can be represented by (2.1) and
that every function of the form (2.1) is a solution of (1.1)–(1.3), which completes the
proof. �	
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3 Existence of solutions

In this section, we will show the existence of solutions for boundary value problem
(1.1)–(1.3).

Lemma 3.1 The Green’s function G(s, l) and function H(t, s) satisfy the following
conditions:

(i) G(s, l) ≥ 0, for (s, l) ∈ [β − 2, β + b]Nβ−2 × [0, b]N0 , H(t, s) ≥ 0, for (t, s) ∈
[α + β − 4, α + β + b]Nα+β−4 × [β − 2, β + b]Nβ−2 ;

(ii) maxs∈[β−2,β+b]Nβ−2
G(s, l) = G(l + β + 1, l), for l ∈ [0, b]N0 ,

maxt∈[α+β−4,α+β+b]Nα+β−4
H(t, s) = H(s+α+1, s), for s ∈ [β−2, β+b]Nβ−2 ;

(iii) there exists a numberγ ∈ (0, 1) such that

min
s∈

[
b+ν
4 ,

3(b+ν)
4

]G(s, l) ≥ γ max
s∈[ν−2,ν+b+1]Nν−2

G(s, l)

= γG(l + ν − 1, l), for l ∈ [0, b]N0 .

Remark 3.1 We omit the proof here, which is similar to Theorem 3.2 in [7].

Lemma 3.2 ([8])

(1) If 1 < p < 2, uv > 0 and |u|, |v| ≥ m > 0, then

|φp(v) − φp(u)| ≤ (p − 1)mp−2|v − u|.

(2) If p ≥ 2 and |u|, |v| ≤ M, then

|φp(v) − φp(u)| ≤ (p − 1)Mp−2|v − u|.

Define Banach spaces

B = {y : [β − 2, β + b]Nβ−2 → R}

and

C = {y : [α + β − 4, α + β + b]Nα+β−4 → R}

with maximum norm.
We now show that problem (1.1)–(1.3) has at least one solution under certain

conditions. From Lemma 2.5, we observe that problem (1.1)–(1.3) may be recast as
an equivalent summation equation. In order to get the main results, we introduce a
operator T : B → B by

T y(s) :=
b∑

l=0

G(s, l) f (l+α+β−1, y(l+α+β−1)), s ∈ [β−2, β+b]Nβ−2 . (3.1)
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From Lemma 2.5, we know that y is a solution of (1.1)–(1.3) if and only if y is a
fixed point of the operator

S : C → C

which is defined by

Sy(t) = −
β+b∑

s=β−2

H(t, s)φq(T y)(s), t ∈ [α + β − 4, α + β + b]Nα+β−4 , (3.2)

where H(t, s) and T y(s) are defined as (2.2) and (3.1).
We shall appeal to the contraction mapping theorem to get a unique solution of

boundary value problem (1.1)–(1.3) when p ≥ 2.

Theorem 3.1 Suppose that f (t, y) is Lipschitz in y, that is, there exists constant
L > 0 such that | f (t, y1) − f (t, y2)| ≤ L|y1 − y2| whenever y1, y2 ∈ R, t ∈
[α+β−4, α+β+b]Nα+β−4 , and there exists a function A(t) such that | f (t, y)| ≤ A(t),
for any y ∈ C, t ∈ [β − 2, β + b]Nβ−2 . If p ≥ 2 and M < 1, then the boundary value
problem (1.1)–(1.3) has a unique solution.

Proof By Lemma 3.1, for all y ∈ B, we can get that

‖T y‖ = max
s∈[β−2,β+b]Nβ−2

|T y(s)|

= max
s∈[β−2,β+b]Nβ−2

b∑

l=0

G(s, l)| f (l + α + β − 1, y(l + α + β − 1))|

≤
b∑

l=0

G(l + β − 1, l)A(l + α + β − 1).

Let M1 = ∑b
l=0 G(l + β − 1, l)A(l + α + β − 1). What’s more, for any y1, y2 ∈ B,

‖T y1 − T y2‖ ≤ L‖y1 − y2‖ max
s∈[β−2,β+b]Nβ−2

[
1

�(β)

s−β∑

l=0

(s − l − 1)β−1
]

+ L‖y1−y2‖ max
s∈[β−2,β+b]Nβ−2

[
(s)β−1

�(β)(β+b)β−1

b∑

l=0

(β+b−l−1)β−1

]

. (3.3)

We analyze the right-hand side of (3.3), by an application of Lemma 2.3, that
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L‖y1 − y2‖
[

1

�(β)

s−β∑

l=0

(s − l − 1)β−1
]

= L‖y1 − y2‖
�(β)

[−1

β
(s − l)β

]s−β+1

l=0

= L‖y1 − y2‖
[

�(s + 1)

�(s − β + 1)�(β + 1)

]

≤ L‖y1 − y2‖
[

�(β + b + 1)

�(b + 1)�(β + 1)

]

= L
b∏

j=1

(
β + j

j

)

‖y1 − y2‖, (3.4)

for s ∈ [β − 2, β + b]Nβ−2 . Similarly, we have

L‖y1−y2‖
[

(s)β−1

�(β)(β + b)β−1

b∑

l=0

(β + b − l − 1)β−1

]

≤ L
b∏

j=1

(
β + j

j

)

‖y1−y2‖,
(3.5)

for s ∈ [β − 2, β + b]Nβ−2 . So, putting (3.3)–(3.5) together, we conclude that

‖T y1 − T y2‖ ≤ 2L
b∏

j=1

(
β + j

j

)

‖y1 − y2‖, (3.6)

and let M2 = 2L
∏b

j=1

(
β+ j
j

)
.

Next, we will show that S defined as (3.2) is a contraction map. To this end, we
note that for given y1, y2 ∈ C ,

|Sy1(t) − Sy2(t)| ≤ (q − 1)
β+b∑

s=β−2

H(s + α − 1, s)M (q−2)
1 |T y1(t) − T y2(t)|

≤ (q − 1)
β+b∑

s=β−2

H(s + α − 1, s)M (q−2)
1 ‖T y1 − T y2‖

≤ (q − 1)
β+b∑

s=β−2

H(s + α − 1, s)M (q−2)
1 M2‖y1 − y2‖, (3.7)

for t ∈ [α + β − 4, α + β + b]Nα+β−4 . For convenience, let us put

M = (q − 1)
β+b∑

s=β−2

H(s + α − 1, s)M (q−2)
1 M2. (3.8)
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By inequality (3.7) and Eq. (3.8), we conclude that

||Sy1(t) − Sy2(t)|| ≤ M‖y1 − y2‖, (3.9)

whence by M < 1, we find that (1.1)–(1.3) has a unique solution. This completes the
proof. �	

We shall next appeal to the contraction mapping theorem to get a unique solution
of boundary value problem (1.1)–(1.3) when 1 < p < 2.

Theorem 3.2 Suppose that f (t, y) is Lipschitz in y, that is, there exists L > 0 such
that | f (t, y1) − f (t, y2)| ≤ L|y1 − y2| whenever y1, y2 ∈ R, t ∈ [α + β − 4, α +
β +b]Nα+β−4 , and there exist a nonnegative function B(t) satisfying | f (t, y)| ≥ B(t),
for any y ∈ C, t ∈ [β − 2, β + b]Nβ−2 . If 1 < p < 2 and K < 1, the boundary value
problem (1.1)–(1.3) has a unique solution.

Proof By Lemma 3.1, for all y ∈ B, we can get that

‖T y‖ = max
s∈[β−2,β+b]Nβ−2

|T y(s)|

≥ max
s∈[β−2,β+b]Nβ−2

b∑

l=0

G(s, l)B(l + α + β − 1)

=
b∑

l=0

G(l + β − 1, l)B(l + α + β − 1).

Set K1 = ∑b
l=0 G(l + β − 1, l)B(l + α + β − 1). We will show that S defined as

(3.2) is a contraction map. By inequality (3.6), we note that for any y1, y2 ∈ C , we
can get that

|Sy1(t) − Sy2(t)| ≤ (q − 1)
β+b∑

s=β−2

H(s + α − 1, s)K (q−2)
1 ‖T y1 − T y2‖

≤ (q − 1)
β+b∑

s=β−2

H(s + α − 1, s)K (q−2)
1 M2‖y1 − y2‖,(3.10)

for t ∈ [α + β − 4, α + β + b]Nα+β−4 , here M2 = 2L
∏b

j=1

(
β+ j
j

)
. For convenience,

we denote

K = (q − 1)
β+b∑

s=β−2

H(s + α − 1, s)K (q−2)
1 M2. (3.11)

By inequality (3.10) and Eq. (3.11), we conclude that

||Sy1(t) − Sy2(t)|| ≤ K‖y1 − y2‖, (3.12)
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hence (1.1)–(1.3) has a unique solution. This completes the proof. �	
By weakening the condition imposed on f (t, y), we can still deduce the existence of
solutions to (1.1)–(1.3).We shall appeal to Brouwer fixed point theorem to accomplish
this.

Theorem 3.3 Suppose that there exists a constant G > 0 such that f (t, y) satisfies
the inequality

max
t∈[α+β−4,α+β+b]Nα+β−4 ,y∈[−G,G] | f (t, y)| ≤ φp

[
G

4�(β+b+1)�(α+b+3)
�(α+1)�(β+1)�(b+1)�(b+3)

]

.

(3.13)

Then (1.1)–(1.3) has at least one solution, say y0, satisfying |y0(t)| ≤ G, for all
t ∈ [α + β − 4, α + β + 4]Nα+β−4 .

Proof Denote D = {y ∈ C : ‖y‖ ≤ G}. Let S be the operator defined in (3.2). It is
easy to prove that S is a continuous operator. By using Brouwer fixed point theorem,
wewill to show that S : D → D, that is, whenever ‖y‖ ≤ G, it follows that ‖Sy‖ ≤ G.
Once this is established, we deduce the conclusion. To this end, assume that inequality
(3.13) hold for f (t, y). For notational convenience in what follows, let us put


 := φp

[
G

4�(β+b+1)�(α+b+3)
�(α+1)�(β+1)�(b+1)�(b+3)

]

, (3.14)

which is a positive constant. For any a y ∈ D, from (2.3), we observe that

‖h‖ ≤ max
s∈[β−2,β+b]Nβ−2

φq

[
1

�(β)

s−β∑

l=0

(s − l − 1)β−1| f (l + α + β − 1, y(l + α + β − 1))|

+ (s)β−1

�(β)(β + b)β−1

b∑

l=0

(β + b − l − 1)β−1| f (l + α + β − 1, y(l + α + β − 1))|
]

≤ 
 max
s∈[β−2,β+b]Nβ−2

φq

×
⎡

⎣
1

�(β)

s−β∑

l=0

(s − l − 1)β−1 + (s)β−1

�(β)(β + b)β−1

b∑

l=0

(β + b − l − 1)β−1

⎤

⎦ . (3.15)

Note that

1

�(β)

s−β∑

l=0

(s − l − 1)β−1 + (s)β−1

�(β)(β + b+)β−1

b∑

l=0

(β + b − l − 1)β−1

≤ 1

�(β)

s−β∑

l=0

(s − l − 1)β−1 + 1

�(β)

b∑

l=0

(β + b − l − 1)β−1
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≤ 1

�(β)

b∑

l=0

(β + b − l − 1)β−1 + 1

�(β)

b∑

l=0

(β + b − l − 1)β−1

= 2

�(β)

b∑

l=0

(β + b − l − 1)β−1, (3.16)

here we use the fact that tβ−1 is increasing in t since β − 1 > 0. Furthermore,

b∑

l=0

(β + b − l − 1)β−1 =
[

− 1

β
(β + b − l)β

]b+1

l=0
= �(β + b + 1)

β�(b + 1)
. (3.17)

If we now put (3.15)–(3.17) together, by the definition of 
 given in (3.14), then we
find that

‖h‖ ≤ G�(α + 1)�(b + 3)

2�(α + b + 3)
. (3.18)

By inequality (3.18), we conclude that

‖Sy‖ ≤ max
t∈[α+β−4,α+β+b]Nα+β−4

1

�(α)

t−α∑

s=β−2

(t − s − 1)α−1|h(s)|

+ max
t∈[α+β−4,α+β+b]Nα+β−4

(t − β + 2)α−1

�(α)(α+b+2)α−1

β+b∑

s=β−2

(α+β+b−s−1)α−1|h(s)|

≤ G
2�(α+b+3)

�(α+1)�(b+3)

max
t∈[α+β−4,α+β+b]Nα+β−4

[ 1

�(α)

t−α∑

s=β−2

(t − s − 1)α−1

+ (t − β + 2)α−1

�(α)(α + b + 2)α−1

β+b∑

s=β−2

(α + β + b − s − 1)α−1
]
. (3.19)

Since

1

�(α)

t−α∑

s=β−2

(t − s − 1)α−1 + (t − β + 2)α−1

�(α)(α + b + 2)α−1

β+b∑

s=β−2

(α + β + b − s − 1)α−1

≤ 2

�(α)

β+b∑

s=β−2

(α + β + b − s − 1)α−1, (3.20)

where to get inequality (3.20) we have used the fact that tα−1 is increasing in t since
α − 1 > 0, furthermore,

β+b∑

s=β−2

(α + β + b − s − 1)α−1 =
[

− 1

α
(α + β + b − s)α

]β+b+1

s=β−2
= �(α + b + 3)

α�(b + 3)
.

(3.21)
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If we now put (3.19)–(3.21) together, then we find that

‖Sy‖ ≤ G
2�(α+b+3)

�(α+1)�(b+3)

[
2�(α + b + 3)

�(α + 1)�(b + 3)

]

= G. (3.22)

Thus, from (3.22) we deduce that S : D → D, as desired. Consequently, it follow at
once by Brouwer fixed point theorem that there exists a fixed point of the map S, say
Sy0 = y0 with y0 ∈ C . But this function y0 is a solution of (1.1)–(1.3). Moreover,
y0 satisfies the bound |y0(t)| ≤ G, for each t ∈ [α + β − 4, α + β + b]Nα+β−4 . This
completes the proof. �	

4 Examples

In this section, we will present some examples to illustrate main results.

Example 4.1 Consider boundary value problem of discrete fractional equation

�1.2[φp(�
1.8y)](t) + t2 + 1

700
sin y(t) = 0, t ∈ [0, 2]N0 , (4.1)

�1.8y(−0.8) = �1.8y(3.2) = 0, (4.2)

y(−1) = y(5) = 0, (4.3)

where f (t, y) := t2+ 1
700 sin y(t), for t ∈ [0, 2]N0 , y ∈ R, is Lipschitz with Lipschitz

constants L = 1
700 . When p = 3, for this choice of L , inequality (3.9) is satisfied with

M ≈ 0.89 < 1. Therefore, we deduce from Theorem 3.1 that problem (4.1)–(4.3) has
a unique solution.

Example 4.2 Consider boundary value problem of discrete fractional equation

�1.2[φp(�
1.8y)](t) + 1

300
+ 1

300
sin y(t) = 0, t ∈ [0, 2]N0 , (4.4)

�1.8y(−0.8) = �1.8y(3.2) = 0, (4.5)

y(−1) = y(5) = 0, (4.6)

where f (t, y) := 1
300 + 1

300 sin y(t), for t ∈ [0, 2]N0 , y ∈ R, is Lipschitz with
Lipschitz constants L = 1

300 . When p = 3
2 , for this choice of L , inequality (3.12) is

satisfied with K ≈ 0.835 < 1. Therefore, we deduce from Theorem 3.2 that problem
(4.4)–(4.6) has a unique solution.

Example 4.3 We suppose that f (t, y) := t2 + sin y(t), for t ∈ [0, 2]N0 , y ∈ R.
Consider boundary value problem of discrete fractional equation

�1.2[φp(�
1.8y)](t) + t2 + sin y(t) = 0, t ∈ [0, 2]N0 , (4.7)

�1.8y(−0.8) = �1.8y(3.2) = 0, (4.8)
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y(−1) = y(5) = 0, (4.9)

and the Banach space C in this case is C = {y : [−1, 5]N → R}.
We claim that (4.7)–(4.9) has at least one solution.Suppose that G = 400 and

p = 2. To check the hypotheses of Theorem 3.3 hold, we note that

φp

[
G

4�(β+b+1)�(α+b+3)
�(α+1)�(β+1)�(b+1)�(b+3)

]

= φp

[
G

4�(1.2+2+1)�(1.8+2+3)
�(2.8)�(2.2)�(2+1)�(2+3)

]

≈ 26.3.

Now, it is clear that | f (t, y)| ≤ 5 < 26.3, whenever |y(t)| ≤ 400. By Theorem 3.3
we deduce that this solution, say y0(t), satisfies |y0(t)| ≤ G for t ∈ [−1, 5]N.
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